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Abstract

The study was carried out to assess meteorological drought on the basis of the

standardized precipitation index (SPI) and standardized precipitation evapo-

transpiration index (SPEI) evaluated in future climate scenarios. Yazd prov-

ince, located in an arid region in the centre of Iran, was chosen for analysis.

The study area has just one synoptic station with a long-term record (56 years).

The impact of climate change on future drought was examined by using the

CanESM2 of the CMIP5 model under three scenarios, that is, representative

concentration pathways RCP2.6, RCP4.5 and RCP8.5. Given that a drought is

defined by several dependent variables, the evaluation of this phenomenon

should be based on a multivariate analysis. For this purpose, two main charac-

teristics of drought (severity and duration) were extracted by run theory in a

past (1961–2016) and future (2017–2100) period based on the SPI and SPEI,

and studied using copula theory. Three functions, that is, Frank, Gaussian and

Gumbel copula, were selected to fit with drought severity and duration. The

results of the bivariate analysis using copula showed that, according to both

indicators, the study area will experience droughts with greater severity and

duration in future as compared with the historical period, and the drought rep-

resented by the SPEI is more severe than that associated with the SPI. Also,

drought simulated using the RCP8.5 scenario was more severe than when

using the other two scenarios. Finally, droughts with a longer return period

will become more frequent in future.
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1 | INTRODUCTION

On a global scale, droughts have increased in recent
decades, but this trend is more pronounced in arid and
semi-arid regions (Dai, 2011; Saadat et al., 2013). Drought

is an extreme event and is a creeping phenomenon as
compared with other natural disasters, which greatly
affects the environment and human life. A drought is
characterized by severity, duration and frequency. These
characteristics are not independent of each other, so that

Received: 23 November 2018 Revised: 13 August 2019 Accepted: 29 October 2019

DOI: 10.1002/met.1856

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided

the original work is properly cited.

© 2019 The Authors. Meteorological Applications published by John Wiley & Sons Ltd on behalf of the Royal Meteorological Society.

Meteorol Appl. 2019;1–20. wileyonlinelibrary.com/journal/met 1

https://orcid.org/0000-0002-2344-5438
mailto:tmesbah@ut.ac.ir
http://creativecommons.org/licenses/by/4.0/
http://wileyonlinelibrary.com/journal/met


drought is a complex natural disaster (Mishra and Singh,
2010). The effects of drought, as compared with other
natural disasters, will have a wider range (Wilhite et al.,
2014). Therefore, in drought analysis, it is necessary to
consider its multivariate nature and spatial variability
explicitly.

The prediction of drought conditions in future is con-
sidered a vital step in preventing future damage. The
global warming of recent years, which has been consoli-
dated by several researchers through climate change
model analysis (Solomon et al., 2007), will lead to an
increase in the occurrence of droughts (Sheffield and
Wood, 2008). The determination of drought characteris-
tics is very difficult because several drought indicators
are available for evaluation, so that introducing a unique
index is very difficult (Heim, 2002). The standardized pre-
cipitation index (SPI) and standardized precipitation
evapotranspiration index (SPEI) are the most commonly
used indicators for analysing the severity, duration and
frequency of meteorological drought. The SPI is more
accessible than other indices (Caccamo et al., 2011)
because it only uses precipitation in the definition of
drought. Also, at different time scales it identifies differ-
ent drought types (Vicente-Serrano et al., 2010). The
short time scales are related to soil moisture, which indi-
cates agricultural drought, the medium time scales indi-
cate hydrological drought and the long-time scales
indicate groundwater drought (Edwards and McKee,
1997). The SPEI, in addition to precipitation, uses the
temperature parameter to identify drought periods; it also
includes the effects of temperature variability on drought
assessment (Dubrovsky et al., 2008). Therefore, it can
consider the effect of climate change on drought better
than the SPI (Vicente-Serrano et al., 2010).

The future climate situation at the global scale is sim-
ulated by general circulation models (GCM) based on the
Fifth Assessment Report of the Intergovernmental Panel
on Climate Change (AR5), which was completed in 2014
(IPCC, 2014). According to the AR5 models, the increase
of surface temperature at the end of the 21st century is
expected to be > 1.5�C for most scenarios. In the prepara-
tion of the AR5, which was gradually released between
2013 and 2014, the output of the CMIP5 models was
used. These models use new emission scenarios called
representative concentration pathways (RCPs) (Moss
et al., 2010). These scenarios have four pathways:
RCP2.6, RCP4.5, RCP6 and RCP8.5, which are named
according to their radiative forcing in 2100 (Van Vuuren
et al., 2011). The GCM is the most appropriate method
for investigating the effects of climate change on environ-
mental systems at global scales (Sehgal et al., 2018). How-
ever, the application of these models is not suitable at
regional or local scales owing to their coarse grid spacing

(Hay et al., 2000; Gebremeskel et al., 2005), which is now
of the order of 10 km (Cavicchia et al., 2014).

