
Ecological Indicators 138 (2022) 108827

Available online 2 April 2022
1470-160X/© 2022 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-
nc-nd/4.0/).

Original Articles 

Using null models and species traits to optimize phytoplankton monitoring: 
An application across oceans and ecosystems 

Leonilde Roselli a, Stanislao Bevilacqua b,c,*, Antonio Terlizzi b,c,d 

a Research Institute on Terrestrial Ecosystems, National Research Council, 80131 Napoli, Italy 
b Department of Life Sciences, University of Trieste, 34127 Trieste, Italy 
c CoNiSMa, Piazzale Flaminio 9, 00196 Roma, Italy 
d Stazione Zoologica Anton Dohrn, 80121 Napoli, Italy   

A R T I C L E  I N F O   

Keywords: 
Environmental monitoring and assessment 
Multivariate analysis 
Spatial patterns 
BestAgg 
Transitional waters 
Marine ecosystems 

A B S T R A C T   

Phytoplankton assemblages are privileged descriptors of the ecological status of marine ecosystems regularly 
included in routine monitoring programmes. The high spatial and temporal variability of phytoplankton and the 
intrinsic difficulties of species identifications, however, combine in making reiterate assessments of this 
component of marine biota particularly demanding. Coarse levels of taxonomic resolution (e.g., genus, family) or 
morpho-functional categories have been proposed to reduce identification efforts or to ease the analysis of 
phytoplankton assemblages for monitoring purposes, although with contrasting outcomes. A major issue is that, 
in the absence of control for the loss of information associated to these alternative approaches, their application 
may lead to poor representations of genuine spatial and/or temporal patterns of assemblages in relation to 
natural and anthropogenic sources of variation. We provided a new approach to reduce the efforts required to 
analyse phytoplankton assemblages that integrate morpho-functional classification of phytoplankton with the 
use of null models to estimate the consequent loss of information on species-level community patterns. Null 
models for information loss were built by randomly grouping the original species variables into a progressively 
decreasing number of groups, in order to identify the minimum number of aggregate variables needed to detect 
community patters as at species level. Aggregate variables were then defined as morpho-functional groups, by 
grouping species on the basis of a combination of morpho-functional traits, including general taxonomy, cell size, 
shape, elongation and complexity. We applied the approach to six case studies investigating the response of 
phytoplankton assemblages from marine and transitional water ecosystems under different environmental set
tings in areas spanning the world’s ocean, including coral atolls, mangroves, estuaries, coastal lagoons and inlets. 
The approach allowed obtaining parsimonious sets of morpho-functional groups, which were suitable to detect 
changes in phytoplankton assemblage structure as at species level in all case studies. Trait-based approaches to 
phytoplankton research and monitoring are crucial to shed light on processes underlying phytoplankton com
munity assembly and dynamics in the face of global change. In this perspective, our framework incorporates cost- 
effectiveness, instances from traditional monitoring programmes aiming at the detection of community patterns, 
and the current need for a deeper understanding of functional responses of phytoplankton to environmental 
drivers.   

1. Introduction 

Phytoplankton are a complex group of organisms essential to the 
functioning of marine ecosystems. They are of basic importance in sus
taining marine food webs by providing the largest part of primary pro
ductivity of the world’s ocean (Uitz et al., 2010), and largely 
contributing to planetary processes of oxygen production, 

biogeochemical cycles, climate regulation, and carbon sequestration 
(Vallina and Simó, 2007; Litchman et al., 2015; Culhane et al., 2018; 
Zhang et al., 2018). Due to their prominent ecological role, phyto
plankton are considered an indispensable target in continuous global 
monitoring programmes (Batten et al., 2019), and have traditionally 
been included in routine assessments of environmental agencies 
worldwide as descriptors of the ecological status of aquatic ecosystems 
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(Tweddle et al., 2018; Eriksen et al., 2019). 
Monitoring phytoplankton is particularly demanding in terms of 

time and associated costs because of labour-intensive procedures for 
sample processing and taxonomic identifications. Phytoplankton as
semblages are generally very speciose and exhibit high spatial and 
temporal heterogeneity (Hutchinson, 1961; Tweddle et al., 2018), thus 
requiring frequent assessments (typically every two–three months) at 
multiple sites during monitoring programmes, leading environmental 
agencies to routinely handle a large number of samples. Preservation 
does not ensure the integrity of all organisms in the long run, and 
samples have to be processed as soon as possible to avoid degradation of 
delicate species (Muñiz et al., 2020), requiring subsampling of water 
volumes, counting and identifying each cell at species level for many 
samples at a time. In most cases, fine taxonomic identifications entail a 
long time to prepare the material for subsequent analysis through 
traditional electron scanning microscopy and confocal microscopy 
techniques. In vivo observation and preparation of cultures could help 
the identification process (Tomas, 1997), but further increase time and 
costs for analysis. In addition, laboratories of environmental agencies 
deputed for monitoring often lack adequate instruments, and personnel, 
though carefully trained, has rarely sufficient expertise to conduct 
species-level identifications for all taxonomic groups (Domingues et al., 
2008; Straile et al., 2013). 

The limited availability of expert taxonomists and the need for 
speeding sample processing and species identifications has stimulated 
continuous efforts to implement rapid and cost-effective methods to 
monitor phytoplankton. Promising approaches to replace traditional 
procedures when quantifying the abundance and composition of 
phytoplankton assemblages exploit measurements of cell pigments 
(Havskum et al., 2004), or other unconventional techniques, like com
puter assisted taxonomy (Gaston and O’Neill, 2004) and flow cytometry 
(Sieracki et al., 1998; Sosik and Olson, 2007), although several issues on 
their application remain unsolved. For instance, wrong assignments of 
specimens to taxonomic groups and misinterpretation of suspended 
particles as phytoplankton cells may severely affect the results of such 
analyses (Dashkova et al., 2017). The use of sophisticated instruments 
and screening algorithms complicates these methods, which, moreover, 
often need complementary evaluations through conventional taxonomic 
identifications and counting of phytoplankton cells (Alvarez et al., 2014; 
Coupel et al., 2015). 

