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Abstract: The transcription factor ∆Np63 plays a pivotal role in maintaining the integrity of stratified
epithelial tissues by regulating the expression of distinct target genes involved in lineage specification,
cell stemness, cell proliferation and differentiation. Here, we identified the ABC transporter subfamily
member ABCC1 as a novel ∆Np63 target gene. We found that in immortalized human keratinocytes
and in squamous cell carcinoma (SCC) cells, ∆Np63 induces the expression of ABCC1 by physically
occupying a p63-binding site (p63 BS) located in the first intron of the ABCC1 gene locus. In cutaneous
SCC and during the activation of the keratinocyte differentiation program, ∆Np63 and ABCC1 levels
are positively correlated raising the possibility that ABCC1 might be involved in the regulation of
the proliferative/differentiative capabilities of squamous tissue. However, we did not find any gross
alteration in the structure and morphology of the epidermis in humanized hABCC1 knock-out mice.
Conversely, we found that the genetic ablation of ABCC1 led to a marked reduction in inflammation-
mediated proliferation of keratinocytes, suggesting that ABCC1 might be involved in the regulation of
keratinocyte proliferation upon inflammatory/proliferative signals. In line with these observations, we
found a significant increase in ABCC1 expression in squamous cell carcinomas (SCCs), a tumor type
characterized by keratinocyte hyper-proliferation and a pro-inflammatory tumor microenvironment.
Collectively, these data uncover ABCC1 as an additional ∆Np63 target gene potentially involved in those
skin diseases characterized by dysregulation of proliferation/differentiation balance.
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1. Introduction

The transcription factor p63, the most ancient member of the p53 family, is a master
regulator of epithelial development and homeostasis [1,2]. Numerous protein isoforms
with distinct characteristics are produced by its encoding gene TP63, such as the full-
length TAp63 and the N-terminally truncated ∆Np63 [3]. The most prevalent isoform
expressed in the basal layer of stratified epithelia is ∆Np63, whose transcriptional activity is
pivotal to preserve the proliferative potential of epithelial basal cells in stratified epithelia,
including skin, skin appendages, mammary gland and thymus [4–6]. Numerous studies
have shown how important p63 is for epithelial formation. The development of many
epithelial tissues, including thymus, breast, and epidermis, is severely hindered by the
genetic deletion of all p63 isoforms, leading to the premature death of the newborn mice
due to severe dehydration [7,8]. Interestingly, the p63 global null-mouse phenotype is
recapitulated by the selective genetic deletion of the ∆Np63 isoforms, strongly suggesting
that ∆N variants are required for appropriate epithelial structure formation [9]. At the
molecular level, ∆Np63 can act as transcriptional activator or repressor towards diverse
target genes involved in regulating stem cell function, cell adhesion and, paradoxically,
activating the differentiation program [4,10–13]. For instance, ∆Np63 can inhibit cell cycle
arrest genes, such as p21, sustaining cell cycle progression in the basal layer of the skin [14],
and at the same time induces the expression of ZNF750 and JAG2, favoring the epidermal
differentiation [15,16]. ∆Np63-dependent transcriptional activity relies on its ability to
recruit distinct epigenetic modulators and chromatin remodeling complexes, thus affecting
the epigenetic landscape of epithelial cells [17–20]. For example, our recent study unveiled
that in proliferating keratinocytes, ∆Np63 recruits the histone deacetylase HDAC1 to the
proximal promoter of the NEAT1 genomic locus, thereby repressing the expression of the
lncRNA NEAT1 [21].

Being a master gene controlling epithelial cell fate, it is not surprising that ∆Np63 tran-
scriptional activity and expression are dysregulated in human diseases affecting epithelial
integrity, including epithelial tumors [22–24]. In detail, TP63 is frequently amplified or
overexpressed in squamous cell carcinomas (SCCs) of the head and neck, skin, lung and
esophagus [25]. Furthermore, additional genetic events, such as NOTCH mutations, IRF6
down-modulation, ACTL6a and SOX2 amplification may foster ∆Np63 oncogenic activity
in SCCs [26–29]. In SCCs, ∆Np63 controls specific oncogenic programs related to apoptosis
resistance and promotion of growth, drug resistance, cell migration and invasion, and
growth factor signaling [23,30–33]. We have previously demonstrated that the modulation
of the hyaluronic acid (HA) metabolism and signaling by ∆Np63 impacts the expression
of ABCC1/MRP1 [31,32], an ABC transporter subfamily member capable of regulating
the extracellular efflux of various endogenous metabolites and xenobiotics across cellular
membranes [34–36]. Here, we further investigated the regulation of ABCC1 gene expression
by ∆Np63 by providing the molecular details of ∆Np63-dependent regulation of ABCC1 as
well as its impact on epidermis homeostasis.

