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A B S T R A C T   

Shallow landslides, frequently triggered by extreme events such as heavy rainfall, snowmelt, or earthquakes, 
affect vast areas with remarkable density. In the immediate aftermath of such events, it becomes crucial to 
rapidly assess landslides distribution and pinpoint the most severely affected areas to prioritize damage as
sessments and guide field survey operations effectively. Once the emergency phase subsides, the attention can 
shift to enhancing the accuracy of landslide inventory. In this work, we introduce the two-phase methodology 
“PANDA”, the unsuPervised shAllow laNdslide rapiD mApping, for the low-cost mapping of the potential 
landslides, firstly in the emergency phase and then, with an improved version, in the post-emergency one. This 
approach utilizes variations in NDVI derived from Sentinel-2 satellite imagery and geomorphological filters. We 
applied PANDA to rainfall events in the northeastern Apennine range, Italy, occurred in May 2023, causing 
dramatic social and economic consequences for this mountain territory. Within just five days of obtaining 
Sentinel-2 post-event imagery, we produced a reliable, ready-to-use map covering a vast area (~4000 km2). The 
map tested during emergency field mapping shows positive feedback. In the post-emergency phase, accuracy was 
enhanced using completely cloud-free imagery, a filter to identify false positives associated with land use 
changes, a higher resolution digital terrain model (DTM), and an iterative approach to optimize NDVI and slope 
thresholds. Potential landslide density related with rainfall, indicating that the most severely affected region 
attained a density of approximately 50 landslides/km2. Validation against an independent manual inventory 
based on high-resolution imagery demonstrated encouraging accuracy results from both inventories, with a 
noticeable increase in the F1 score for the post-emergency version.   

1. Introduction 

Extreme rainfall events are one of the primary triggers of shallow 
landslides (Guzzetti et al., 2008). They usually initiate almost simulta
neously, densely distributed and involving large territory (Bessette- 
Kirton et al., 1950; Cignetti et al., 2019; Guzzetti et al., 2004), causing 
severe damage, especially, to the road network (Bordoni et al., 2018; 
Giordan et al., 2017). After those events, one of the first activities 
necessary to evaluate the damage is a rapid mapping of landslides. 
Landslide event inventory mapping is one of the main approaches to 
estimating the level of risk posed by geo-hydrological hazards, playing a 
crucial role in recording the date of triggered events and evaluating the 
spatial extent and the magnitude of landslides (Corominas et al., 2014; 
Guzzetti et al., 2005; van Westen et al., 2008). Many approaches have 
been proposed for landslide event inventory mapping (Novellino et al., 

2024). Traditional methods rely on 3D visual interpretation of aerial 
photos or satellite images, coupled with extensive field surveys (Brar
dinoni et al., 2003; Santangelo et al., 2015). The increased availability of 
high-resolution images (from Unmanned Aerial Vehicle (UAV), aerial or 
satellite platforms) (Casagli et al., 2017; Giordan et al., 2020) allowed 
accurate mapping of small landslides. Unfortunately, these products are 
rarely free-cost and require an acquisition plan and/or only cover some 
of the area affected. Moreover, detailed mapping needs a time- 
consuming expert manual approach (Donnini et al., 2023; Guzzetti 
et al., 2012) or the development of a machine learning algorithm that 
requires a high level of expertise (Đurić et al., 2017; Galli et al., 2008; Lu 
et al., 2019; Meena et al., 2023; Murillo-García et al., 2015). The advent 
of remote sensing technologies has opened opportunities for the devel
opment of methodologies and techniques for automating landslides 
mapping through the utilization of various high-resolution optical 
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sensor products, significantly reducing the timing for the mapping 
(Casagli et al., 2016; Guzzetti et al., 2012). Recent studies (Nava et al., 
2022; Santangelo et al., 2022) use also the amplitude of Synthetic 
Aperture Radar (SAR) derived products to overcome the problem of 
cloud cover of multi-spectral satellite data. However, SAR techniques 
introduce some other limitations (e.g., vegetation and snow coverage, 
shawdowing, decorrelation noise), necessitating the expertise of users to 
process the data. 

The Sentinel-2 satellites, with a 5-day revisiting pass, allow medium- 
resolution images over wide areas and the possibility to compare the 
post-event images with the same condition of sunlight direction angle 
(Drusch et al., 2012). The availability of these images allows a rapid, 
fully or partially, automatic mapping of potential landslides (PL) over 
vast areas as soon as cloud-free images are available using the variation 
of NDVI (Ghorbanzadeh et al., 2022b; Notti et al., 2023b). These maps 
aim to estimate the severity of the event and its impact, and to focus the 
high-resolution mapping on the most affected areas. 