Attempts to achieve profitable strategies for routine monitoring also 
explored the potential advantages of using coarse levels of taxonomic 
resolution in the analysis of phytoplankton assemblages (Cottingham 
and Carpenter, 1998; Heino and Soininen, 2007; Carneiro et al., 2010). 
Several studies on fish and aquatic invertebrates demonstrated that 
identifying organisms to taxonomic levels higher than species, and 
particularly genus and family-level identification, alleviates costs and 
time for analysis by reducing the number of operational taxonomic units 
(i.e. the taxonomic units to be identified) and the difficulties of their 
identification, while still allowing the detection of community responses 
as at species level (e.g., Ferraro and Cole, 1995; Thompson et al., 2003; 
Bates et al., 2007). For many phytoplankton groups, however, the 
identification of organisms at genus or even at family level is still too 
challenging and time-consuming to allow substantial benefits in routine 
monitoring, while coarser taxonomic resolution (e.g., class), although 
conducive to significant reductions of identification efforts, is often 
inadequate to capture ecological patterns as at species level (Heino and 
Soininen, 2007; Carneiro et al., 2010; Gallego et al., 2012). More 
generally, this approach of taxonomic sufficiency (Ellis, 1985) lacks of 
sound theoretical basis that could allow modelling information loss at 
decreasing taxonomic resolution and optimizing trade-offs associated to 
different taxonomic levels through a formal and transparent procedure 
(Jones, 2008; Mellin et al., 2011; Bevilacqua et al., 2012). The reduction 
in the number of operational taxonomic units strongly depends on the 
particular architecture of the taxonomic hierarchy of the group of or
ganisms under study (Bertrand et al., 2006; Bevilacqua et al., 2009), and 

analysing higher taxa instead of species, regardless of their ecological 
importance or actual difficulty in their identification, could often lead to 
unnecessary loss of ecological information (Terlizzi et al., 2003; Jones, 
2008; Groc et al., 2010). 

Alternative ways to characterize phytoplankton assemblages rely on 
classifying species according to their similarity in habitat preference, 
tolerance and sensitivity to environmental variations (e.g., Reynolds 
et al., 2002; Padisák et al., 2009), or using morphological, physiological, 
phenological and behavioural features (traits) which are functionally 
relevant (Litchman and Klausmeier, 2008). All these functional classi
fication schemes recognize the importance of key morphological traits, 
and particularly of cell size and shape, as ‘master traits’ to be considered 
when defining phytoplankton functional groups (Litchman and Klaus
meier, 2008; Weithoff and Beisner, 2019; Ryabov et al., 2021). Ap
proaches strictly relying on morphology have been implemented to 
obtain a small set of ecologically meaningful operational units of iden
tification (e.g., morpho-functional groups) that, at the same time, can be 
easily identified and used by researchers, practitioners and environ
mental managers to investigate phytoplankton assemblages. For 
example, Kruk et al. (2010) proposed a classification of phytoplankton 
in seven main categories, namely the ‘morphologically based functional 
groups’, obtained by combining several morphological traits (e.g., 
presence of flagella, presence of siliceous structures, cell volume, 
surface-volume ratio). Yet, the application of this approach, or even of 
more complex functional classifications (e.g., Reynolds et al., 2002) are 
basically thought for freshwater phytoplankton species and, more 
importantly, may oversimplify the structure of phytoplankton assem
blages leading to poor representations of spatial and/or temporal pat
terns in relation to natural and anthropogenic sources of variation (e.g., 
Carneiro et al., 2010; Wang et al., 2021). 

Quantifying the structure of assemblages using any type of species 
categories implies condensing the information that would have been 
gained using all separate species variables into a set of ‘aggregate’ var
iables, in which species identities are lost and their relative abundances 
are summed. This necessarily entails a loss of detail which can be more 
or less prejudicial for the detection of community patterns, depending 
on the effectiveness of aggregate variables to comprise species with 
similar ecological responses to the investigated environmental and/or 
biological drivers and, above all, on the level of ‘compression’ the set of 
the original species variables is subjected when it is condensed into a 
new set of aggregate variables. The higher will be the level of 
compression, that is the lower will be the number of aggregate variables 
with respect to the number of the original species variables, the larger 
will be the ensuing loss of information on the original species-level 
community patterns (Bevilacqua et al., 2013). Evidence across a wide 
range of organisms, from terrestrial plants to freshwater and marine 
invertebrates and vertebrates, demonstrated this inverse relationship 
between the effectiveness of aggregate variables to reflect species-level 
community response and the level of compression of species variables 
(Bevilacqua et al., 2012; Mueller et al., 2013; Rosser, 2017). On this 
basis, determining to what extent the original species variables can be 
aggregated before a substantial loss of information occurs represents a 
crucial step to obtain a set of aggregate variables which are effective 
surrogates for species in detecting community patterns. Recent de
velopments employed null models of species aggregation to find the 
‘best practicable aggregation of species’ (BestAgg, Bevilacqua et al., 
2013; Bevilacqua and Terlizzi, 2016) able to retain sufficient informa
tion on species-level community patterns, while reducing as much as 
possible the number of operational units of identification (i.e., the items 
to be identified, whatever their type). The procedure assumes that all 
species are ecologically equivalent and that the loss of information on 
the original species-level pattern is a pure effect of the aggregation of 
species variables. In this framework, a null model of information decay 
at increasing level of compression of species variables is built by 
randomly aggregating the original species variables into a decreasing 
number of aggregate variables (Bevilacqua et al., 2013). This allows 
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identifying the lowest number of aggregate variables needed for quan
tifying community patterns as at species level, under the null hypothesis 
that species are virtually interchangeable among groups. This threshold 
represents an objective reference to guide the experimenter when 
implementing a set of aggregate variables to be used as surrogates for 
species: if the number of surrogates is higher than the identified critical 
limit, then the set of surrogates will be able to reflect consistently the 
original species-level patterns (with a probability of failure that can be 
fixed a priori). It is worth noting that this will happen irrespective of the 
fact that the chosen aggregation criterion actually leads to group 
ecologically similar species, or that species within surrogates could 
exhibit incoherent, or even random, ecological responses to environ
mental changes (Bevilacqua and Terlizzi, 2016). To date, this method 
has been used to obtain suitable set of aggregate variables in order to 
quantify spatial and temporal patterns of marine and freshwater mac
roinvertebrates and fish assemblages in relation to anthropogenic and 
natural sources of variation (e.g., Milošević et al., 2014; Thiault et al., 
2015; Jiang et al., 2017; Bevilacqua et al., 2018), although it is virtually 
applicable to any type of organisms and environmental settings. 