2. Results
2.1. ∆Np63 Regulates the Expression of ABCC1

Our group has previously reported that in HNSCC, the ∆Np63-dependent regulation
of hyaluronic acid (HA) impacts chemosensitivity, likely through the ABC transporter
ABCC1 [31], suggesting the existence of a functional link between ∆Np63 transcriptional
activity and ABCC1 expression. To test this hypothesis, we used a siRNA-mediated
approach to deplete p63 expression in human primary keratinocytes (HEKn) and in the
A253 squamous cell carcinoma (SCC) cell line. We found that p63 depletion decreases
the expression of ABCC1 at both the mRNA and protein levels (Figure 1A,B). HEKn and
A253 cells exclusively express the ∆Np63 isoform [31], suggesting that this isoform might
be responsible for the modulation of ABCC1 expression. Accordingly, we found that
the specific depletion of the ∆Np63 isoform with two different siRNA oligos markedly
decreases ABCC1 mRNA and protein levels in A253 cells (Figure 1C and Figure S1).
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Figure 1. (A) RT-qPCR analysis (left panel) of ABCC1 mRNA levels in human primary keratinocytes
(HEKn) transfected with siRNA oligos targeting p63 (sip63) or non-relevant mRNA. The mean of
three (n = 3) independent biological replicates ± SD is shown. p value was calculated using two-tailed
unpaired Student’s t test. In parallel, Western blotting analysis using antibodies to the indicated
proteins (right panel) was performed utilizing protein lysates from transfected cells. (B) Human
HNSCC A253 cell line was transfected and analyzed as described in (A). (C) RT-qPCR analysis (left
panel) of ABCC1 mRNA levels in A253 transfected with siRNA targeting ∆Np63 isoform (si∆Np63#1)
or non-relevant mRNA (scr). The mean of three (n = 3) independent biological replicates ± SD is
shown. p value was calculated using two-tailed unpaired Student’s t test. In parallel, Western blotting
analysis using antibodies to the indicated proteins (right panel) was performed utilizing protein
lysates from transfected cells. (D) ChIP-qPCR analysis (right panel) of endogenous ∆Np63 binding
to the ABCC1 genomic locus. p63 binding region was determined by analyzing publicly available
p63 ChIP-seq data obtained in HEKn cells (GSM1446927) (left panel: p63 binding sites in purple;
ABCC1 gene locus in blue). Average values from n = 2 biological replicates measured using three
technical replicates are plotted. (E). Western blotting (left panel) or RT-qPCR analysis (right panel)
was performed utilizing protein lysates or total RNA extracted from HEKn at different time points
(0, 3, 6, 9 days) upon CaCl2 treatment. The mean of two (n = 2) independent biological RT-qPCR
replicates is shown. (F) Representative images of immunohistochemical analysis of p63 and ABCC1
expression in normal skin samples.

To study the molecular mechanism underlying the ∆Np63-dependent regulation of
ABCC1 expression, we tested whether ∆Np63 can bind to the ABCC1 genomic locus. To
this end, we performed a chromatin immunoprecipitation (ChIP) experiment in HEKn cells,
utilizing publicly available ChIP-seq data for these primary cells (Figure 1D, left panel).
We found that endogenous ∆Np63 occupies a p63 binding site (p63 BS) located in the first
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intron of the ABCC1 gene locus (Figure 1D, right panel). Altogether, these data indicate
that ABCC1 is a direct transcriptional target gene of ∆Np63.

2.2. ABCC1 Expression Is Modulated during Keratinocyte Differentiation

During epidermal differentiation, the expression levels of ∆Np63 are tightly regulated,
being high in proliferating keratinocytes located in the basal layer of the skin and decreas-
ing in the super-basal layers, coinciding with the activation of the epidermal differentiation
program [37]. To test whether ABCC1 expression undergoes a differentiation-dependent
modulation similar to that of ∆Np63, we analyzed its expression in the well-established
model of calcium-induced differentiation of primary human keratinocytes in vitro. We
found that ABCC1 and ∆Np63 levels are similarly downregulated during epidermal differ-
entiation, concomitant with upregulation of the differentiation marker keratin 10 (KRT10)
(Figure 1E). To confirm this result in vivo, we performed an immunohistochemical analysis
on human skin samples. As shown in Figure 1F, ∆Np63 and ABCC1 are mainly localized in
the basal compartment, and their protein levels decrease in the upper layer of the human
epidermis, indicating that ∆Np63-dependent regulation of ABCC1 expression occurs in a
physiological context in which ∆Np63 is critically involved.