Despite NDVI-based landslide mapping methods offering rapid re
sults, and low computational and economic costs, ensuring a user- 
friendly approach even for non-expert users, diverse drawbacks need 
to be taken into account. Final products may be influenced by shadowed 
areas, cloud coverage, NDVI variations associated with agricultural ac
tivities and deforestation, as well as river erosional processes, poten
tially leading to an increased number of false positives in the mapped 
results. In recent years, various methods that aim to solve the limitation 
related to the use of NDVI images have emerged from different re
searchers. Fiorucci et al., (2019) proposed a manual mapping approach 
that leverages NDVI images coupled with digital stereoscopy for the 3D 
visualization of landslide events mapping, even in shadowed areas. 
Other authors have developed algorithms that exploit the slow regrowth 
of vegetation in landslide detachment areas to automatically detect 
landslides using NDVI time series data following the triggering event. 
However, this approach faces challenges with cloud coverage, making it 
unsuitable for rapid landslide mapping after a catastrophic event (Mil
ledge et al., 2022). The recent advancement of new machine learning 
techniques, in particular, the algorithms that use the convolutional 
Neural Network (CNN) and Fully Convolutional Network (FCN) for 
image segmentation (Ghorbanzadeh et al., 2021), has facilitated the 
analysis of extensive datasets, enabling the observation of NDVI trends 
over extended periods and facilitating the identification of various fac
tors influencing these fluctuations, such as seasonality, landslide trig
gers, and human activities (Doan et al., 2023).This work presents a two- 
phase methodology aimed at the low-cost mapping of shallow land
slides: the unsuPervised shAllow laNdslide rapiD mApping - PANDA 
method. The first step (PANDA-E) is applied in the emergency phase as a 
survey management tool. It is based on an improved version of the 
procedure proposed in (Notti et al., 2023b), to obtain a first assessment 
map of the area affected by PL in the aftermath of the rainfall event, 
immediately available for survey field operations and risk management. 
The second phase is post-emergency mapping (PANDA-PE), in which the 
PL inventory is progressively improved with the availability of new 
images and ancillary data (e.g., high-resolution DTMs, field survey in
formation, UAV surveys), of which acquisition is usually arranged in the 
stages immediately following the event. The availability of progressively 
more detailed and higher-resolution data, allows the initial mapping to 
be refined, identifying the false positive and resolving the eventual gap 
of cloud cover of the first map. The PANDA-PE aims to obtain a reliable 
inventory tool for the subsequent phase of validation, risk mitigation 
and action planning. 

The proposed methodology was applied both in the emergency and 
post-emergency phases in a portion of northeastern Apennine chain 
(Central Italy) to map the dramatic consequences of two severe rainfall 
events that occurred in May 2023. The maps obtained were also vali
dated by a third-party (Ferrario, 2023) manual inventory made on high- 
resolution satellite images. 

2. Study area 

2.1. Geological and geomorphological settings 

The study area covers the central-eastern sector of the Tuscan- 
Emilian Apennines, within the provinces of Bologna, Ravenna, and 
Forlì-Cesena, Emilia-Romagna Region, and a small portion of the Tus
cany Region (Florence Province) (Fig. 1). The area of interest (AOI) was 
identified as the mountainous and hilly regions predominantly impacted 
by the dual rainfall occurrences in May 2023 and was pinpointed with a 
particular focus on the sector where the second event (16–17 May) 
recorded precipitation exceeding 150 mm or the cumulative rainfall of 
two events surpassed 250 mm (Fig. 2b). 

This territory pertaining to the Tuscan-Emilian Apennine segment is 
mainly characterized by a mountainous to hilly morphology, with ele
vations ranging from 1300 m a.s.l. in the Apennine portion to 50 m a.s.l. 
towards the Po Plain. This Apennine sector, a fold and thrust belt, is 
mainly constituted by turbiditic deposits (flysch) with the alternation of 
mudstone and massive rocks as sandstones and calcarenites (Pini, 1999) 
(Fig. 1b). Considering the high-medium slope values and the presence of 
lithologies prone to erosion, this territory is extremely susceptible to 
slope instabilities. According to the IFFI catalogue (Trigila et al., 2008) 
the most widespread landslide typologies are earth flows, translational/ 
rotational slides and complex landslides, generally triggered by snow 
melting and moderate but exceptionally prolonged (even up to 6 
months) periods of rainfalls. On the other hand, shallow landslides and 
debris flows are generally less prevalent; however, their occurrence 
rapidly increases during high-intensity rainfalls or by prolonged low- 
intensity rainfalls (Benedetti et al., 2005; Ibsen and Casagli, (2004); 
Martelloni et al., 2013; Martina et al., 2010). This territory generally 
displays a high degree of urbanization characterized by numerous small 
inhabited areas scattered in the hilly zones connected with the main 
urban centers by a dense road and rail network. Consequently, geo
hazard related to landslides is one of the major issues affecting the entire 
Region. 

2.2. The rainfall events 

During May 2023, an extended portion of the Central Apennine, 
specifically the Emilian Apennine side and the Po Plain of the Emilia- 
Romagna Region, was affected by two consecutive rainstorms that 
occurred in less than twenty days: i) 1-3th May 2023 weather event, and 
ii) 16–17 May 2023 weather event (Brath et al., 2023). 

In the first event, a low-pressure area generated a convergence of 
moist air, interacting with the Apennine chain in the central-eastern 
sector of the Region (i.e., provinces of Bologna, Ravenna and Forlì- 
Cesena), and a small portion of the Tuscany Region included in the 
Adriatic river basins (Reno and Lamone). Referring to the spatial grid
ded data (5 km of spatial resolution) of rainfall available on the SIMC 
platform (https://dati-simc.arpae.it/opendata/erg5v2/timeseries/ma 
ppa.html), this first event led to rainfall accumulations in the hilly 
area even exceeding 200 mm (Arpae-SIMC, 2023a), in the central area 
(cells ID 1628, ID 1505 Fig. 2a) and 150 mm in the western limit (cell ID 
1302) calculated on the whole event (about 40 continuous hours). The 
average hourly intensity ranged from 3 to 6 mm/h, with some peaks up 
to 10 mm/h (Fig. 2a). This event was weaker in the eastern part with 
cumulated rainfall of 75 mm (cell ID 2031, Fig. 2b). Other minor rainfall 
events contributed up to 50 mm of rainfall between the two events in the 
same area. 

In the second event, a cyclone transiting the Mediterranean affected 
approximately the same area impacted by the previous event, with peak 
rainfall slightly shifted to the east (i.e., provinces of Bologna and Forlì- 
Cesena). Most of the precipitations were concentrated in the central- 
eastern hills and foothills areas, with accumulations of ~ 250 mm in 
35 h and peaks recorded during May 16 exceeding 200 mm (Arpae- 
SIMC, 2023b; Brath et al., 2023). The intensity of the second event was 
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also slightly higher than that of the first event, especially in the central- 
eastern part (7 mm/h), where some peaks reached 20 mm/h, especially 
in cell ID 2031(Fig. 2a). 