Here, we proposed a new approach to reduce the efforts required to 
analyse phytoplankton assemblages in reiterated routine assessments by 
combining the rationale underlying the BestAgg procedure to the easi
ness of identifications that characterizes classical approaches based on 
morpho-functional aggregation of species. To demonstrate the general
ity of the method we used as pilot data a collection of datasets from six 
case studies on phytoplankton assemblages from marine and transitional 
water ecosystems worldwide, including coral reefs, mangroves, estu
aries, coastal lagoons and inlets. Specifically, (1) we used null models of 
species aggregation from BestAgg to determine the smallest number of 
aggregate variables able to reflect the original species-level patterns in 
phytoplankton assemblages across habitats and marine regions. This 
threshold served as reference to (2) obtain parsimonious sets of easy-to- 
identify surrogates for species based on a classification scheme of 

phytoplankton relying on coarse taxonomy, cell shape and size traits. 
Finally, (3) we tested the effectiveness of these sets of surrogates to 
closely reflect species-level patterns of phytoplankton assemblages. 

2. Materials and methods 

2.1. Study areas and datasets 

We analysed six datasets of phytoplankton assemblages from case 
studies in different habitats and geographic areas (Fig. 1), including 
transitional water and marine ecosystems. Two of them, SCO1 and 
SCO2, related to phytoplankton samples collected from brackish basins 
in the Orkney Islands (NE Atlantic). 

Specifically, for SCO1 (73 taxa × 27 samples), phytoplankton as
semblages were sampled along a gradient of confinement within a loch 
extending about 6 km, in order to test for difference in assemblage 
structure at increasing distance from the sea inlet. Samples were taken at 
the inlet, in the central and inner parts of the loch, with three sampling 
sites in each position along the gradient and n = 3 replicate samples in 
each site. SCO2 (116 taxa × 27 samples) referred to phytoplankton as
semblages sampled in three small (~1 ha) silled basins 2–3 km apart, 
with three sampling sites in each basin and n = 3 replicates per site. In 
this case, the aim was to assess spatial variations in phytoplankton as
semblages among basins. The MED dataset (128 taxa × 81 samples) 
included data from three Mediterranean brackish coastal lakes, one in 
the North Ionian Sea (Korission lake, Kerkira, Greece) and two in the 
Levantine (Akgöl and Paradeniz lakes, Turkey), and focused on assessing 
spatial variations in phytoplankton assemblages among lakes and 
increasing confinement within lakes. In each lake, three sites were 
sampled near the connection with the open sea, and in the inner and 
central parts of the lakes, with n = 3 replicates in each site. The BRA 
dataset (123 taxa × 81 samples) concerned a case study where changes 
in phytoplankton assemblages along the estuarine gradient, from the 

Fig. 1. Global distribution and type of study areas.  
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mouth to the interior part, were compared among different estuaries 
located along the northern coast of Brazil (Rio Grande do Norte, SW 
Atlantic Ocean). Three estuaries were sampled, each of them at three 
positions along the estuary from the mouth to the interior part, with 
three sampling sites at each position and n = 3 replicate samples in each 
site. In the MAL case study (97 taxa × 54 samples), phytoplankton as
semblages from coral atolls of different size were compared. Phyto
plankton were sampled in the inner lagoon of two atolls of small (~1 
ha), medium (~50 ha), and large (~150 ha) size located in the Maldives 
archipelago (Indian Ocean). Within each lagoon, three random sites 
were sampled, with n = 3 replicate samples in each site. Finally, in the 
last case study AUS (132 taxa × 27 samples), phytoplankton from sandy 
coast, creek and mangrove areas (Magnetic Island, SW Pacific) were 
compared to test for difference in assemblage structure at varying 
habitat type. Three random sites were sampled in each habitat, with n =
3 replicate samples in each site. Sampling design for all case studies were 
summarized in Table 1. All data are available at LifeWatch ERIC (https 
://www.lifewatch.eu), the e-Science Infrastructure for Biodiversity and 
Ecosystem Research (see Appendix A in supplementary material for 
dataset DOI). 

For all case studies, phytoplankton samples were collected through 6 
μm mesh plankton net equipped with a flow meter to determine the 
filtered water volume. Samples were preserved with Lugol (15 mL/L of 
sample). Phytoplankton were examined following Utermöhl’s method 
(1958). Phytoplankton were analysed by inverted microscope (Nikon 
T300E) connected to a video-interactive image analysis system (L.U.C.I. 
A Version 4.8, Laboratory Imaging). Taxonomic identification, counting, 
and morphological traits’ quantification were performed on 400 
phytoplankton cells for each sample. Phytoplankton were identified to 
species or genus level referring to different sources of taxonomic keys 
since the phytoplankton community in most cases has not been previ
ously investigated (see Roselli et al., 2017 for further details). 

2.2. Null models for species aggregation 

Using operational units of identification alternative to species (e.g., 
taxa of higher Linnaean ranks, morphological or functional groups, or 
any other species grouping) is equivalent to compress the multivariate 
information on assemblage structure, that would be obtained from S 
species variables, into G aggregate variables, with S > G. If the 
complexity and variability of ecological responses of species within the 
G groups, irrespective of the criterion used for species aggregation, may 
often lead such groups to be indistinguishable from random subsets of 
the original S species, then the loss of information on species-level 
community patterns will mostly depend on the aggregation per se, 
rather than on the way in which the aggregation is done. Under this 
assumption, the smaller will be G, the higher will be the level of 
compression of the original species variables, and the higher will be the 
loss of information on the original species-level patterns. The level of 
compression can be simply defined as φ = G/S, whereas the loss of in
formation can be expressed as the Spearman’s rank matrix correlation 
ρbetween the original dissimilarity data matrix at species level and the 
dissimilarity matrix based on the aggregate variables (for any dissimi
larity or similarity measure of interest) (Bevilacqua et al., 2012; 2013). 
The construction of null models of species aggregation from the BestAgg 
procedure allows determining the minimum number of aggregate vari
ables (Gmin), below which the probability to fail in detecting the original 
species-level patterns is higher than a tolerable level (β) fixed a priori. 