2.3. ABCC1 Deletion Does Not Impair Skin Development

The results described above indicate that ABCC1 expression, like ∆Np63, is modulated
during epidermal differentiation, raising the possibility that ABCC1 might be involved in
the regulation of the proliferative/differentiative capabilities of human keratinocytes. To
test whether ABCC1 depletion affects keratinocyte proliferation, we performed the prolif-
eration assay in human primary keratinocytes (HEKn) upon ABCC1 depletion utilizing
two different ABCC1 targeting siRNA oligos (siABCC1#1 and siABCC1#2). As shown in
the Figure S2, we observed a slight decrease in keratinocyte proliferation upon ABCC1
silencing, suggesting that ABCC1 depletion may to some extent impact keratinocytes
proliferation in cultured cells. To validate this data in vivo, we studied the effect of the
genetic deletion of ABCC1 on skin morphogenesis, which is the result of a highly regulated
balance between proliferation and differentiation of basal keratinocytes. We analyzed the
skin morphology of wild-type (hABCC1flx/flx) and hABCC1 knock-out (hABCC1−/−) mice.
The hABCC1flx/flx is an ABCC1 humanized knock-in mouse model in which the murine
Abcc1 gene has been replaced with the human ortholog (hABCC1) [31]. We performed H&E
staining of the skin derived from newborn and adult wild-type and hABCC1−/− mice. We
did not observe any gross alterations in the structure and morphology of the epidermis
upon hABCC1 genetic deletion (Figure 2A). Accordingly, immunofluorescence staining of
hABCC1−/− epidermis did not reveal any changes in the expression and localization of the
differentiation marker KRT10 and the basal marker p63 (Figure 2B). To further corroborate
these results, we performed an ex vivo analysis of murine keratinocytes derived from
wild-type and hABCC1−/− mice. Consistently with the immunofluorescence study, we did
not observe any significant changes in the expression of KRT10 and ∆Np63 in hABCC1−/−

keratinocytes (Figure 2C). These data indicate that in vivo ABCC1 deletion seems to not
affect the proper activation of the epidermal differentiation program or the proliferative
capabilities of keratinocytes.

Since ABCC1 controls the extracellular efflux of pro-inflammatory lipids, such as
prostaglandin LCT4, which are involved in the regulation of cell proliferation in response
to inflammatory signals [32], we tested whether ABCC1 deletion impacts the cellular re-
sponse to the pro-inflammatory agent 12-O-tetradecanoylphorbol-13-acetate (TPA), which
induces skin inflammation and keratinocyte proliferation. As shown in Figure 2D, the
genetic ablation of ABCC1 led to a marked reduction in TPA-mediated proliferation, sug-
gesting that ABCC1 might be involved in the regulation of keratinocyte proliferation upon
inflammatory/proliferative signals.
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Figure 2. (A) Representative images of Hematoxylin/eosin (H&E) staining of newborn and adult epi-
dermis of hABCC1flx/flx and hABCC1−/− mice. (B) Immunofluorescence staining of the differentiation
marker KRT10 (green) and the basal marker p63 (red) in epidermis of hABCC1flx/flx and hABCC1−/−

mice. DAPI staining (blue) was used to visualize the nuclei. (C) Immunoblot analysis of the indicated
proteins in murine keratinocytes isolated from the epidermis of hABCC1flx/flx and hABCC1−/− mice.
(D) TPA treatment as indicated in the left panel was performed in the dorsal skin of hABCC1flx/flx and
hABCC1−/− mice. Representative images of the immunofluorescence analysis of epidermis isolated
from the TPA-treated mice (central panel). Keratin 14 (KRT14) (red) is a marker of the basal layer,
while Ki67 staining (green) is utilized to visualize proliferating cells. Quantification of Ki67 positive
basal cells in hABCC1flx/flx and hABCC1−/− TPA-treated epidermis (right panel). Each dot represents
the count of Ki67 positive basal cells over the DAPI positive cells in each microscopic field. We
analyzed n = 6 microscopic fields (n = 6) for each mouse (n = 2). Data shown are the mean of n = 12
measurements ± SD for hABCC1flx/flx and hABCC1−/− TPA-treated epidermis. *** p value < 0.001.
p value was calculated using two-tailed unpaired Student’s t test.