The most important and suitable tool for linking the
local/regional scale and GCM scale is downscaling. Sev-
eral methods have been proposed for downscaling that
consider the temporal and spatial mismatch between the
global and regional/local scales. In general, two statistical
and dynamic methods are considered for this purpose. In
the statistical method, the empirical/statistical relation-
ship between large-scale and local/regional variables is
established (Wetterhall et al., 2006; Palatella et al., 2010).
Among statistical downscaling methods, the SDSM has
been widely used for the downscaling of climate variables
all over the world (Huang et al., 2011).

As mentioned above, drought characteristics are depen-
dent on each other; therefore, drought analysis based on
one of these characteristics as a univariate cannot describe
the dependence structure between them. Therefore, the
simultaneous assessment of drought characteristics due to
its multivariate nature is necessary and the results of the
multivariate analysis of drought characteristics are impor-
tant for assessing its potential risks (Shiau and Modarres,
2009). Given that the drought characteristics may have dif-
ferent marginal distribution functions, the most suitable
tool for achieving the joint behaviour of the drought char-
acteristics is multivariate copula functions. Copula func-
tions as a multivariate analysis method are widely used to
analyse the functional structure of drought characteristics
(Mirakbari et al., 2010; Chen et al., 2013; Dodangeh et al.,
2017; Hao et al., 2017).

In the present study, meteorological droughts are
analysed by the SPI and SPEI in the present and future
periods in Yazd province of Iran. In order to assess the
drought characteristics in the present, precipitation and
temperature data of Yazd synoptic station were extracted
in the period 1961–2016. The CanESM2 (Second Genera-
tion Canadian Earth System Model) data from the AR5
were downscaled to examine drought changes in future
(2017–2100). Bivariate copula functions were used for
joint modelling of meteorological drought based on the
SPI and SPEI indices. By the joint probabilities derived
from the copula functions, the bivariate and conditional
drought return period were calculated based on its char-
acteristics in order to investigate the future drought
changes in comparison with the historical period.

2 | MATERIAL AND METHODS

2.1 | Study area

Yazd province, with the area of 129,285 km2, is situated
on an oasis where the Dasht-e Kavirdesert and the
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Dasht-e Lut deserts meet (Figure 1). The mean annual
precipitation is 57 mm for the 63-year period (1954–
2016); also, the mean annual temperature is 19.58�C; the
maximum temperature in the warmest month is 45.6�C;
the minimum temperature in the coldest month is
16.0�C; and the maximum wind speed is up to 120 km�
hr−1. The average annual relative humidity is 25–30%.
The mean annual evaporation is 2,500–3,500 mm, which
is higher than precipitation. The higher evaporation rate
compared with precipitation has caused the study area to
be classified as an arid region.

Owing to the geographical and climatic conditions,
the study area has been affected by prolonged and severe
droughts in recent years (Dastorani et al., 2011).
According to Negaresh and Khosravi (2011), the mean
precipitation in the study area has decreased by 7.5% over
the past 50 years and mean temperature has increased by
1.0�C in this period. The drought studies in Yazd prov-
ince have used the SPI for drought analysis as a univari-
ate (Dastorani et al., 2011; Shayegh and Soltani, 2011;
Nassimi and Mohammadi, 2016; Asadi, 2017; Javanmard
et al., 2017). However, owing to the multivariate nature
of drought the univariate methods for assessment of its
characteristics do not fully describe the condition of
drought. Based on the literature review, little research
has been done to study the effects of climate change on
drought in Yazd province. Among the studies, only
Dastorani et al. (2011) examined the impact of climate
change on meteorological drought by two SPI and RDI
indicators based on the HadCM3 model derived from the
4th Assessment Report in Yazd province (Solomon et al.,

2007). In the present study, precipitation, minimum and
maximum temperature were projected by HadCM3
model under A2 and B2 scenarios for the period
2010–2039. The results of the present study showed the
drought has an increasing trend under the A2 scenario, and
a decreasing trend under the B2 scenario compared with
the reference period (1961–1990). In general, no single
study was found that uses copula theory for meteorological
drought analysis in Yazd province under new climate
change scenarios.