The original S species variables in the data matrix are progressively 
compressed (i.e., grouped and their abundances summed) at random 
into a decreasing number of G aggregate variables, simulating increasing 
compression levels (i.e., decreasing value of φ). The randomization 
procedure concerns the identity of species and their distribution within 
the G groups, so that not only the S species are randomly assigned to the 
G groups but also their number within each group is determined at 
random. For each aggregation step (i.e., for each simulated value of φ), 

1,000 such randomizations were performed obtaining 1,000 aggregated 
data matrices. For each randomization, the Spearman’s rank correlation 
ρ between the original species matrix and the aggregated matrix was 
calculated, and a distance-based permutational multivariate analysis of 
variance (PERMANOVA; Anderson, 2001) was performed based on each 
randomly aggregated matrix to test for the term of interest in the anal
ysis (e.g., the effect of the investigated source of variation on multi
variate assemblage structure). The lowest practicable aggregation level 
was then determined by the lowest value of G (i.e., Gmin) allowing the 

Table 1 
Dataset information and design for analysis.  

Dataset Environmental 
settings 

Source of 
variation 

Design for the 
analysis 

Term of 
interest 

SCO1 Temperate cold 
Transitional 
waters 
Brackish loch 

Confinement 
gradient 

Confinement 
[Co], 3 levels (sea 
inlet, central and 
interior part of 
the loch), fixed; 
Station [St(Co)], 
3 levels, random, 
nested in Co; n =
3 

Co 

SCO2 Temperate cold 
Transitional 
waters 
Silled brackish 
basins 

Variability 
among water 
bodies 

Basin [Ba], 3 
levels (basin 1, 
basin 2, basin 3), 
random; Station 
[St(Ba)], 3 levels, 
random, nested 
in Ba; n = 3 

Ba 

MED Temperate 
warm 
Transitional 
waters 
Brackish coastal 
lakes 

Confinement 
gradient and 
variability 
among water 
bodies 

Lake [La], 3 
levels (lake 1, 
lake 2, lake 3), 
random; 
Confinement 
[Co] 3 levels (sea 
inlet, central and 
interior part of 
lakes), fixed, 
crossed; Station 
[St(La × Co)], 3 
levels, random, 
nested in La × Co; 
n = 3 

La × Co 
interaction 

BRA Tropical 
Transitional 
waters 
Estuaries 

Estuarine 
gradient and 
variability 
among 
estuaries 

Estuary [Es], 3 
levels (estuary 1, 
estuary 2, estuary 
3), random; 
Position [Po], 3 
levels (mouth, 
central and 
interior part of 
estuaries), fixed, 
crossed; Station 
[St(Es × Po)], 3 
levels, random, 
nested in Es × Po, 
n = 3 

Es × Po 
interaction 

MAL Tropical 
Marine 
Atoll lagoons 
(coral reefs) 

Lagoon size Size [Sz], 3 levels 
(small, medium, 
large), fixed; 
Lagoon [La(Sz)], 
2 levels, random, 
nested in Sz, 
Station [St(La 
(Sz))], 3 levels 
random, nested 
in Sz, n = 3 

Sz 

AUS Tropical 
Marine-brackish 
Open coast/ 
creek 
(mangroves) 

Changes among 
habitats 

Habitat [Ha], 3 
levels (sand, 
creek, 
mangroves), 
fixed, Station [St 
(Ha)], 3 levels, 
random, nested 
in Ha, n = 3 

Ha  
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95% of PERMANOVAs tests to give a result consistent with (i.e., the p- 
values of the tests for the term of interest are in the same range of, or 
lower than) that obtained at species level. In other words, the null hy
pothesis that Gmin is not sufficient to allow consistent results with 
species-level analysis can be rejected with a probability of Type-I error 
of P < 0.05, under the assumption that aggregate variables are random 
subsets of the original species variables. Note that this is a threshold 
value, and therefore the number of aggregate variables to be used can be 
even higher than Gmin. Full details on the BestAgg procedure and null 
model construction for main experimental designs (including asym
metrical designs) with nested and crossed factors, along with the R code 
to run the procedure, are provided in Bevilacqua et al. (2013), Bev
ilacqua and Terlizzi (2016). 

Following the above procedure, we obtained six separate null models 
of species aggregation, one for each dataset, in order to determine Gmin 
for each case study. In all cases, to simulate decreasing φ values, we 
considered a stepwise reduction of 10 variables at a time, starting from 
the total number of species found in the study. For example, for SCO1, 
the original 73 species were progressively aggregated into 70, 60, 50, 
40, 30, 20, and 10 groups, obtaining 1,000 randomly aggregated data 
matrices for each step. Stepwise reductions of approximately 10% of S 
allow defining a representative set of simulated decreasing φ values for a 
wide range of S (Bevilacqua et al., 2013). For each null model, the 
relationship between the level of compression of the original variables 
and the loss of information was checked by fitting a linear regression of ρ 
values from random aggregations against the corresponding ln(φ). For 
all the regression analyses, the intercept of linear models was fixed to 1, 
since the maximum Spearman’s correlation between matrices is ob
tained when the number of aggregate G variables is exactly equal to the 
number of the original S species variables, that is when φ = 1 and, 
therefore, ln(φ) = 0. PERMANOVAs testing for the term of interest in the 
analysis in all models were based on Bray-Curtis dissimilarities of un
transformed abundance data, with 5,000 permutations. The design for 
analysis and the terms of interest in the different case studies are sum
marized in Table 1. All analyses were performed using R (R Core Team, 
2020). 

2.3. Morpho-functional classification of phytoplankton species 

Once the Gmin has been determined, any aggregation criterion of 
species can be used in order to obtain the set of aggregate variables, 
having in mind that if their number is lower than Gmin then the ability to 
detect species-level patterns is very likely to be compromised. Clearly, 
the aggregation criterion should allow obtaining ecologically mean
ingful aggregate variables while increasing the easiness of their identi
fication. Commonly, aggregation criteria are calibrated upon the study 
aim, considering the group of organisms under study, the environmental 
context, the ecological relevance of species, the available taxonomic 
expertise and, obviously, the study-specific Gmin (Bevilacqua et al., 
2013). However, since our study focused exclusively on phytoplankton 
and our aim is to demonstrate the generality of the approach, we 
preferred not to obtain study-specific sets of surrogates. Instead, we 
proposed a general aggregation scheme that, while being suitable to 
respect the threshold of Gmin in all the six case studies, can be of general 
application to different environmental contexts and geographic areas. 
Our scheme included taxonomic, morphological (i.e., cell shape, elon
gation, and complexity) and morphometric (i.e., typical cell size) 
criteria, which were combined to achieve a hierarchical classification of 
phytoplankton species. 