These amounts of precipitation poured over an area close to satu
ration (according to the soil water index – SWI content available on 
Copernicus Global Land Service https://land.copernicus.eu/global/pro 
ducts/swi) by the intense rainfall events in the preceding days, mak
ing the soil unable to absorb part of the precipitations and triggering 
many shallow and deeper landslides. 

3. Materials and methods 

Following the methodological flow chart proposed in Fig. 3, we 
defined two main phases of PANDA approach for shallow landslide 
mapping:  

• Emergency mapping (PANDA-E): It aims to create a first assessment 
map helpful for support in field surveys to estimate the most affected 
area in terms of landslide density and a preliminary estimate of 
damage. In this step, rapidity has priority on accuracy. The emer
gency mapping is based only on a semi-automatic methodology 
derived from Notti et al., (2023) that uses Sentinel-2 satellites.  

• Post-Emergency mapping (PANDA-PE): This step aims to improve 
the first asset mapping and to make a more refined mapping of 
shallow landslides. This step could improve the semi-automatic 
methodology using the land use change filter and enhanced 
geomorphological filter. Here, high-resolution images from aerial or 
satellite can be used for validation. The mapping aims to create an 
accurate event map for research, land-use planning, or susceptibility 
studies. 

It is not possible to quantify the time of the emergency phase, which 
may last from a few days up to several months, depending on many 
factors. For the Emilia case, we considered the emergency phase to have 
ended when the field survey for the first assessment and residual risk 

evaluation ended, approximately 40 days after the event. 

3.1. The PANDA-E mapping steps and parameters 

Performing a shallow landslide map over large areas during an 
emergency context, available immediately after a rainstorm event, re
quires a rapid and unsupervised mapping of the affected area. We 
implemented PANDA to obtain a prompt map of the ground effects 
based on free-cost optical satellite images. 

The emergency methodology is based on those proposed by (Notti 
et al., 2023b), a GIS-based and user-friendly approach to map PLs, based 
on the difference between pre- and post-event Normalized Difference 
Vegetation Index (NDVI) obtained from satellite images, e.g., free 
Sentinel-2 dataset, available on the Copernicus Dataspace Service (https 
://dataspace.copernicus.eu/) and geomorphological filtering. The vari
ation in the NDVI (NDVIvar), mainly linked to the processes that occur 
during the rainstorm, allows the functional detection of surface changes 
and signs of PLs. Considering the emergency context, the need for im
ages immediately following the event may result in some constraints in 
the post-event image selection. After a rainstorm, the availability of 
entirely could-free images can be challenging to achieve. However, if the 
cloud percentage is below an empirical threshold that allows an almost 
complete mapping (e.g., <20 % of the study area), it is possible to 
exclude from PL mapping the areas covered by the clouds using the mask 
available on the Sentinel-2 dataset (Table 1), joined with a manual 
refinement to include cloud shadow. In our case, the first image was 
acquired on 23–05-2023, a week after the event, compared with the 
previous year image (13/05/2022). It is worth noting that The Google 
Earth Engine (GEE) platform has undergone advancements in cloud 
detection capabilities, enabling precise identification of both clouds and 
shadows (https://developers.google.com/earth-engine/tutorials/comm 
unity/sentinel-2-s2cloudless). 

Then, we combine two Boolean filters based on the NDVIvar and slope 
gradient. The first one selected all the areas with an NDVIvar below a 
certain threshold (based on visual evaluation of NDVIvar pattern) that 

Fig. 1. (a) Location of the AOI that identifies the sector most affected by the rainstorm events that occurred in May 2023, and (b) simplified lithological map based 
on 1:500.000 scale lithological map of Italy (MASE, 2009). 
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identify a PL. The second is a geomorphological filter based on slope 
gradient (derived from digital terrain model (DTM)). This filter is based 
on an empirical threshold (based on local geomorphology), below which 
an NDVI change is most likely unrelated to a shallow landslide occur
rence. In the Boolean raster, the pixels where both thresholds are 
satisfied have a value of 1, and such pixels are extracted and converted 
into vectors: i.e. the PL polygons. In our study area, we used the 
thresholds NDVIvar<=-0.3 and slope > 15◦. Such thresholds are 
empirically based on the pattern NDVIvar, previous experience, the local 
geomorphological conditions, and literature (Ghorbanzadeh et al., 
2022a; Notti et al., 2023b); such thresholds could be changed in iterative 
procedure in order to obtain the most likely ground truth scenario. In 
this case, we used a conservative NDVIvar threshold for the problem 
related to cloud coverage. 

In addition, the polygons have been intersected with the 

hydrographic network (polygon or buffered layer geometry) to exclude 
bank erosion processes or sediment deposition along the river system. 
The filtered polygons exemplify the area where a shallow landslide is 
most probably located. Consequently, the PL density map allows us to 
identify the most affected areas to focus emergency activities. 