2.4. ABCC1 and p63 Protein Levels Are Increased in SCC

Squamous cell carcinoma (SCC) is a highly malignant tumor characterized by dysregu-
lation of a subset of functionally related genes regulating the balance between proliferation
and differentiation [25,38,39]. Based on the observation that ABCC1 expression might be
linked to the aberrant proliferation of keratinocytes, we analyzed ABCC1 expression in
basal cell carcinoma (BCC) and cutaneous SCC (cSCC), two skin diseases characterized
by keratinocyte hyper-proliferation [40,41]. By analyzing probes matching ABCC1 mRNA
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in a GEO microarray dataset including 15 basal cell carcinoma (BCC) and 11 cSCC tissue
samples, we observed a significant increase in ABCC1 expression in both BCC and cSCCs
(Figure 3A). By analyzing TCGA datasets, we validated the increased expression of ABCC1
mRNA levels in additional SCCs, including lung (LUSC), head and neck (HNSC), and
cervical (CESC) (Figure 3B). Since different SCCs are commonly characterized by increased
expression and enhanced activity of ∆Np63, we tested whether p63 and ABCC1 levels
are positively correlated in SCCs. As shown in Figure 3C, we found that p63/ABCC1
co-expression is highly correlated in LUSC and, to a minor degree, in CESC. To validate
this observation at protein levels, we performed immunohistochemistry (IHC) staining of
ABCC1 and p63 in a cSCC tissue microarray (TMA). As shown in Figure 3D, we observed a
correlation between p63 and ABCC1 protein levels in 70 tumor samples. Collectively, these
data suggest that although ABCC1 is not required for maintaining the integrity and home-
ostasis of epidermal tissues, its dysregulation is associated with skin diseases characterized
by unbalanced proliferation/differentiation pathways.
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Figure 3. (A) Violin plot illustrating ABCC1 expression values in basal cell carcinomas (BCC, n = 15),
cutaneous squamous cell carcinomas (cSCC, n = 11) and in the respective normal tissues (normal).
p value was calculated using two-tailed unpaired Student’s t test. (B) Violin plot illustrating ABCC1
expression values in lung SCC (LUSC, n = 466), head and neck SCC (HNSC, n = 517), cervical SCC
(CESC, n = 303) and the respective normal tissues. * indicates p value < 0.05. (C) Co-expression
analysis of TP63/ABCC1 in datasets of human cervical SCC (CESC) (TCGA, provisional) and hu-
man lung SCC (LUSC) (TCGA, provisional) was performed at cBioPortal for Cancer Genomics
(http://www.cbioportal.org accessed on 28 May 2024). Spearman correlation coefficient is reported.
(D) Representative images of immunohistochemistry analysis of p63 and ABCC1 expression in cSCC
(left panel). Red box indicates area of higher magnification image. Correlation plot of ABCC1 and p63
IHC-scores in 70 human cSCC tumor samples (right panel). p value (p) of the Pearson’s correlation
coefficient (0.57) is reported.
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3. Discussion

ABCC1, also known as multidrug resistance-associated protein 1 (MRP1), is a member
of the ATP-binding cassette (ABC) transporter subfamily, which is involved in transporting
various endogenous metabolites and xenobiotics across cellular membranes [34–36,42].
Given its role in promoting the extracellular efflux of diverse chemotherapeutic drugs, such
as daunorubicine, etoposide and camptothecine, it is not surprising that the most studied
function of ABCC1 in human pathology is related to its capacity to induce chemoresistance
in tumor cells [43–46]. Forced expression of ABCC1 confers chemoresistance in various
tumor cell types, such as breast carcinoma and colon carcinoma [43,47]. Consistent with this
evidence, ABCC1 expression is elevated in many hematopoietic and solid tumors [43]. In
HNSCC, three studies reported high levels of ABCC1 in a subset of HNSCC patients [48–50].
In one of these studies, high expression of ABCC1 was associated with poor prognosis in
patients with oral carcinoma treated with radiotherapy and chemotherapy, suggesting that
ABCC1 expression might be clinically relevant [50]. Generally, the increased expression of
ABCC1 in human tumors is the result of transcriptional activation or gene amplification [51].
Accordingly, well-established oncoproteins have been reported to act as transcriptional
regulators of ABCC1. For instance, c-jun/junD complexes, MYC, and NRF2 bind to specific
responsive elements in the ABCC1 promoter [52–54]. In this manuscript, we identified the
transcription factor ∆Np63 as an additional player involved in ABCC1 gene expression
regulation (see Figure 4).
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Figure 4. (A) Schematic representation of the ∆Np63-dependent regulation of ABCC1 expression
during epidermal differentiation. (B) The genetic ablation of ABCC1 led to a marked reduction in
inflammation-driven proliferation of basal keratinocytes (see text for details). The figure was drawn
in part using and/or modifying images from Servier Medical Art. Servier Medical Art is licensed
under CC BY 4.0 (https://creativecommons.org/licenses/by/4.0/ accessed on 28 May 2024).