As first, the aggregation scheme distinguished phytoplankton into 
three main taxonomic groups, which are easy to identify while being 
informative of the primary ecological features of phytoplankton (e.g., 
Mutshinda et al., 2016; Wasmund et al., 2017), and namely Diatoms, 
Dinoflagellates and Other (e.g., Cyanobacteria, Chlorophyta) phyto
plankton. Then, phytoplankton were further classified based on 
maximum linear dimension (MLD) and cell shape. Cell size (MLD) 

classes were small (<10 μm), medium (10 μm-20 μm), large (20 μm-100 
μm), and very large (>100 μm), whereas all taxa found in the whole 
dataset were ascribed to 19 main three-dimensional shapes, whether 
simple (i.e., cone, pyramid, cube, sphere, ellipsoid, half sphere, paral
lepiped, prism with parallelogram base, prism with triangular base, 
prism with elliptic base, prism sickle-shaped, cylinder, prolate spheroid, 
cymbelloid, gomphonemoid) or composite (i.e., double ellipsoid, double 
cone, double truncated cone, half sphere or half ellipsoid + cone). In 
addition, elongation (i.e., cell shape stretched in one dimension) and 
complexity (i.e., the presence of elements increasing the complexity of 
the main shape, such as flagella, spines, additional shapes to the main 
body) were also considered as classification criteria. Finally, the genera 
Chaetoceros and Pseudo-nitzschia, which are relatively easy to determine 
and are of particular ecological interest because of their harmfulness, 
were considered separately. 

Size and shape are strongly correlated to nutrient uptake, light use, 
growth, grazer resistance and anthropogenic disturbance (Rojo and 
Rodríguez, 1994; Mouillot et al., 2006; Naselli-Flores et al., 2007; 
Litchman and Klausmeier, 2008; Lugoli et al., 2012). Such traits virtu
ally convey useful information on the ecological role of morphologically 
different groups of organisms for the functioning of aquatic ecosystems, 
including energy and matter flow (Weithoff and Beisner, 2019). 
Therefore, cell size, shape, elongation and complexity were selected due 
to their widely recognized relations with environmental and biological 
drivers of phytoplanktonic community changes and, ultimately, to their 
role as determinants of fitness for phytoplankton (Ryabov et al., 2021). 

2.4. Comparison with species-level patterns 

For each dataset, the original S species (or taxa) variables were 
aggregated (i.e., grouped and their abundances summed), simulating the 
identification of phytoplankton using the morpho-functional groups 
from the proposed aggregation scheme. The Spearman’s rank matrix 
correlation ρ between the original dissimilarity data matrix and the 
dissimilarity matrix based on the morpho-functional groups was then 
calculated. Since it is assumed that the aggregate variables are random 
subsets of the original S variables, the information on the original 
community patterns retained in the aggregated data matrix (expressed 
as ρ) should fall within, or even above (if the aggregate variables capture 
more information than what expected to occur by chance) random ex
pectations from the null model. Correlation ρ values below expectations 
would indicate, instead, a set of aggregate variables that is likely un
suitable (Bevilacqua et al., 2015). To check for this, a randomization test 
was built following the same procedure underlying the construction of 
the general null model. For each dataset, the original S variables were 
randomly aggregated into the morpho-functional groups. Random ag
gregations were repeated 1000 times. Correlation ρ values between the 
original matrix and each randomly aggregated matrix were then calcu
lated obtaining a frequency distribution of ρ values. The true correlation 
value, i.e. the correlation between the original matrix and the matrix 
based on true morpho-functional groups, was tested against this random 
frequency distribution. PERMANOVA was also performed based on 
randomly aggregated matrices, and the percentage of tests for the term 
of interest consistent with those obtained using the original variables, 
represented the probability of Type-I error associated to the specific set 
of morpho-functional groups in each case study. 

The effectiveness of the approach to provide sets of operational units 
of identification able to reflect species-level community patterns was 
checked by comparing the outcomes of PERMANOVA results based on 
the original species variables with those obtained using the morpho- 
functional groups. Results of multivariate tests using the morpho- 
functional groups were considered as consistent with those obtained 
analysing the original variables when p-values of tests based on morpho- 
functional groups were in the same range (or lower) than those resulting 
from tests on the original variables. Moreover, when the analysis 
involved fixed factors with more than two levels, we considered results 
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consistent if also the pair-wise post-hoc comparisons returned the same 
patterns of difference among the factor’s levels. To check whether the 
use of morpho-functional groups allowed depicting multivariate pat
terns as at species level, a non-metric multidimensional scaling ordina
tion (nMDS) of centroids for the term of interest in the analysis was 
performed in both cases. Centroids were obtained calculating principal 
coordinates (PCO) on the basis of the Bray–Curtis dissimilarity matrix 
among all pairs of samples. Configurations of centroids in the multi
variate space based on morpho-functional groups and the original spe
cies variables were then compared through a Procrustean randomization 
test (PROTEST; Jackson, 1995). The m2 statistic in the analysis provide a 
measure of fit between configurations of points (i.e., the lower is m2, the 
higher is the concordance between the two configurations), which is 
then compared against a random distribution of m2 values to determine 
whether the original values is significantly smaller than what expected 
by chance. All analyses were performed using R (R Core Team, 2020). 

3. Results 

The Spearman’s correlation ρ between randomly aggregated 
matrices and the original species matrix decreased at decreasing ϕ (with 
ϕ = G/S, that is the level of compression of original S species variable 
into the G aggregate variables) following a semi-log model (Table 2), 
indicating that the information on species-level patterns was progres
sively lost as the number of aggregate variables decreased (Appendix B 
in supplementary material, Fig. B1). The minimum number of aggregate 
variables Gmin, allowing at least 95% of multivariate tests for the term of 
interest to give results consistent with those obtained at species level 
ranged between 10 and 30, depending on the case study (Table 2). 