3.2. The PANDA-PE steps and parameters 

After the preliminary release, in the post-emergency phase, it is 
possible to improve the PL database by acquiring new images and 
ancillary data. The aim is to obtain a more accurate mapping of the event 
impact and its consequences. Among the several improvements that can 
be made, the first is to use an utterly cloud-free image (cloud cover < 3 
%) to have information on the whole AOI. In this case study, we found 
the first cloud-free image on 17 July 2023, compared with a pre-event 

Fig. 2. Rainfall data of May 2023 events. a) Hourly (left Y-axis) and cumulated (right Y-axis) rainfall data (computed respectively for the May 1-3rd and the May 16- 
17th rainfall events. The precipitation time series utilized have been extrapolated from the grid of the SIMC platform (https://dati-simc.arpae.it/opendata 
/erg5v2/timeseries/mappa.html) over 4 representative cells. b) Location of selected cells and the rainfall contour lines used to delimit the AOI. 
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image of 22 July 2022. 
The false positive land use change (LUC) filter based on NDVIvar is a 

second improvement. The change of land use, and vegetation activity, 
that intercurred between the pre-event images and the event is one of 
the leading causes of false positive (e.g., a forest cut or change in crop 
cultivation). If available, a cloud-free image acquired slightly (i.e. in the 
same agricultural cycle) before the event can be compared with a syn
chronous image from the previous year. Leveraging the NDVI difference, 
it is possible to calculate a pre-event NDVIvar. If the mean LUC NDVIvar in 
the PL is below an empirical threshold (<-0.15, in our AOI), we classify 
it as a possible false positive. In our case study, we could make this 
improvement only on a portion of the study area because the closest LUC 
image to the event (22–02-2023) features partial snow cover. The 
NDVIvar LUC filter and cloud-free post-event images allowed us to use a 
less conservative threshold of NDVIvar for PANDA-PE, which was fixed at 
− 0.15. 

Finally, the geomorphological filter could be improved from the 
emergency phase using a more detailed hydrographic network or slope- 
DTM. In our case study, a few months after the events, a 5 m DTM was 
available on the whole AOI and allowed us to improve the accuracy of 
the slope filter. 

3.3. Comparison and validation with a manual inventory 

In the aftermath of the May 2023 rainstorm, the authors conducted 
field surveys and rapid reports to aid regional and local authorities in 
identifying and mapping critical landslides. This allowed for testing the 
PANDA-E method, although on a limited scale, just a few days after the 
event. Moreover, we used data from geolocated reports, videos, and 
photos on the web to validate the first PANDA-E map locally. 

Then, during the post-emergency phase, the results obtained from 
both methodology phases (i.e. PANDA-E and PANDA-PE) were validated 
by exploiting the manual landslide (ML) inventory made by Ferrario, 
2023. This manual mapping, available on the Zenodo data repository, is 
based on Planet Scope satellite images (about 3 m of spatial resolution) 
published about 40 days after the event, overlapping most of our AOI 
(Ferrario and Livio, 2024). We also considered only the ML and PL with 
a median slope ≥ 15◦ to make a homogeneous comparison and discard 
the process more related to the river erosion. We used the same vali
dation schema described in (Notti et al., 2023b) where five intersection 
types are defined: True Positive (i.e. PL and ML complete overlapping), 
Partial Positive (i.e. PL that intersects a ML), False Positive (i.e. PL that 
not intersect or overlap a ML), Partial Detection (i.e. ML that intersect a 
PL) and False Negative (i.e. ML that not intersect or overlap a PL). We 
also calculate the statistics like the Detection Rate (DR) = (TP + PD)/ 
(TP + PD + FN) and the False Positive Rate (FPR) = FP / (FP + TP + PP) 
and the standard performance of accuracy: precision (P) = TP / (TP +
FP), recall R = TP / (TP + FN) and F1score F1 = 2TP / (2TP + FP + FN). 
For the Emilia-Romagna region, we also intersected the validation test 
with the land use dataset to evaluate the effect of land cover on the 
performance. 

Additional local validation was made using the very-high-resolution 
(0.2 m) post-event images acquired by CGR S.p.A and available on the 
Emilia-Romagna Region web portal, specifically acquired for the 2023 
rainfall events (https://geoportale.regione.emilia-romagna.it/approfon 
dimenti/emergenza-maggio-23/emergenza-rer-maggio-2023-servizi). 

4. Results 

4.1. Application of PANDA-E 

The PANDA method, used in the emergency related to the May 2023 
Emilia-Romagna rainstorms, rapidly mapped potential ground effects in 
the aftermath of the second event. The unsupervised mapping of shallow 
landslides provided an overall territorial framework, that can be very 
useful for a first evaluation of the impact of the occurred event, the 

Fig. 3. The two-phase flowchart of PANDA methodology proposed for shallow 
landslide mapping. 

Table 1 
Used data for the shallow landslide mapping with PANDA-E and PANDA-PE 
steps related to the Emilia Romagna Rainstorm events.    

PANDA-E PANDA-PE 
Sensor and 
products 

pre- 
event 

post- 
event 

pre- 
event 

post- 
event 

NDVIvar for 
PL 
detection 

Sentinel-2, Bottom- 
of-Atmosphere 
reflectance in 
cartographic 
geometry (L2A). B4, 
NIR (10 m) 

13/05/ 
2022 

23/05/ 
2023 

22/ 
07/ 
2022 

17/ 
07/ 
2023 

Cloud and shadow 
mask 

Cloud probability 
mask available on 
the Sentinel-2 
quality assessment 
folder (layer: 
MSK_CLDPRB_20m) 

Cloud cover < 3 
% cloud mask 
not necessary 

NDVIvar filter 
for false 
positive 
related 
land-use 
change 
(LUC) 

Sentinel-2, Bottom- 
of-Atmosphere 
reflectance in 
cartographic 
geometry (L2A). B4, 
NIR (10 m) 