2.2 | Data

To predict the trend of drought under climate change con-
ditions, three types of inputs were used. These include
daily precipitation and temperature observed data in the
period 1961–2016, National Centre for Environmental Pre-
diction (NCEP) reanalysis data in the period 1961–2005,
and CanESM2 model data from the AR5 in the period
1961–2005 for the historical and 2006–2100 for the future
period. Observational data (daily precipitation and temper-
ature, then converted to monthly scale) were extracted
from Yazd synoptic station for 56 years and the simulated
data were obtained by downscaling of the CanESM2 model
under three RCP scenarios using the SDSM. Drought
periods were extracted from the SPI and SPEI in the two
periods. Finally, future drought changes in comparison
with historical ones were investigated based on the two
characteristics, severity and duration, using copula theory.
Figure 2 describes the flowchart of the methodology.

2.3 | Methods

2.3.1 | Downscaling of the CanESM2
model data using the SDSM under the RCP
scenarios

In order to produce precipitation and temperature data
for future drought analysis, the CanESM2 model data
were downscaled using the SDSM. (The CanESM2 is the
Second Generation Canadian Earth System Model pro-
vided by the Canadian Centre for Climate Modeling &
Analysis—CCCma.) This model has three scenarios:
RCP2.6, RCP4.5 and RCP8.5. The SDSM is used to create
quantitative relationship between large-scale variables/
GCM and small-scale variables (local/regional scale)
(Wilby et al., 2002). The method has four main parts,
which include determination of the NCEP predictor vari-
ables, calibration and verification of model, and finally
simulation of precipitation and temperature data under
the RCP scenarios for the future period.

FIGURE 1 Location of the selected synoptic station in Yazd

province, Iran, including other synoptic stations in the study area
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2.3.2 | Calculating the SPI

The SPI is used to identify and evaluate drought events at
multiple time scales (McKee et al., 1993). It is calculated
on the basis of the monthly precipitation deficit relative
to its long-term average (Seiler et al., 2002). To calculate
this index, the Gamma distribution function was fitted to
the monthly precipitation time series, and the cumulative
probability of precipitation was converted into the stan-
dard normal distribution with mean zero and standard
deviation (SD) of 1 (Equations 1 and 2). The gamma dis-
tribution function is selected as the best fit to the precipi-
tation data (McKee et al., 1993; Angelidis et al., 2012;
Stagge et al., 2015; Yacoub and Tayfur, 2017):

Z= SPI =− t−
C0 +C1t+C2t2

1+ d1t+ d2t2 + d3t3

� �
0<H xð Þ≤ 0:5 ð1Þ

Z= SPI = + t−
C0 +C1t+C2t2

1+ d1t+ d2t2 + d3t3

� �
0:5<H xð Þ≤ 1 ð2Þ

if 0<H xð Þ≤ 0:5 t=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ln

1

H xð Þð Þ2
 !vuut

if 0:5<H xð Þ≤ 1 t=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ln

1

1:0−H xð Þð Þ2
 !vuut

8>>>>>>><
>>>>>>>:

9>>>>>>>=
>>>>>>>;

ð3Þ

where H(x) = q + (1 − q) G(x), where q is the probability of
zero precipitation; and G(x) is the cumulative probability

derived from the gamma distribution. Also, the constants
are C0 = 2.515517, C1 = 0.802853, C2 = 0.010328,
d1 = 1.432788, d2 = 0.18929 and d3 = 0.001308.

2.3.3 | Calculating the SEPI

Based on the SPI, precipitation is the only parameter that
influences meteorological drought. This is based on the
assumption that the variation in precipitation is higher
than other climatic parameters (Vicente-Serrano et al.,
2012). However, climate change studies showed that an
increase in temperature has a significant effect on the
global water cycle and the frequency of dry periods. The
SPEI (Vicente-Serrano et al., 2010), in addition to precipi-
tation, uses an average temperature parameter to deter-
mine drought conditions. It is calculated at different time
scales based on the non-exceedance probability of the
water balance (D), which means D results from the differ-
ence between precipitation (P) and potential evapotrans-
piration (PET) (D = P – PET) (Equation 4):

SPEI = w−
C0 +C1t+C2t2

1+ d1t+ d2t2 + d3t3

� �
ð4Þ

where w = (−ln (P))0.5 p ≤ 0.5; and p is the probability of
exceeding a determined D value. The constant values are
same as the SPI. The SPI and SPEI values are categorized
into dry, wet and normal periods according to McKee
et al. (1993). The most important advantages of the two
SPI and SPEI methodologies are the flexibility in choos-
ing time scales. In the present study, three time scales,
six, nine and 12 months, were used to extract drought
periods from these two indicators.