∆Np63 plays a crucial role in the biology of stratified epithelia, and its transcriptional
activity regulates the proliferative potential and stemness of basal epithelial cells. We
found that in primary human keratinocytes and SCC cells, ∆Np63 positively regulates the
expression of ABCC1 by physically occupying a p63 binding site (p63 BS) located in the
first intron of the ABCC1 gene locus. The ∆Np63-dependent regulation of ABCC1 expres-
sion is consistent with the observation that SOX2, another transcription factor involved in
squamous epithelia homeostasis, transactivates ABCC1 promoter [55]. Furthermore, SOX2
and p63 are co-expressed in the stem/progenitor cell compartments of epithelial tissues
as well as in SCC cells, where they exhibit overlapping genomic occupancy at numerous
loci [56]. These observations suggest that ∆Np63 and SOX2 might act in concert to sustain
the expression of ABCC1 to regulate the stemness capability of normal and tumor tissues.
In agreement with this concept, we found that ABCC1, similarly to ∆Np63, is exclusively
localized to the basal compartment of the human epidermis, where stem/progenitor cells
reside. Notably, ABCC1 protein levels decrease in the upper layers of the human epidermis,
coinciding with the activation of the epidermal differentiation program and the loss of
stemness properties. Given that ∆Np63 levels are high in proliferating keratinocytes and
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decrease in the upper layers of the human epidermis, where differentiation occurs [37],
it is possible that ∆Np63 downmodulation might favor the concomitant downregulation
of ABCC1 together with the activation of epidermal differentiation. However, we cannot
rule out that other mechanisms, such as control of ABCC1 stability, could contribute to
the ABCC1 modulation during skin differentiation. The exclusive localization of ABCC1
in the basal layer of the epidermis may exert various biological functions. As a regula-
tor of GSH/GSSG efflux [57], ABCC1 might help in maintaining the redox homeostasis,
thereby contributing to the stem-like properties of basal cells. By facilitating the transport
of xenobiotics [42], ABCC1 could protect the basal epithelial cells from the harmful effects
of exogenous insults. Since its expression is downmodulated during keratinocyte differen-
tiation, ABCC1 could regulate the balance [37] between proliferation and differentiation,
acting as a modulator of keratinocyte differentiation.

Although our siRNA studies suggest some effect on keratinocyte proliferation, our
in vivo data indicate that ABCC1 loss does not impact the formation of epidermis. Further-
more, the in vivo loss of ABCC1 does not affect the expression and localization of ∆Np63,
which acts as a master regulatory gene of keratinocyte proliferation. It is possible that
under physiological conditions, compensatory mechanisms exerted by other ABC family
members maintain normal skin development in hABCC1 KO mice or that ABCC1 activity is
important to regulate skin homeostasis in response to specific stimuli or insults. Accord-
ingly, we found that the genetic ablation of ABCC1 led to a marked reduction in the basal
keratinocyte proliferation induced by inflammatory/proliferative signals. As an important
transporter of pro-inflammatory biolipids such as leukotriene LTC4 and prostaglandins [42],
ABCC1 transporter activity might sustain the inflammatory microenvironment, thereby
promoting cell proliferation in response to inflammatory signals. In line with this hypothe-
sis, we observed a significant increase in ABCC1 expression in different SCCs, including
skin, head and neck and cervical SCCs, which are characterized by keratinocyte hyper-
proliferation and a pro-inflammatory tumor microenvironment [58,59]. Furthermore, in a
panel of 70 cSCC tumor samples and in CESC and LUSC datasets, we observed a strong
correlation between p63 and ABCC1 expression, strengthening the functional link between
these two proteins. Although we did not explore the specific role of ABCC1 in squamous
carcinogenesis, we can speculate that it is not merely related to chemoresistance.