Not used pre- 
LUC 

post- 
LUC 

17/ 
02/ 
2022 

22/ 
02/ 
2023 

Filtering Slope derived from 
DTM 

10 m DTM TIN Italy 5 m DTM Emila- 
Region 

Hydrographic 
network 

Available shapefile from Geoportale of 
Emilia-Romagna Region (https://geoport 
ale.regione.emilia-romagna.it/download)  
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distribution of damage and the definition of priorities in the scheduling 
of field activities (Notti et al., 2023a). The mapping of ground effects 
performed within the investigated areas revealed about 30,000 PLs 
(covering an area of 20 km2, 0.5 % of the whole AOI), among them, a 
few thousand are most probably related to hydrological processes. 
About 10 % of PLs intersect the road network within 10 m. This map 
partially suffers from cloud cover affecting about 8 % of AOI (related to 
the available Sentinel-2 image acquired on 23rd May 2023), even if 
mainly in the southern portion of the observed area, close to the 
Adriatic-Tyrrhenian drainage divide, less affected by rainfall. Never
theless, it is immediately possible to detect the sectors most affected by 
PL, on which to focus risk assessment and mitigation activities. Fig. 4a 
shows the Kernel density distribution of the PL centroid; the density was 
computed on a 100 m resolution grid with a search radius of km and 
uniform interpolation. It is possible to see that the zone featuring higher 
values (about 150 km2) is nearby Modigliana municipality (more than 
3000 PL) and matches rainfall data and ground evidence reported day- 
by-day by field operators during the emergency. The most affected 
municipalities, in terms of PL abundance and density, are reported in 
Table 2. 

The histogram in Fig. 5 a shows the distribution of PL areas. Such 
distribution agrees with the power law distribution of shallow landslide 
areas (Bellugi et al., 2021; Guzzetti et al., 2002). Approximately 80 % of 
potential landslides (PL) exhibit sizes ranging from 100 m2 (equivalent 
to one pixel of Sentinel-2) to 1000 m2, as depicted in Fig. 5b. Some 
outlier values up to 1.2⋅105 m2 (Fig. 5 inset plot) are probably related to 
false positives due to the residual unfiltered cloud cover or land use and 
vegetation changes. Due to the spatial resolution of both Sentinel − 2 and 
DTM, there are no PLs smaller than 100 m2. 

Because the first aim of the PANDA methodology is to rapidly detect 
the most affected area and the preliminary location of PL, it was almost 
impossible to validate it with a manual inventory, high-resolution 

images or extensive field surveys. However, leveraging the collected 
geolocated information and videos available on the web (e.g., national 
newspapers or Localteam website https://www.localteam.it/), it was 
possible to carry out a local ground-truth comparison of PANDA results 
(Fig. 6 C-D). Moreover, during the field survey operated by our research 
group and started a few days after the event, several positive feedbacks 
were observed. For instance, Fig. 6 A-B shows a high correspondence 
between extrapolated PL polygons and phenomena observed. 

4.2. The improved PANDA-PE inventory 

The improved PANDA-PE version was made in September 2023 
(Fig. 7). The better quality of the post-event image, combined with the 
LUC filter and higher resolution DTM, allowed us to obtain a complete 
database of PL with about 54,000 polygons corresponding to an area of 

Fig. 4. The Kernel density map made with PL centroid (parameter: cell size 100 m; search radius 2.5 km; uniform interpolation; scaled) overlapped with the mask of 
cloud and shadow areas. The location of ground validation (Fig. 6) is also added to the same map. 

Table 2 
PL centroid density in the top 10 most affected municipalities.  

Municipality Inhabitants (dati. 
istat.it) 

PL PL Density 
(PL/km2) 

area 
affected (%) 

Dovadola 1573 1708 43.6  3.17 
Modigliana 4288 3717 36.6  2.32 
Fontanelice 1913 907 24.4  1.87 
Casola Valsenio 2498 2044 24.1  1.66 
Predappio 6296 2010 22  1.38 
Roncofreddo 3422 1125 22  1.31 
Brisighella 7186 3551 18.4  1.12 
Borgo 

Tossignano 
3198 469 15.9  1.17 

Civitella di 
Romagna 

3639 1821 15.4  0.83 

Mercato 
Saraceno 

6797 1489 14.9  1.2  
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about 40 km2. The intersection with the hydrographic network allowed 
the classification of about 2700 polygons as a hydrological process, 
while the LUC NDVIvar filter allowed the detection of about 1600 false 
positives (Fig. 7a). The relative Kernel density of the PL classified as 
shallow landside (Fig. 7b) shows a similar distribution of the PANDA 
inventory. In Fig. 7b, it is possible to observe the low density around 
rainfall cell ID 1505 and an isolated peak of PL density in correspon
dence with cell ID 2031, despite a similar amount of rainfall (Fig. 2). 

Fig. 8 shows, over a test area, some details on the improvements of 
the PANDA-PE version. The higher resolution of 5 m DTM and derived 
slope (Fig. 8b) better identifies the critical slope than the previous 10 m 
resolution (Fig. 8a). Then, the NDVIvar made with the post-event cloud- 
free image (2023–07-17) (Fig. 8c) and corrected with LUC NDVIvar and 
hydrographic network layer (Fig. 8d) allowed the classification of the 
PL. The post-event high-resolution image of the Emilia-Romagna region 
(Fig. 8e) confirmed the validity of classification; in particular, the PLs 
classified as false positive with LUC NDVIvar corresponds to a change in 
the cultivated field. 

4.3. PANDA-PE PL density and distribution and correlation with rainfall, 
slope lithology and land use 

Using the PANDA inventories, we made some rapid evaluations on 
the main factors that are commonly used in literature (Reichenbach 
et al., 2018) for shallow landslide distribution analysis or susceptibility 
modelling: the trigger factor (rainfall) and predisposal factors (slope, 
lithology and land use). The most interesting results are related to the 
triggering factor, the rainfall. We compared the PL density with rainfall 
distribution in Fig. 9 for the first event (panels a and a’), the second 
event (panels b and b’), and the summarized rainfall (panels c and c’). 
The rainfall and landslide density are calculated for each cell of the 