2.3.4 | Definition of drought
characteristics based on run theory

A drought event based on the SPI and SPEI is consid-
ered to be a period in which the values of the indices
are continuously negative and ≤ −1 (Nedealcov et al.,
2015; Lee et al., 2017) that is described by severity,
duration and frequency. Run theory is a probabilistic
method (Yevjevich, 1967) used to extract drought char-
acteristics based on the SPI and SPEI. The method is
widely used to calculate the severity, duration and fre-
quency of drought while determining a threshold level
(Figure 3). According to run theory, drought severity is
equal to the sum of the SPI/SPEI values below the
threshold level; the length of time during which the
SPI/SPEI value is continuously below the threshold
level is drought duration; and the frequency of drought

FIGURE 2 Flowchart of the methodology
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is the number of events when the SPI/SPEI is below
the threshold level.

2.3.5 | Bivariate drought analysis by
copula theory

For multivariate probabilistic modelling, Sklar (1959)
proposed copula theory. The copula function makes it
possible to combine several univariate distributions from
different families to create a bi- or multivariate distribu-
tion, taking into account the dependence between vari-
ables. In other words, the copula function (C(u1, u2, …,
uN)) is a connection function for the relationship
between the distribution functions of the random vari-
ables X1, X2, …, XN with the marginal distribution func-
tions Fx1(x1), Fx2(x2), …, FXN(xN), defined by
Equation (5) (Nelsen, 2006):

F x1,x2,…,xN
� �

=Cθ FX1 x1ð Þ,FX2 x2ð Þ, :…,FXN xNð Þ½ � ð5Þ

Many types of multivariate distributions model the
dependence structure of variables on the assumption that
the marginal function is uniform. This assumption causes
errors in multivariate analyses. The most important
advantage of using copula functions is that the depen-
dence structure of variables is made in the absence of the
same kind of marginal distribution functions of the vari-
ables, indicating that the creation of a joint probability
distribution function does not require the uniform mar-
ginal functions of each variable. By copula theory, mar-
ginal distribution functions are chosen to create
multivariate distributions, as well as to describe nonlinear
and asymmetric relationships between variables. Copula
functions have several families, including the Elliptical
(t-copula, Normal), Archimedean (Gumbel, Clayton,
Frank, Ali-Mikhail-Haq), Extreme Value (Husler-Reiss,
Galambos, Tawn, and T-EV, Gumbel), and other families
(Plackett, Farlie-Gumbel-Morgenstern) (Yan, 2007). Of
these, the Archimedean and Elliptical families are most
commonly used (Madadgar and Moradkhani, 2013). The
Archimedean copulas have symmetric and asymmetric

forms. The symmetric forms refer to one-parameter cop-
ula, and asymmetric forms have more than two parame-
ters. The Elliptical copulas do not have closed form in
contrast to Archimedean copulas. The advantage of Ellip-
tical families is that this group includes correlation in
both the upper and lower tails. In the present study, the
symmetric Archimedean copulas (Frank, Gumbel, Clyton,
Joe) and Elliptical copula (Gaussian) were used for bivari-
ate modelling of meteorological drought. When a copula
function is used to create multivariate distribution, a cor-
relation between variables is required. In the absence of
correlation, it is not possible to use the copula function.
In the present study, Kendal's correlation co-efficient was
used to determine the correlation between drought sever-
ity and duration.

2.3.6 | Estimation of the copula
parameter

To estimate the copula parameter, two non-parametric
and parametric methods were used. In the non-paramet-
ric, the relationship between the generator function of
each copula (ϕ) and the Kendall correlation co-efficient
(τ) (Equation 6) were used (Genest and Rivest, 1993). In
the parametric method, the parameter was estimated
using the maximum log-likelihood function (Equation 7)
(Favre et al., 2004). In these equations, cθ is the copula
density function; F is the marginal distribution function;
and X1k, X2k, …, Xpk (k = 1, …, n) are the random
variables:

τ X ,Yð Þ=1+4
ð1
0

φ υð Þ
φ0 υð Þdυ ð6Þ

L θð Þ=
Xn
k=1

log cθ F1 x1kð Þ,…,Fp xpk
� �� �	 
 ð7Þ

2.3.7 | Selection of the copula function

To choose the most suitable copula function, which has
the best fit to the drought severity and duration, the

FIGURE 3 Definition of the drought

characteristics based on run theory
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empirical joint probability of the two variables was calcu-
lated by the empirical copula function (Equation 8), and
was compared with the theoretical values obtained from
Archimedean and Elliptical copulas. In order to compare
the empirical and theoretical copulas, the normalized
root mean square error (NRMSE) (Equation 9), Akaike
information criterion (AIC) and Bayesian information
criterion (BIC) (Equations 10 and 11) (Akaike, 1974;
Bozdogan, 2000) were calculated. In these equations,
S and D represent the empirical probability of drought
severity and duration (respectively, Pei is the empirical
copula; Pi is theoretical copula); k is the number of model
parameters; n is the number of observations; and L is the
maximum log-likelihood function:

Cn s,dð Þ= 1
n

Xn
t=1

1 St < s,Dt < dð Þ ð8Þ

where 1 is the indicator function that takes value equal
to 1 when its argument condition is satisfied.