The 384 phytoplankton taxa (63% identified at species level, 27% at 
genus level, and the remaining 10% at higher taxonomic level) found 
across the study areas (Appendix A in supplementary material) were 
classified in a total of 82 morpho-functional groups (Fig. 2, Appendix C 
in supplementary material). 

For each case study, the ρ value between the original matrix and the 
matrix based on morpho-functional groups fell within the distribution of 
random values generated for an equal set of aggregate variables except 
for MED (Fig. 3). In this latter case, the correlation value was signifi
cantly higher than random expectations (P = 0.002), indicating that the 
morpho-functional groups allowed retaining more information on 
species-level patterns than what expected to occur by chance. 

For all case studies, PERMANOVA on species data highlighted sig
nificant effects of the investigated sources of variation (Table 3). For 
SCO1, the analysis detected significant changes in phytoplankton as
semblages at increasing distance from the sea inlet. In SCO2, a signifi
cant variability in phytoplankton among the three silled basins was 

found. For Mediterranean coastal lakes (MED), phytoplankton assem
blages differed at increasing level of confinement, although this pattern 
was inconsistent among the three lakes. In the BRA case study, phyto
plankton assemblages changed along the estuarine gradient in E1 and 
E2, but not in E3. In MAL, medium and large coral atolls hosted com
parable phytoplankton assemblages, which however, were significantly 
different from those found at the small atolls. Finally, phytoplankton 
from mangroves were different from those found in correspondence of 
sandy areas and creeks in the AUS case study. Results of PERMANOVA 
based on morpho-functional groups tightly reflected those obtained 
using the original species variables (Table 3), with a probability of 
failure in detecting community patterns as at species level of P < 0.05 in 
all cases. 

Multivariate patterns of changes in phytoplankton assemblages were 
clearly depicted by the nMDS ordination plots, irrespective of using 
species or morpho-functional groups (Fig. 4). The values of m2 from 
PROTEST were generally very low, indicating that ordination plots were 
almost interchangeable between original and morpho-functional 
groups, except for SCO1 and MED, which showed higher values 
(Table 4). However, correlation values of centroids’ configurations in 
the multivariate space when comparing species-level ordinations and 
those obtained using morpho-functional groups were very high in all 
cases (Table 4). 

4. Discussion 

The impact of global change on seas and oceans will likely involve a 
profound alteration of phytoplankton communities (Van de Waal and 
Litchman, 2020; Henson et al., 2021), with cascading effects affecting 
the whole marine system, from the surface until the deep-sea environ
ments (Nomaki et al., 2021). Trait-based perspectives to phytoplankton 
research will be critical to broaden our understanding of phytoplankton 
community assembly and dynamics under such changes and the ensuing 
effects on the functioning of marine ecosystems (Litchman et al., 2007; 
Litchman et al., 2015; Weithoff and Beisner, 2019). However, compre
hensive investigations of functional aspects often require identifying 
organisms at the level of species and a deep knowledge of their 
autecology, which is still far from being adequate for phytoplankton 
(Litchman and Klausmeier, 2008), making these analyses overly 
demanding and impractical especially in reiterate assessments (Weith
off, 2003; Kruk et al., 2010). 

A suite of ecological responses of phytoplankton species to envi
ronmental and biological variables, such as light and nutrient avail
ability, temperature, salinity, or zooplankton grazing are, nevertheless, 
strongly related to specific and recognizable morphological attributes of 
phytoplankton and particularly to cell size and shape (e.g., Litchman 
and Klausmeier, 2008; Morán et al., 2010; Naselli-Flores and Barone, 
2011; Svensson et al., 2014; Roselli et al., 2015; Cloern, 2018; Ryabov 
et al., 2021). For instance, the efficiency in nutrient uptake and photo
synthesis are directly correlated to the surface/volume ratio of phyto
plankton cells, so that under conditions of limited nutrient supply and 
light, small-sized species rely on a better nutrient flux per unit volume 
and higher photosynthetic rates with respect to larger ones (Morabito 
et al., 2007; Karp-Boss and Boss, 2016). In contrast, large species are 
advantaged in well illuminated and nutrient rich environments (Naselli- 
Flores et al., 2007; Stanca et al., 2013), where resources are not limiting 
and large size may confer higher plasticity to other selective factors, 
such as grazing pressure (Sunda and Hardison, 2010; Cloern, 2018). Cell 
shape also play a crucial role in determining the efficiency of resource 
exploitation in phytoplankton. If compared with rounded, compact 
forms, particular cell shapes (e.g., cylindric, prolate, oblong) or elon
gated forms allow increasing the surface/volume ratio maximizing 
nutrient uptake and enhancing chloroplast packing (O’Farrell et al., 
2007; Naselli-Flores and Barone, 2011). The complexity of cell shape, 
which increase with the presence of appendices, flagella, spines, and 
defensive structures, further improves the nutrient absorption and light 

Table 2 
Summary of results of regression analysis of ρ values (Spearman’s correlation) 
between the species-level matrix and each randomly aggregated matrix against 
the natural logarithm of the level of variable aggregation φ (=G/Swhere S is the 
number of species variable and G the number of aggregate variables). The 
adjusted R2 and slope are reported for each case study; regression plots and 
linear models are provided in Fig. B1 in Appendix B. The lowest φ (φmin) from 
null models, which indicate the maximum possible aggregation of the original 
species variables that still allowed multivariate tests for the term of interest to 
give comparable results to those obtained using species, is reported along with 
the corresponding Gmin (i.e., the minimum number of aggregate variables G that 
should be used). All Adjusted R2 and slopes were significant at P < 0.001.  