rainfall grid of the Emilia-Romagna region (SIMC platform https://dati 
-simc.arpae.it/opendata/erg5v2/timeseries/mappa.html). Panel b’ of 
Fig. 9 shows a box plot of the PL density for each rainfall class of the 
second event (16–17th May 2023). It is important to note the relation
ship between cumulated rainfall and density, notably where the second 
event reached values up to 150 mm (300–400 mm, considering the 
cumulated precipitation of the two events). Conversely, the relation is 
less evident with the cumulated rainfall of the first event (Panel a’ of 
Fig. 9). Most probably, while the first rainfall saturated the soil (https:// 
land.copernicus.eu/global/products/swi) the second (also with high 
hourly intensity) triggered most of the processing. Moreover, the ante
cedent rainfall (see paragraph 2.2) also affected shallow landslide dis
tribution. Considering the intensity-duration thresholds (Guzzetti et al., 
2008; Mondini et al., 2023), both single and the combination of these 
two are above the trigger thresholds worldwide found. Compared to 
nearby historical events, the total rainfall of these two events (up to 500 
mm and average intensity of 6 mm/h) is similar to the 2013 Marche 
events, while it is very different from the event that hit the nearby 
Marche region in September 2022 (Donnini et al., 2023), which showed 
much higher intensity and short duration. 

As already known, the slope gradient is one of the main factors 
related to landslide distribution (Lee and Min, 2001). In our case, the 
landslide density related with the slope angle is a partial analysis, as we 
consider only a slope above 15◦ to extract the PL. Considering this there 
is a linear relationship between the percentage of the area affected by 
landslide and the slope angle, which ranges from 1 % for the with a slope 
between 15◦ and 20◦ up to 4 % for the area with slope gradient class 40◦- 
45◦. 

The lithology also played a role in the distribution of shallow land
slides density and distribution, with higher concentration in the arena
ceous turbiditic unit, especially in the “Marnoso-Areaneacea 
formations”. In contrast, shale and chaotic formations show less density 
of landslides. Considering the percentage of the area affected by land
slides, the Marnoso-Areaneacea formations reach a peak of 20 Kernel 
Density against the 4 KD of chaotic shale. The lithology has a strong 
influence on the slope degree distribution. The lithology also explains 
some incongruency with rainfall distribution: for instance, the low PL 
density (KD 8) of cell ID 1505 with cumulated rainfall of 350 mm located 
in chaotic shale, by contrast, the higher PL density (KD 15) of cell ID 
2031 in arenaceous turbiditic formation with low rainfall (170 mm). The 
role of lithology in landslide density was already documented in the 
nearby Marche 2022 event (Donnini et al., 2023). 

The land use (based on the 2020 Land cover database of Emilia- 
Romagna Region, 2023) already influences the landslide density dis
tribution but less reliably compared to the previous factors because the 
methodology introduces possible bias in this comparison. For instance, 
the higher PL density on oak-hornbeam and chestnut forest types is 
related to the fact that this type of land use is located mainly on the 
arenaceous turbiditic formation and in the area most affected by rainfall. 
Meanwhile, beech forests in the southern limit of the study area, which 
are less affected by rainfall, show low PL density. At the same time, the 
distribution of PL shallow landslides may suffer an underestimation 
detection bias in the area where the vegetation cover is already lower 
(vineyard, badland), or an overestimation where human activity in
terferes with vegetation (cultivated land), as already reported in previ
ous work (Notti et al., 2023a) and in paragraph 5.2. 

5. Discussions 

5.1. PANDA-E mapping time and accuracy 

During the emergency phase, like in the Emilia-Romagna event, it is 
crucial to quickly establish an overall framework for the most affected 
areas. An important point to stress here is that, due to the relevant 
emergency occurred, the rapid mapping refers to the ground variation. 
The obtained product does not correspond to a geomorphological 

Fig. 5. A) histogram of pl area frequency distribution up to 1000 m2. Inset plot 
shows the whole distribution, including the outliers. b) Cumulative distribution, 
up to 10,000 m2. 
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landslide inventory in the strict sense because it is the output of a semi- 
automatic feature extraction based on middle-resolution images. 
Consequently, the proposed approach may generate potential false- 
positive cases mainly related to land use changes during the observed 

period (e.g., cultivation areas) or the effect of cloud cover. The semi- 
automatic cloud filter allows the partial reduction of false positives. 
However, local residual effects related to cloud coverage remain at this 
early stage. Another limitation is related to the spatial resolution and 

Fig. 6. Comparison between the potential landslide polygons overlapped to Google Earth Satellite images and the on-field observations and web-based images or 
videos. Montiano municipality, Forlì-Cesena Province, affected by a rotational sliding evolved in an earth flow: A) PL overlapped to Google Earth pre-event image 
(13/09/2022 Credit ©Maxar, 2022); B) Post-event ground photo taken a few days after the events (Credit Davide Notti). SP306 close to Casola Valsenio hamlet, 
Ravenna, affected by several shallow landslides along the upstream slope: C) PL overlapped to Google Earth pre-event image (13/09/2022 Credit ©Maxar, 2022); D) 
Same PL on the frame from Localteam video (). 
Source: https://www.localteam.it/video/grandi-frane-a-casola-valsenio-la-collina-appare-sventrata 