NRMSE=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n

Pn
i=1

Pei−Pið Þ2
s

Pei,max−Pei,minð Þ ð9Þ

AIC=2k−2ln Lð Þ ð10Þ

BIC=2nLogL+ kLog nð Þ ð11Þ

2.3.8 | Bivariate analysis of the return
period of drought

A drought event may occur several times throughout the
year and continue for several months. The return period
is the average interval between occurrence of a phenome-
non, which is repeated several times over time and used
to describe the severity and frequency of drought (Liu
et al., 2015). The bivariate analysis of return period of
drought is based on the average interval time between
the drought events (E(L)) and the joint cumulative distri-
bution function of the drought severity and duration (C
(S, D). Based on the definition of the return period, if
N is the length of an event, n is the number of events
and L is the interval time between events, so E(L) is the
average interval time between successive drought events
(E(L) = N/n). Thus, bivariate analysis of drought return
period is calculated according to Equations (12) and
(13) (Shiau, 2006). When the two variables, severity and
duration of drought, are considered simultaneously, the
bivariate return period is based on both the severity and

duration that exceed a certain value (S ≥ s and D ≥ d)
(Equation 12), or the return period, where the severity or
duration exceeds a certain value (S ≥ s or D ≥ d)
(Equation 13):

TAND
SD =T S≥s,D≥dð Þ= E Lð Þ

P S≥s,D≥dð Þ
=

E Lð Þ
1−FS sð Þ−FD dð Þ+C FS sð Þ,FD dð Þð Þ

ð12Þ

TOR
SD =T S≥s or D≥dð Þ= E Lð Þ

P S≥s or D≥dð Þ=
E Lð Þ

1−C FS sð Þ,FD dð Þð Þ
ð13Þ

3 | RESULTS

3.1 | Downscaling of precipitation and
average temperature data

Considering that modelling the climate change requires
a long-term record and it is also required at least
30 years’ of monthly precipitation to calculate the SPI
(Svoboda et al., 2012), the authors just used Yazd syn-
optic station over the study area (1961–2016), which
has an acceptably long record. After reviewing and con-
trolling the quality of the observation data, the NCEP
predictor variables, which had the highest correlation
with each observation data, were selected. The number
of correlated NCEP variables depends on the length of
record and the type of process (conditional and uncon-
ditional) (Table 1).

The calibration and verification of the model were
based on the NCEP variables. In this step, in order to
increase the accuracy of the model, different variance
inflation factors for precipitation and temperature
parameters, and bias correction for precipitation only,
were selected. The variance inflation factor controls the
magnitude of the variance inflation in downscaled data.
It changes the variance to regression model estimates of
the local process (SDSM manual). The SDSM imple-
ments bias correction and variance inflation techniques
to reduce the standard error (SE) and to increase the
amount of variance in order to obtain the best result of
downscaling (Dibike and Coulibaly, 2005). Based on the
results of the validation of the model, the best value for
each factor was determined by statistical comparisons.
Thus, the variance inflation factors for temperature and
precipitation were 6 and 10, respectively, and the bias
correction for precipitation data was considered as
1. Figure 4 shows the performance of the SDSM for
precipitation and temperature data during the historical
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period (1961–2005). The SDSM performance for temper-
ature is higher than precipitation because of the conti-
nuity of the temperature variable and the absence of
zero values in the time series. In general, NCEP vari-
ables reproduce pretty well the surface observations;
the GCM model tends to overestimate the precipitation,
especially in November–December and spring. Finally,
after verification of the GCM model, the CanESM2 data
were downscaled using the SDSM for precipitation and
temperature under the RCP scenarios in future period
2017–2100.

The Mann–Kendall trend test was performed for sim-
ulated and observational data to investigate the trend in
climate parameters in future period compared with the
base period (Table 2). Based on the results of the Mann–
Kendall test, observational and modelled precipitation
data under two scenarios, RCP2.6 and RCP8.5, showed

no significant trend, while the data generated by the
RCP4.5 scenario showed a significant decreasing trend.
The results of the Mann–Kendall's temperature test
showed a significant, increasing trend for temperature
(observation and modelled data under all three scenar-
ios). Also, the percentage changes in annual average
modelled series under the RCP scenarios as compared
with the observation values showed that the annual aver-
aged precipitation according to the RCP2.6 and RCP 8.5
scenarios would be 62.28 and 69.00 mm, which means it
would increase, respectively, by 9.18% and 17.2% com-
pared with the observation period. In contrast, the
annual average precipitation under the RCP4.5 would be
58.39 mm, which is about the same as in the observation
period. The average annual temperature according to the
RCP2.6, RCP4.5 and RCP8.5 scenarios would be 20.59,
21.03, and 21.22�C with percentage increases of 4.5%,
6.7% and 12.8%, respectively.