Indeed, robust and convincing evidence of a role for ABCC1 in modulating chemore-
sistance during in vivo squamous carcinogenesis is lacking. Most evidence is based on
overexpression studies performed in tumor cell lines, and evidence that ABCC1 chemical
inhibition or its genetic deletion increases chemosensitivity in animal models of squamous
carcinogenesis is missing. Based on its role in modulating the export of diverse endogenous
metabolites, ABCC1 targeting might impact other tumor-related phenomena that are not
directly linked to its ability to modulate the extracellular efflux of anti-neoplastic agents.
For instance, the pro-tumorigenic action of ABCC1 might be also linked to its ability to
promote the efflux of pro-inflammatory signals, which may shape the immune landscape
to support the growth and response to immunotherapy of tumor cells. This hypothesis
could be relevant in SCCs, which are characterized by a highly inflamed tumor microen-
vironment [58,59]. These considerations, together with the development of selective and
high-affinity ABCC1 inhibitors, could provide novel ABCC1-based therapeutic approaches
for targeting tumors with elevated expression of ABCC1, such as SCC.

Collectively, our data characterize ABCC1 as a novel ∆Np63 target gene potentially in-
volved in those skin diseases characterized by alterations in the proliferation/differentiation
balance and/or driven by inflammatory signals. Further research is needed to fully elucidate
the relevance of ∆Np63–ABCC1 functional interaction in skin physiology and pathology.

4. Materials and Methods
4.1. Cell Culture and Transfection

A253 cells (ATCC HTB-41) were grown in McCoy’s medium (Gibco, Invitrogen,
Waltham, MA, USA) with the addition of 10% fetal bovine serum (FBS), 100 µg/mL
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penicillin and 100 µg/mL streptomycin (Gibco, Invitrogen). HEKn cells (neonatal nor-
mal human epidermal keratinocytes, Life Technologies, Carlsbad, CA, USA) were cul-
tured in EpiLife medium plus growth supplements (HKGS, Life Technologies, Carlsbad,
CA, USA). HEKn differentiation was induced by adding 1.2 mM CaCl2 to the culture
medium of sub-confluent cells. All the cells were maintained at 37 ◦C with 5% CO2.
For p63 siRNA-mediated knockdown, HEKn and A253 cells were transfected with the
following specific siRNAs: sip63 5′-CAGGUUGGCACUGAAUUCA-3′, si∆Np63#1 5′-
GAAGAAAGGACAGCAGCATTG-3′, si∆Np63#2 5′-ACAAUGCCCAGACUCAAUUUU3′

and nonrelevant siRNA (scr), purchased from Sigma-Aldrich. For ABCC1-mediated knock-
down, HEKn cells were transfected with the following specific siRNAs: siABCC1#1 5′-
CAUUGCAGGUCACCACGUA-3′ and siABCC1#2 5′ CUCUCUACCUCCUGUGGCU-3′,
purchased from Sigma-Aldrich. All transfections were performed using the Lipofectamine
RNAiMAX transfection reagent (Invitrogen, Waltham, MA, USA) according to manufac-
turer’s protocols.

4.2. Growth Curve Analysis

HEKn cells were seeded into 10 mm plates (1 × 106 cells) and allowed to adhere
overnight. The next day, cells were transfected with nonrelevant siRNA (SCR) or siRNA
targeting two different regions of ABCC1 mRNA (siABCC1#1 or siABCC1#2). At 24 h
post transfection, cells were trypsinized and re-seeded into 6-well plates, ensuring four
replicates for each experimental condition. The growth curve of the transfected cells was
assessed over a period of 72 h. Cell counts were performed at 24-hour intervals (0 h, 24 h,
48 h, and 72 h). At each time point, cell viability and number were determined using the
trypan blue exclusion method.

4.3. Animal Studies

Mice were maintained in the animal facility of the University of Rome “Tor Vergata”
under approved conditions. The ABCC1 humanized knock-in (hABCC1flx/flx) and knockout
(hABCC1−/−) mouse models (C57Bl/6J background) were obtained from our collaborator
Prof. Jens Pahnke (University of Oslo) [60]. The crossbreeding of hABCC1flx/flx mice
with Cre-deleter mice resulted in the global deletion of hABCC1. Males/females were
equally distributed. All mouse procedures were carried out in accordance with institutional
standard guidelines and under the authorization of the Italian Health Minister.