Dataset Adj. R2 Slope φmin Gmin 

SCO1  0.48  0.10  0.14 10 
SCO2  0.39  0.12  0.09 10 
MED  0.65  0.27  0.08 10 
BRA  0.45  0.10  0.08 30 
MAL  0.94  0.08  0.31 30 
AUS  0.88  0.14  0.08 20  
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Fig. 2. Schematic representation of the 82 morpho-functional groups of phytoplankton obtained as a combination of the five classification criteria: general tax
onomy, cell size, shape, elongation and complexity (see text for further details). Only groups combining general taxonomy (Diatoms, Dinoflagellates, Other), cell size 
(S, M, L, XL, respectively MLD < 10 µm, 10–20 µm, 20–100 µm, >100 µm) and shape are showed. Numbers in brackets indicate groups not showed for that 
combination of traits, referring to additional grouping of elongated and/or complex forms. The full list of groups is reported in Appendix C in the supplemen
tary material. 
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harvesting, contrasts cell sinking, and increase the resistance to grazing 
(Padisák et al., 2003; Stanca et al., 2013; Pančíc and Kiørboe, 2018; 
Durante et al., 2019). 

The use of easily decipherable morphological characteristics of 
phytoplankton species as traits underlying their functional aspects, 
therefore, could help extending the application of functional trait-based 
approaches also to routine phytoplankton monitoring and assessment 
(Reynolds et al., 2002; Kruk et al., 2010). Yet, when the aim is to analyse 
community composition using ecologically meaningful and cost- 
effective operational units as an alternative to labour-intensive fine 
taxonomic identifications, it should be considered that such operational 
units, if not designed to serve as surrogates of species-level responses, 
may not reflect spatial and temporal patterns as outlined by analyses 
based on multi-species abundances (Bevilacqua et al., 2021). One reason 
for this may simply relies on the fact that morpho-functional and taxo
nomic composition of assemblages focus on different aspects of phyto
plankton diversity, so that diversity patterns in the two cases may not 
necessarily overlap (Mutshinda et al., 2016; Graco-Roza et al., 2021). 
Moreover, as for other organisms (Bevilacqua et al., 2012), our findings 
from different habitats and marine regions highlighted an intimate 
relationship between the loss of information on species-level patterns 
and the level of aggregation of species also for phytoplankton. Hence, 
grouping phytoplankton species using a priori defined categories, such 
as taxonomic surrogates (or morpho-functional groups), without con
trolling for the effect of variable aggregation, may lead to compromise 
the recognition of genuine community patterns (Carneiro et al., 2010; 
Gallego et al., 2012; Machado et al., 2015). 

If compared to more classical methods, like those involving the use of 
coarse levels of taxonomic resolution (e.g., genus, family), this new 
approach can be more profitable in terms of time saved during sample 
processing, assuming that the time required to identify organisms is 
proportional to the number of categories in which they have to be 
classified (Ferraro and Cole, 1995; Thompson et al., 2003). For identi
fications based on morpho-functional groups the number of categories 
was about 60% lower than for species-level identifications in all case 
studies (Table 3), while still allowing the detection of community pat
terns. Instead, the identification of phytoplankton at genus and family- 
level would lead, on average, to reduce the number of categories of 
only 30% and 44% respectively (Appendix B in supplementary material, 
Table B1). Correlation values between the original species-level matrix 
and matrices at genus or family level were not significantly higher than 
what expected to occur by chance (Table B1). Such findings confirmed 
what has been found for other groups of organisms, from terrestrial 
plants to marine invertebrates, reinforcing the idea that higher taxa can 
be viewed as random group of species not conveying consistent 
ecological responses to natural and human-driven environmental 
changes (Bevilacqua et al., 2012). Indeed, phylogenetic or taxonomic 
relatedness and ecological similarity of species are often unrelated for 
many taxa, or relationships may be limited only to some lineages or 
species traits (Losos, 2008; Crisp and Cook, 2012), and the responses of 
relatives to environmental variations may not converge showing, 
instead, neutral dynamics (Carranza et al., 2011; Bevilacqua et al., 2013; 
Siqueira et al., 2012). In half of cases, correlations fell below the 95% CI 
from random expectations or very close to the lower bound (Table B1), 
indicating that higher taxa of phytoplankton may often tend to include 
species having opposite patterns of abundance in relation to the inves
tigated environmental gradient. For morpho-functional groups correla
tion values never fell below the 95% CI, and for the MED case study the 
value was significantly higher than random expectations. Thus, the 
morpho-functional approach seems having the potential to be more 
effective than taxonomic aggregation in grouping species with common 
ecological features. However, in most cases the information provided by 
morpho-functional groups did not correlate with species-level informa
tion better than what occurred by chance, suggesting that categorizing 
phytoplankton species according to shared cell traits may not ensure 
obtaining ecologically coherent groups. Modelling species aggregation 

Fig. 3. Box plots of distribution (n = 1,000) of ρ correlation values between the 
species-level matrix and matrices in which species were randomly aggregated 
into a number of variables equal to the number of morpho-functional groups 
identified for each specific case study. Circles indicate the correlation value 
between the species-level matrix and the matrix aggregated using the true 
morpho-functional groups. Whiskers correspond to the 1th and 4th quartile, 
whereas boxes indicate the median, the 2th and the 3th quartile. 

Table 3 
Summary of PERMANOVA results using the original number of variables (spe
cies) and the aggregate variables (morpho-functional groups) for the term of 
interest in the analysis for each case study (see Table 1). SCO1: changes along the 
confinement gradient (Co) from the sea inlet to the interior of the loch (I = sea 
inlet, II = intermediate, III = interior); SCO2: variation among basins (Ba); MED: 
patterns of confinement (Co, I = sea inlet, II = intermediate, III = interior) 
among coastal lakes (La); BRA: differences along the estuarine gradient (Po, I =
mouth, I = intermediate, III = interior) among estuaries (Es); MAL: differences 
among atolls of different size (Sz, S = small, M = medium, L = large); AUS: 
differences among habitats (Ha, Sa = sand, Ma = mangroves, Cr = creek). **= P 
< 0.01, ***= P < 0.001.  