Figure 5 shows the error bar of the monthly average
precipitations. The average precipitation from December
to March (from January to March) decreased as com-
pared with the historical period based on the RCP4.5 and
RCP2.6 (RCP8.5) scenarios, while it increased in other
months. The results of simulation of precipitation based
on the RCP scenarios are consistent with the results of
Dastorani et al. (2011), whose study was performed for
the A1 scenario. Figure 6 shows the error bar of the
monthly average temperature. Based on all scenarios, the
average temperature in future will increase compared
with the historical period, the change being higher in the
warmest months, May–August, and lower from October
to December.

TABLE 1 National Centre for Environmental Prediction (NCEP) predictor variables correlated with precipitation and temperature

Data Predictor variables (NCEP) Correlation co-efficient p-value

Precipitation ncepp500gl 500 hPa geopotential 0.31 0.04

ncepprcpgl Accumulated precipitation 0.33 0.04

nceps850gl 850 hPa specific humidity 0.21 0.049

ncepshumgl 1,000 hPa specific humidity 0.24 0.048

Temperature ncepptempgl Screen air temperature (2 m) 0.96 0.000

0

5

10

15

20

25

30

35

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

M
ea

n 
m

on
th

ly
 te

m
pe

ra
tu

re
 (

°c
)

Historical (1961–2005)
NCEP (1961–2005)
CanESM2 (1961–2005)

0

2

4

6

8

10

12

14

16

18

Jan Feb MarAprMayJun Jul Aug Sep Oct Nov

M
ea

n 
m

on
th

ly
 p

re
ci

pi
ta

ti
on

 (m
m

)

Historical (1961–2005)

NCEP (1961–2005)

CanESM2 (1961–2005)

FIGURE 4 Comparison of the

downscaled data using predictor

variables (National Centre for

Environmental Prediction (NCEP)

and CanESM2 model) with the

historical record of precipitation and

temperature for the period 1961–2005

TABLE 2 Results of the Mann–Kendall test for observation
and modelled data under representative concentration pathway

(RCP) scenarios

Parameter Z-value p-value

Precipitation Historical 0.32 0.37

RCP2.6 0.19 0.42

RCP4.5 −1.92 0.02

RCP8.5 0.21 0.83

Temperature Historical 4.64 0.005

RCP2.6 2.6 0.004

RCP4.5 9.5 0.006

RCP8.5 11.86 0.002
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3.2 | Calculation of the SPI and SPEI
time series in the historical and future
periods

Gamma and Generalized Pareto distributions were fitted to
the data for the calculation of the SPI and SPEI at six, nine
and 12 months in the present and future periods, respec-
tively. Drought characteristics, such as severity, duration
and frequency, were determined according to run theory
by choosing the threshold level −1 for the SPI and SPEI
time series. The negative values of SPI/SPEI represent a
period where the monthly precipitation is less than its
long-term average, while positive values of SPI/SPEI indi-
cate that the monthly precipitation is greater than the long-
term average. According to run theory, 15–73 drought
events were obtained based on the SPI and SPEI in the his-
torical and future periods, respectively. Figure 7 shows that,
with increasing SPI time scale, the frequency of the dry
period decreases, which is accompanied by an increase in

the severity and duration of drought. According to the
SPI6, the most severe drought had a severity of −7.94 and a
duration of six months, and the SPI12 had a severity of
−22.08 and a duration of 11 months (Table 3). The inclu-
sion of average temperature for calculating dry periods
makes the SPEI > SPI, so the former can represent better
drought characteristics (Figure 8). The most severe drought
based on SPEI6 had a severity of −30.43 and a duration of
14 months. Also, the most severe droughts based on the
SPEI9 and SPEI12 had a severities of −78.54 and −130.94
and durations of 44 and 70 months, respectively (Table 4).
According to the SPI, the study area will experience a more
severe and longer drought in future according to the RCP
scenarios (Table 3). The percentage increase of the severity
of drought generated by the RCP2.6, RCP4.5 and RCP8.5
scenarios according to the SPI6 was 25.8%, 42.4% and
56.4%, respectively, as compared with the historical period.
The increase in the SPI9 and SPI12 was 28.6%, 28.0% and
47.1% and also 47.8%, 7.2% and 58% for the three scenarios,

FIGURE 5 Error bar (a) and shaded error (b) of monthly average precipitation in the historical and future periods

FIGURE 6 Error bar (a) and shaded error (b) of monthly average temperature in the historical and future periods
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respectively. Among the different scenarios, the severity
and duration of the drought resulting from the RCP8.5
were higher than for the RCP2.6 and RCP4.5.