Fig. 7. A) the centroids of improved panda-pe pl classified in a shallow landslide (shl), hydrological process (hyp) and false positive related land-use changes (fp); b) 
relative kernel density (parameter: cell size 100 m; search radius 2.5 km; uniform interpolation; output value scaling: scaled) of PL classified shallow landside, 
associated to the selected cells used in Fig. 3 for analysis of rainfall events. 
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accuracy of the DTM, which hamper the slope filtering. Despite the 
above limits, the obtained map provides a tool, freely and immediately 
available after a catastrophic event, useful for the field survey opera
tions devoted to residual risk assessment. The use of Sentinel-2 satellite 
images allows to a totally free-of-charge approach, ensuring a cost- 
effective and user-friendly downloading and management with a free 
cloud computing platform as Google Earth Engine. Nevertheless, 
PANDA is structured to operate with any optical spaceborne imagery, 
regardless of revisiting time or resolution. However, the exploitation of 
satellite images with shorter revisit times, like PlanetScope, is, in any 
case, inherently constrained by cloud coverage, particularly after a 
rainstorm event. Surely, higher-resolution sensors improve detection 
accuracy in terms of landslide boundaries and extent, but generally have 
costs not affordable for several users, misaligning with the objectives of 
PANDA. Leveraging on the “Open Data Program” (https://www.maxar. 
com/open-data), a comparative analysis of potential shallow landslides 
mapped using Sentinel-2 and Maxar data (0.5 m resolution) has been 
carried out. The availability of Maxar imagery, limited to the flooded 
areas, did not allow extensive analysis over the hilly area, which was 
only sporadically covered by the available imagery. The comparison 
displayed, as the resolution increases, an improved accuracy and quality 
of mapping, but, excluding those exceptional cases of data availability, 
they commonly entail a related cost. Conversely, the PANDA method
ology aims to be a free and user-friendly tool for timely use immediately 
after a calamitous event, to identify occurred landslides in terms of 
number and density. While the reduced time to generate the ground 
effects map might compromise the accuracy of landslide outlines 

compared to high-resolution imagery, it still offers valuable support for 
initial emergency response actions. The first draft map obtained was 
generated on 26th May 2023, just three days after the Sentinel-2 
acquisition and after one week, the map was published on the Zenodo 
repository. The need to have such an instrument within a few days, 
immediately after a rainstorm, obviously precludes the possibility of a 
large-scale data validation with a manual landslide inventory. A manual 
mapping on high-resolution images or by field survey operations re
quires, on such a large area, several weeks/months of work or many 
operators (Galli et al., 2007; Milledge et al., 2022), an incompatible 
timing during the emergency phase. In the case of the May 2023 events, 
the first manual inventory was produced about one month after the 
event and released in vector format in the Zenodo repository (Ferrario, 
2023), and a technical report, including a landslide map, was produced 
about six months later (Brath et al., 2023). Directly comparing the ac
curacy, time, and cost of this study methodology to others is complicated 
or even biased due to variations in study area size and event intensity, as 
well as the aim of the final users of the method. However, some insights 
can be gleaned. For example, Mondini et al., (2011) spent five days 
creating and validating their inventory, with two experts in remote 
sensing and geomorphology, using PCA, covering an area of 9.4 km2. 
PANDA could potentially reduce processing and validation time by two 
days for larger areas, and it does not need remote sensing expertise, but 
at the cost of lower accuracy. In agreement with PANDA also Mondini 
et al., (2013) found that the use of a limited number of morphometric 
parameters (e.g., slope and hydrographic network) reduces the 
complexity of the classification framework and the computation time. 

Fig. 8. PANDA-PE PL overlapped to: a) 10 m spatial resolution slope-DTM; b) 5 m spatial resolution slope-DTM. c) PANDA-PE PL overlapped to cloud-free NDVIvar; 
d) Classified PANDA-PE - PL overlapped to LUC NDVIvar; and hydrographic network, e) Classified PL overlapped to post-event high-resolution images. 
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(Li et al., 2016), compared simple change detection with more sophis
ticated techniques that improve results. In this work, using geomor
phological filters and LUC in the post-emergency phase could improve 
the performance, avoiding expertise in processing. Similarly, Lu et al., 
(2019) demonstrated the effectiveness of PCA in small forested areas 
using Landsat-8 and Sentinel-2 data compared to NDVI variation. 
However, their study area was small and required remote sensing 
expertise. Compared to the other approaches, PANDA provides some 
important advantages, ensuring a methodology capables to process wide 
areas in a short time (e.g., two days for Sentinel-2 scene), with a reduced 
number of input data, commonly available worldwide, that are needed 
to run the model (NDVI, cloud cover, slope, hydrographic network), 
through a GIS-based procedure completely cost-free and suitable for 
users with different degree of experience. 

5.2. Comparison and validation with a manual inventory. PANDA-E vs 
PANDA-PE 

As shown in Notti et al., (2023b) the PL dataset could be validated 
with manual-based landslide inventory (ML) to evaluate its accuracy. In 
the emergency phase, finding data for validation is almost impossible, 
except from local cases such as reports or geolocated video (Fig. 6). In 
the weeks following the event, it could be possible to obtain or create a 
manual inventory based on different sources (e.g., satellite, aerial, 
ground-based). 

The PANDA-E PL inventories made during the Emergency (v 1.0) 
phase and the improved PANDA-PE (v 2.0) version were validated using 
the manual inventory made by Ferrario, (2023), available on the Zenodo 
data repository. The overall results for the validation study area are 

resumed in Table 3. It is possible to observe that the improved PL in
ventory (PANDA-PE) increased the surface of detected shallow land
slides about two times (7.6 to 13.4 km2) with a slight decrease of False 
Positive (11.3 to 10.9 km2) more evident in percentage (24 % to 18 %). 
The overall performances of PL inventories calculated as reported in 
paragraph 3.3 are compared in Table 4. Fig. 10 shows, on a test area, a 
comparison between the validation of PANDA-E (Fig. 10a) and the 
PANDA-PE (Fig. 10b). It is possible to observe the improvement of the 
PANDA-PE PL version, considering the area: the overall F1-score 
increased from 0.40 to 0.59, which is a satisfactory result, considering 
the complex land use. Considering the validation test only for broadleaf 
forest land-use type, the F1-score reached a value of 0.72 (Fig. 10c), 
similar to studies that use high-resolution images (Meena et al., 2023) or 
tested in tropical forests land-use (Ghorbanzadeh et al., 2022a), or with 
more complex multi-sensor analysis (Lu et al., 2019) On the other hand, 
the F1 value decreased to 0.15 on cultivated land (Fig. 10e) also urban 
areas and badlands show lower performance. The effect of land use on 

Fig. 9. Maps of interpolated rainfall distribution and associated bar plots of PL Kernel Density for rainfall class respectively for: the 1 − 3rd May rainfall event (a and 
a’), 16 – 17th May rainfall event (b and b’) and the sum of the two events (c and c’). The Kernel Density and rainfall are computed on the rainfall grid of SIMC 
platform (https://dati-simc.arpae.it/opendata/erg5v2/timeseries/mappa.html). 