Dataset Number 
of 
species 

Number of 
morpho- 
functional 
groups 

Reduction of 
operational 
units 

PERMANOVA tests for the 
term of interest in the 
analysis     

Original 
species 
variables 

Morpho- 
functional 
groups 

SCO1 73 30 59% Co*** 
(I ∕= II ∕=
III) 

Co*** 
(I ∕= II ∕= III) 

SCO2 116 42 64% Ba*** Ba*** 
MED 128 48 63% La ×

Co*** 
L1 (I = II 
∕= III) 
L2 (I ∕= II 
= III) 
L3 (I ∕= III 
∕= III) 

La × Co*** 
L1 (I = II ∕=
III) 
L2 (I ∕= II =
III) 
L3 (I ∕= III 
∕= III) 

BRA 123 46 63% Es ×
Po*** 
E1 (I ∕= II 
= III) 
E2 (I = II 
∕= III) 
E3 (I = II 
= III) 

Es × Po*** 
E1 (I ∕= II =
III) 
E2 (I = II ∕=
III) 
E3 (I = II =
III) 

MAL 97 40 59% Sz** 
(S ∕= M =
L) 

Sz** 
(S ∕= M = L) 

AUS 132 38 71% Ha** 
(Ma ∕= Sa 
= Cr) 

Ha** 
(Ma ∕= Sa =
Cr)  

L. Roselli et al.                                                                                                                                                                                                                                  



Ecological Indicators 138 (2022) 108827

9

based on functional traits assumes intraspecific trait invariance, which 
could not be always the case (Yoshida et al., 2003; Merico et al., 2014). 
More generally, the complex interplay among niche preferences, 
competition, and predation, may lead phytoplankton species within 
functional groups to respond to environmental variations inconsistently 
(Segura et al., 2011; Mutshinda et al., 2016), and a deeper under
standing of trade-off among different and often contrasting trait- 
mediated competitive abilities is needed for improving trait-based as
sessments (Litchman and Klausmeier, 2008). 

The approach to integrate estimates of information loss and morpho- 
functional classification of phytoplankton allowed obtaining parsimo
nious sets of morpho-functional operational units, which were suitable 
to detect changes in phytoplankton assemblage structure as at species 
level in several areas spanning the world’s ocean. Considering the full 
list of species found across the investigated geographic areas, the orig
inal 384 taxa can be condensed into 82 effective morpho-functional 
groups with a decrease of about 80% of units of identification across 
studies. At the scale of single study areas, about 40 morpho-functional 
groups, on average, were sufficient to reflect species-level patterns, 
with an average reduction of units of identification > 60%. This 
reduction could have been even higher, since null model predictions for 

Gmin ranged between 10 and 30, depending on the study case. This does 
not mean that random grouping is more effective than morpho- 
functional groups, but simply that our classification scheme has led to 
a number of aggregate variables higher than the predicted Gmin, which 
represent a threshold below which further aggregation are prejudicial. It 
is worth noting, also, that we do not intend to provide a static morpho- 
functional classification of phytoplankton, nor an exhaustive list of 
morpho-functional groups. Our aim was, rather, to implement a stan
dardized process to optimize and facilitate the analysis of phytoplankton 
assemblages in routine monitoring and assessments, while controlling 
for the consequent loss of information. Although representative of 
different marine habitats and biogeographic regions, our study is clearly 
not comprehensive of the whole phytoplankton diversity, and further 
morpho-functional groups based on the selected criteria have probably 
to be defined for classifying phytoplankton species not included in our 
list, and/or additional criteria could be incorporated to refine the 
morpho-functional classification in other habitats or under different 
environmental settings. However, since phytoplankton are primary 
biological quality elements for coastal and marine ecosystems (e.g., the 
European Water Framework Directive; EC, 2000), data on phyto
plankton assemblages can be largely available for many marine water 

Fig. 4. Non-metric multidimensional scaling ordinations (nMDS) of relevant centroids for each case study (see also Table 3) based on Bray–Curtis dissimilarity for 
species-level data (O), and data aggregated using the morpho-functional groups (A). SCO1: centroids of stations along the confinement gradient from the sea inlet to 
the interior of the loch; SCO2: centroids of stations in the three basins; MED: centroids of confinement positions in the three coastal lakes (I = sea inlet, II = in
termediate, III = interior); BRA: centroids of positions along the estuarine gradient in the three estuaries (I = sea inlet, II = intermediate, III = interior); MAL: 
centroids of atolls of different size; AUS: centroids of stations of the different habitats. In all cases, stress value was ≪ 0.1. 

Table 4 
Results of PROTEST comparing the nMDS ordination plots based on the original species variables and morpho-functional groups for each case study.   

SCO1 SCO2 MED BRA MAL AUS 

m2  0.248  0.091  0.484  0.006  0.025  0.050 
Pearson’s correlation  0.867**  0.954**  0.961**  0.997**  0.987**  0.975**  

L. Roselli et al.                                                                                                                                                                                                                                  



Ecological Indicators 138 (2022) 108827

10

bodies, serving as baseline to define the set of morpho-functional groups 
needed to reflect community patterns as at species-level. The application 
of our approach, eventually complemented by periodic species-level 
surveys to check and refine the effectiveness of morpho-functional 
units of identification, could represent a valid alternative to more 
traditional and expensive procedures, at least in routine monitoring and 
assessments of phytoplankton. A major strength of this procedure is that 
the use of null models of species aggregation confers high robustness to 
the confounding effects of natural variability of assemblages in space 
and time (Bevilacqua et al. 2015, Thiault et al. 2015), and allows con
trolling for uncertainty in the application of the selected set of aggregate 
variables. Also, by identifying the number of morpho-functional groups, 
the use of this procedure combined to automated morpho-functional 
classification, through imaging-in-flow cytometry techniques (Sosik 
and Olson, 2007; Thomas et al., 2018), can be envisaged. 

Standardized methods relying on easy-to-identify operational units 
can reduce identification errors which are likely to occur in taxonomic 
analyses of difficult taxa or due to the heterogeneity in taxonomic 
expertise of practitioners and researchers (Straile et al., 2013; Muñiz 
et al., 2020), reduce identification efforts in terms of time spent for 
sample processing and resources, which in turn can be invested in 
extending monitoring programmes in space and time (Ellingsen et al., 
2017), and allow comparisons of community patterns among different 
geographic areas or periods (Bevilacqua et al., 2018). In this view, our 
approach condensed into a single framework cost-effectiveness, in
stances from conventional monitoring programmes focusing on detect
ing patterns of spatial (and/or temporal) variations in the structure of 
phytoplankton assemblages, and the current need for further insights 
from a functional perspective (Edwards et al., 2013; Litchman et al., 
2012). 
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Utermöhl, H., 1958. Zur Vervollkommnung der quantitativen Phytoplankton-methodik. 
Mitt. Int. Ver. Theoret. Angew. Limnol. 9 (1), 1–38. 
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