The results showed that the drought characteristics
derived from the SPEI, under the RCP scenarios, were
different from the SPI (Table 4). In SPEI6, the drought
severity generated by the RCP2.6, RCP4.5 and RCP8.5
scenarios increased by 12.34%, 21.81% and 42.46%,
respectively, whereas in the SPEI9 and SPEI12 under the
RCP scenarios, the droughts in future were less intense
than in the observation period. Similar to the SPI, the
drought derived from the SPEI under the RCP8.5

scenario had a higher severity and longer duration than
under the other scenarios.

3.3 | Bivariate drought analysis in the
present and future periods based on the
SPI and SPEI indices

The purpose of this section is the determination of the
marginal distribution functions of drought severity and
duration. Among the three time scales of six, nine and
12 months, the six month scale for both the SPI and SPEI

FIGURE 7 Standardized precipitation index (SPI) time series for historical and future droughts at six, nine and 12 month time scales
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TABLE 3 Historical and future

drought characteristics of the most

severe events based on the standardized

precipitation index (SPI)

Drought characteristics Historical RCP2.6 RCP4.5 RCP8.5

SPI6 Severity −7.94 −10.71 −13.71 −19.61

Duration (months) 6 8 8 11

Number of droughts 35 63 61 73

SPI9 Severity −19.30 −27.03 −26.80 −36.50

Duration (months) 11 15 15 19

Number of droughts 30 46 48 51

SPI12 Severity −22.08 −44.49 −23.86 −52.59

Duration (months) 11 24 14 29

Number of droughts 18 34 38 30

Note: RCP: representative concentration pathway.

FIGURE 8 Standardized precipitation evapotranspiration index (SPEI) time series for historical and future droughts at six, nine and

12 month time scales
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was selected for bivariate analysis because of higher
drought frequency than the other time scales. The rela-
tionship between the characteristics of droughts showed
a significant correlation between the severity and dura-
tion of the drought in both the present and future periods
(τ > 0.8). The SPEI6 series in the historical period
(τ = 0.91) and under the RCP8.5 (τ = 0.94) had the
highest correlation and the SPI6 series under the RCP8.5
(τ = 0.082) had the lowest correlation. A total of 20 uni-
variate distribution functions were fitted to drought
severity and duration to determine the marginal distribu-
tion functions, and the parameters of these functions
were estimated using the maximum likelihood method.
The Johnson SB, Generalized Pareto, Log-Logistic,
Gamma and Log Normal functions were selected as the
best fit for drought severity, and the Normal, Log Pearson
3, Gamma, Generalized Pareto, Log-Logistic and Expo-
nential functions as the best fit for drought duration
based on statistical tests including Kolmogorov–Smirnov,
Anderson Darling and χ2 (Thilakarathne and Sridhar,
2017; Modaresi Rad et al., 2017) (Tables 5 and 6).

3.4 | Fitting the copula functions to
drought severity and duration

To fit the copula functions to drought severity and
duration, the parameters of the functions for both

indicators (SPI6 and SPEI6) were estimated in the pre-
sent and future periods using the parametric and non-
parametric methods (Table 7). The parameters of the
copula functions express the dependence structure
between drought severity and duration. Based on the
results obtained from the selection criteria of the best
copula function, three functions (the Frank, Gaussian
and Gumbel copulas) were selected among the five
fitted copulas to investigate the joint behaviour of the
drought severity and duration in the present and future.
Thus, the Frank copula for the SPI6 under the RCP2.6
and RCP4.5 scenarios and the SPEI6 under the RCP4.5
scenario, the Gaussian copula for the SPI6 and SPEI6 in
the historical period and under the RCP2.6 scenario,
and the Gumbel copula for the SPI6 and SPEI6 under
the RCP8.5 scenario were selected because they had the
lowest AIC, BIC and NRMSE criteria (Table 7). The
selection of three different copula functions showed
that the joint behaviour of the drought series is differ-
ent from each other. To investigate the relationship
between severity and duration of the observed drought
and those generated by copulas, the marginal distribu-
tions of the drought severity and duration were simu-
lated by the Gaussian, Frank and Gumbel copula
functions, as the best copulas, using the Monte Carlo
algorithm (Acciolya and Chiyoshi, 2004) and compared
with the marginal distributions of severity and duration
of the observed drought. The results are shown in

TABLE 4 Historical and future

drought characteristics of the most

severe events based on standardized

precipitation evapotranspiration

index (SPEI)

Drought characteristics Historical RCP2.6 RCP4.5 RCP8.5

SPEI6 Severity −30.43 −34.75 −38.92 −52.89

Duration (months) 14 16 16 34

Number of droughts 28 60 42 37

SPEI9 Severity −78.54 −42.40 −39.23 −55.98

Duration (months) 44 18 22 34

Number of droughts 17 59 35 27

SPEI12 Severity −130.94 −48.50 −39.34 −93.18

Duration (months) 70 22 23 173

Number of droughts 15 50 26 37

Note: RCP: representative concentration pathways.