4.4. Keratinocyte Isolation Assay

Newborn mouse skins were isolated and incubated with the dermis side down in
0.25% Trypsin-EDTA (Gibco, Waltham, MA, USA, cat. num. 25200056) overnight at 4 ◦C.
After enzymatic digestion, the epidermises were separated from the dermises and minced
for approximately 5 min using sterile scissors or scalpels. The dissociated tissues were
collected with Low calcium medium (EMEM Lonza, Portsmouth, NH, USA, cat. num.
06-174G), pooled and filtered using a 100 µm Cell Strainer (BD Falcon, Dhaka, Bangladesh,
cat. num. 352360) to remove corneocytes, and centrifuged at 800 rpm for 8 min. The cell
pellet was then resuspended in and cultured overnight in Low calcium medium. The next
day, keratinocytes were extensively washed in PBS 1× to remove dead cells and debris.
Murine keratinocyte differentiation was induced by adding 1.2 mM CaCl2 to the growth
medium of sub-confluent cells.

4.5. 12-O-tetradecanoylphorbol 13-acetate (TPA) Treatment

Application of 12-O-tetradecanoylphorbol 13-acetate (TPA) (Sigma-Aldrich, St. Louis,
MO, USA, cat. num. P1585) dissolved in acetone (Sigma Aldrich, cat. num. 179124) was
carried out on 6-week-old mouse back skin. The back hair was removed using an electric
shaver 2 days before treatment. A total of 4 µg of TPA solution was applied once a day for
3 days on the dorsal skin of hABCC1flx/flx and knockout hABCC1−/− mice. Two hours after
the final TPA application, animals were killed, and the skin samples were collected.
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4.6. Protein Extraction and Immunoblotting Analysis

Immunoblot analyses were performed as previously described [61]. In detail, A253
cells were lysed with Triton buffer (50 mM Tris-HCl pH 7.5, 250 mM NaCl, 50 mM NaF,
1 mM EDTA pH 8, 0.1% Triton), plus protease inhibitors (cOmplete EDTA free protease
inhibitor cocktail, Roche, Basel, Switzerland), PMSF, DTT and sodium orthovanadate (New
England Biolabs, Ipswich, MA, USA). HEKn cells were lysed in SDS lysis buffer (100 mM
Tris, pH8.8, 1%SDS, 5 mM EDTA, 20 mM DTT and 2 mM AEBSF). Proteins were separated
by SDS/PAGE and transferred onto PVDF membranes. Membranes were blocked with 5%
nonfat dry milk in PBS-T (phosphate-buffered saline and 0.1% Tween-20) for 1 h at room
temperature (RT). Primary antibodies were incubated for 2 h at RT, followed by incubation
with the appropriate horseradish peroxidase-conjugated secondary antibody ( anti-mouse
cat. num. 170-5047, dilution: 1:10,000; anti-rabbit cat. num. 170-6515, dilution: 1:10,000;
Bio-Rad, Hercules, CA, USA). Detection was performed with ECL chemiluminescence kit
(Perkin-Elmer, Waltham, MA, USA).

The following antibodies were used: rabbit monoclonal anti p63-α (Cell Signaling
Technology, Danvers, MA, USA, #13109 clone D2K8X, dilution: 1:1000), rabbit monoclonal
anti-ABCC1 (Cell Signaling Technology, #72202 clone D5C1X, dilution: 1:1000), rabbit
polyclonal anti-KRT10 (Covance PRB159P, dilution: 1:5000), mouse monoclonal anti β-actin
(Sigma-Aldrich, #AC-15, dilution: 1:50,000), and mouse monoclonal anti-vinculin (Sigma-
Aldrich #V9131, dilution: 1:50,000). Uncropped images related to the blots are shown in
Figure S3.

4.7. Chromatin Immunoprecipitation (ChIP) Assay

HEKn cells were collected and fixed in 1% formaldehyde. Chromatin was sonicated
into 200 to 500 bp fragments using a Diagenode Bioruptor. The chromatin immunopre-
cipitation was performed with an anti-p63 antibody (Cell Signaling Technology, #13109,
clone D2K8X) or IgG (Invitrogen) as control, using the MAGnify Chromatin Immuno-
precipitation System (Invitrogen, 492024). For the amplification of the intronic region
containing potential p63 response elements, the following primers were used: Fw 5′-
ATGGTGCTTGGGAGAGTTGG-3′; Rev 5′-CCACTGTGCCCAGTCCTAAG-3′. A negative
control region was used to further confirm the specificity of the immunoprecipitation.