Table 3 
Intersection cases summary with ML inventory (Ferrario, 2023) by polygon 
count and total area for the whole AOI.  

PL Inventory version PANDA-E PANDA-PE 
Intersection case Polygon N Area Km2 Polygon N Area Km2 

True Positive (TP) 20,230  7.6 30,224  13.4 
Partial Positive (PP) 16,534  3.0 24,598  15.3 
False Positive (FP) 11,329  11.3 28,871  10.9 
Partial Detection (PD) 14,704  13.8 24,449  11.5 
False Negative (FN) 24,482  11.4 13,750  8.0 
Total 87,279  47.1 121,892  59.1  
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landslide detection performance has also been observed in other studies 
(Dias et al., 2023; Mondini et al., 2011). In areas with low vegetation, 
the use of stereoscopic or 3D data is found to be the most effective so
lution (Fiorucci et al., 2018). A possible solution could be to use SAR 
amplitude images; however, this requires a complex process, and they 
could be partially affected by the geometry distortion related to topog
raphy. For instance, to map shallow landslides in a forested area in 
Hokkaido, Japan, Nava et al., (2022) obtained a score of 0.61 using 
INSAR with U-NET methods, while from the same research group, 
Meena et al. (2023) in the same area, using optical data of Planet and U- 
Net and f1 score of 0.81. Moreover In the same area, using SAR, it was 
noticed the effect of land use on performance detection (Jung and Yun, 
2020; Mondini et al., 2021). 

It was possible to verify that most FNs are related to shallow 

landslides smaller than 100 m2, an intrinsic limit related to Sentinel-2 
spatial resolution (10 m) and the badland area (Fig. 10d), especially in 
the marl-shale formation. As mentioned before, FPs correspond to land 
use changes not detected by the LUC filter because they occurred later in 
the image used for LUC NDVIvar (2023–02-22) or were located in an area 
covered by snow. By random checking on the very high-resolution im
ages of CGR, we also noted that in several cases, some FP were correctly 
detected, most probably because of some cloud cover, and lower reso
lution (3 m vs 0.2 m) of the Planet images used for ML inventory. On the 
other hand, as reported by (Ferrario, 2023) manual inventory could also 
be affected by the false negative and false positive errors that influence 
the comparison. Finally, validation using high-resolution images also 
allowed the detection of some cases in which the PANDA-E performed 
better than PANDA-PE, where, for instance, the accumulation material 
was removed (along the main roads) or was interested in the regrowth of 
herbaceous vegetation occurring from May to July (e.g., the small 
landslides in or the north sector of Fig. 10a and Fig. 10b). 

6. Conclusions 

The primary purpose of the PANDA is to serve as an initial and swift 
emergency assessment map, allowing users to identify the most heavily 
impacted areas. It has shown reliability, particularly in quickly mapping 
large areas with cost-free inputs, leveraging a user-friendly processing. 

Table 4 
Performance of PL inventories considering the area compared to ML inventory 
(Ferrario, 2023).  

Parameters PANDA-E PANDA-PE 

DR 65 % 76 % 
FPR 52 % 28 % 
Precision 40 % 55 % 
Recall 40 % 62 % 
F1-Score 0.40 0.59  

Fig. 10. A detail over a test area of the validation of PL Inventories: a) PANDA-E; b) PANDA-PE improved inventory. The performance of PANDA-PE mapping 
depends on land use: c) broadleaf forest shows best performance; d) shallow landslides on badlands are rarely detected (False Negative); e) cultivated land still 
produces False Positive, despite filtering. The post-event high-resolution post-event images created by CGR spa (© AGEA - ALL RIGHTS RESERVED). 
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PANDA in emergency phase, applied to the May 2023 rainfall events of 
northeastern Apennine, allowed us to map, in a few days after the event 
and at a low-cost, tens of thousands of PL over a wide area (>4000 km2) 
and identified the most affected sector (about 150 km2) where PL 
density reached values up to 50 km2.The whole map was immediately 
shared on a public data repository to be used and improved by the expert 
community. The obtained PL inventory was tested directly during the 
emergency field surveys with positive feedback. In contrast, emergency 
rapid mapping is limited by the possibility of having a completely cloud- 
free image, increasing the probability of false positives. Such limitations 
during the post-emergency mapping (PANDA-PE) can be partially solved 
by improving PL using a cloud-free image, a high-resolution slope-DTM 
and a land use change filter also based on NDVI variation, thus 
decreasing False Positive and increasing inventory accuracy as 
confirmed by validation employing an independent manual inventory 
(F1-score improved 0.4 to 0.59). The performance of the semi-automatic 
mapping based on NDVI is related to land use, working well on vege
tated areas, and worse on bare soils and cultivated land, and this should 
be considered in emergency and post-emergency mapping. Potential 
enhancements to the PANDA methodology may involve refining the 
filtering capabilities to address cloud cover and variations in land use. 
Moreover, the conversion of the proposed methodologies into a software 
would make PANDA a user-friendly tool accessible for everyone. Over
all, this application confirmed the suitability of the PANDA methodol
ogy for shallow landslide detection in several contexts worldwide. The 
enhanced PANDA-PE methodology further refines landslide inventory 
accuracy, paving the way for improved disaster management strategies. 
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