4.8. RNA Extraction and Real-Time PCR

Total RNA was purified utilizing the RNeasy mini kit (Qiagen, Hilden, Germany)
following the manufacturer’s instructions, quantified by a NanoDrop Spectrophotome-
ter (Thermo Scientific, Waltham, MA, USA) and retrotranscribed by SensiFast cDNA
Synthesis (Bioline, London, UK). qPCR was performed using SYBR-Green PCR Master
Mix (Thermo Scientific, cat. num. A25742), with the QuantStudio 5 Real-Time PCR
Systems (Applied Biosystems, Waltham, MA, USA). The relative expression levels of
each gene were calculated using the 2−∆∆Ct method (Ct, threshold cycle). The follow-
ing primers were used: hTBP fw 5′-CTGACAGGTAAGGAGGACGC-3′; hTBP rev 5′-
AGTTACCTGACCTCTCCCCC-3′; hABCC1 fw 5′-TTACTCATTCAGCTCGTCTTGTC-3′;
hABCC1 rev 5′-CAGGGATTAGGGTCGTGGAT-3′; h∆Np63 fw 5′-GAAGAAAGGACAGC
AGCATTG-3′; h∆Np63 rev 5′-GGGACTGGTGGACGAGGAG-3′; mActin fw 5′-TGTCCCTG
TATGCCTCTGGTC-3′; mActin rev 5′-GAACCGCTCGTTGCCAATAGT-3′.

4.9. Histological and Immunostaining Analysis

Cutaneous Squamous Cell Carcinoma TMA (SK802c) was purchased by US Biomax,
Inc (Rockville, MD, USA). TMA slide includes 76 cases of squamous cell carcinoma, 2 each
of adjacent normal skin tissue, plus 2 normal skin tissues.

Paraffin-embedded tissue (FFPE) sections (5 µm) were dewaxed, rehydrated and
stained for 4 min with Mayer’s hematoxylin (Bio-Optica, Milano, Italy). After washing
in distilled water, sections were incubated for 1 min in Eosin Y alcoholic solution (Bio-
Optica), extensively washed in distilled water and finally dehydrated by 70, 90, 100%
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ethanol solution incubation. Immunohistochemistry (IHC) staining was used to analyze
gene expression at the protein level. Deparaffinization of the FFPE sections (5 µm) was
performed with Bioclear (Bio-Optica), with further rehydration in decreasing alcohol
concentrations (absolute, 90, 70, 80 and 50% ethanol) and washing in distilled water.
Antigen retrieval was performed by boiling in 0.01 M Sodium Citrate Buffer pH 6.0. The
staining was performed in a serial manner as follows: primary antibody was incubated
for 1 h in 5% goat serum (Gibco) in PBS at RT; immunoreactions continued using a DAB
(3,3′-diaminobenzidine) Detection System (Histo-Line Laboratoires, Pantigliate, Italy, cat.
num. CPH080) for secondary antibody detection, according to manufacturer’s protocols.
Additional Mayer’s hematoxylin staining was performed. The following antibodies were
used: mouse monoclonal anti p63-α (Abcam, Cambridge, UK; AB735, dilution: 1:100);
rabbit monoclonal anti-ABCC1 (Cell Signaling Technology, clone D5C1X, dilution 1:75). The
slides were then visualized using a Leica DM6 microscope (Leica Microsystems, Buccinasco,
MI, Italy).

For the immunofluorescence staining, FFPE sections (5 µm) were dewaxed (Bio-Clear
washing, Bio-Optica) and rehydrated by serial dilution of ethanol (100, 90, 80, 70 and 50%
ethanol). Sections were boiled in 0.01 M Sodium Citrate Buffer pH 6.0 for antigen retrieval.
For IF staining, we performed the following protocol. Sections were blocked for 1 h in 5%
goat serum (Gibco) in PBS at RT. After blocking, sections were incubated with primary
antibody for 1 h at RT and then with the appropriate secondary antibody for an additional
hour at RT. Nuclei were counterstained with DAPI (4′,6-diamidino-2-phenylindole). The
following antibodies were used: rabbit polyclonal anti-KRT10 (Covance PRB159P, dilution:
1:1000), mouse monoclonal anti-p63-α (Abcam AB735, clone 4A4, dilution: 1:100), mouse
monoclonal anti-K14 (Abcam AB7800, clone LL002, dilution 1:1000), rabbit monoclonal
anti-Ki67 (Cell Signaling Technology, Clone D3B65, dilution 1:200). Images were acquired
by confocal microscope Leica Stellaris 8.

4.10. Bioinformatic Analysis

Gene expression data were downloaded from cBioportal [62–64] and UCSC Xena [65].
Correlation analyses were performed with R software version 4.3.1.

4.11. Statistical Analysis

The number of biological replicates is mentioned in the figure legends. The type of
statistical test utilized to calculate the p value was reported in the figure legends.

Supplementary Materials: The following supporting information can be downloaded at:
https://www.mdpi.com/article/10.3390/ijms25168741/s1.
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