TABLE 5 Results of fitting candidate univariate marginal distributions to drought severity

Severity

SPI6 SPEI6

Distribution Parameters Distribution Parameters

Historical Johnson SB γ = 0.21, δ = 1.08, λ = 9.97, ζ = − 0.49 Log-Logistic α = 1.42, β = 3.75

RCP2.6 Johnson SB γ = 0.5, δ = 0.45, λ = 10.05, ζ = 0.93 Generalized Pareto k = 0.14, σ = 4.36, μ = 0.70

RCP4.5 Generalized Pareto k = 0.11, σ = 2.90, μ = 0.72 Gamma α = 0.88, β = 8.75

RCP8.5 Generalized Pareto k = 0.05, σ = 2.64, μ = 0.83 Log Normal σ = 1.04, μ = 1.7

Note: RCP: representative concentration pathway; SPI: standardized precipitation index (SPI); SPEI: standardized precipitation evapotranspiration index.
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Figure 9. The SPI6 series under the RCP8.5 scenario
(Figure 9c) had a higher correlation in the upper tail
than the lower tail (Figure 9c versus f ); this feature fol-
lows the tail behaviour of the Gumbel copula (Trivedi
and Zimmer, 2005). Figure 9 shows that the marginal
function values of the severity and duration of the SPI6
under the RCP8.5 scenario have a higher correlation in
the upper tail than the lower tail, which corresponds to
the marginal distributions generated by the Gumbel

copula for this series (Figure 9f). The behaviour of the
SPI6 series in the historical period (Figure 9b) and the
SPEI6 under the RCP4.5 scenario (Figure 9a) is the same
in both tails. In other words, the upper and lower tails
have the same correlation, that is, this follows the
behaviour of the Frank and Gaussian copulas, which
have a symmetric dependence in both tails. The Gauss-
ian copula, owing to its exponential behaviour, has the
same correlation in both tails (Trivedi and Zimmer,

TABLE 6 Results of fitting candidate univariate marginal distributions to drought duration

Duration

SPI6 SPEI6

Distribution Parameters Distribution Parameters

Historical Normal σ = 1.4, μ = 2.74 Generalized Pareto k = 0.058, σ = 3.82, μ = 0.28

RCP2.6 Log Pearson 3 α = 1047.5, β = − 0.023, γ = 26.17 Generalized Pareto k = − 0.062, σ = 3.10, μ = 0.69

RCP4.5 Gamma α = 2.053, β = 1.26 Exponential λ = 0.196

RCP8.5 Gamma α = 1.99, β = 1.2 Log-Logistic α = 0.3, β = 2.39, γ = 4.48

Note: RCP: representative concentration pathway; SPI: standardized precipitation index (SPI); SPEI: standardized precipitation evapotranspiration index.

TABLE 7 Results of the goodness-of-fit test of different copulas based on the SPI6 and SPEI6 in the historical period and under

representative concentration pathway (RCP) scenarios

Data Copula functions

SPEI6 SPI6

AIC BIC NRMSE Parameter AIC BIC NRMSE Parameter

Historical Frank −89.75 −86.49 0.081 23.72 −85.13 −78.26 0.069 35.109

Clayton −88.19 −78.32 0.085 7.738 −88.70 −68.69 0.070 10.72

Gumbel −86.22 −83.36 0.081 5.518 −89.56 −83.08 0.070 8.571

Gaussiana,b −97.41 −93.22 0.0797 0.972 −93.94 −84.97 0.066 0.986

Joe −69.46 −67.64 0.096 6.287 −87.54 −79.65 0.068 143.57

RCP2.6 Franka −128.6 −125.8 0.07 17.702 −195.9 −193.8 0.057 35.135

Clayton −87.10 −96.97 0.086 3.822 −172.1 −170.1 0.061 10.278

Gumbel −117.1 −112.2 0.075 4.085 −193.6 −191.5 0.057 8.063

Gaussianb −123.1 −124.2 0.0721 0.937 −208.1 −205.9 0.056 0.985

Joe −100.5 −91.81 0.088 5.006 −164.5 −162.4 0.065 9.825

RCP4.5 Franka,b −111.3 −109.2 0.082 15.74 −148.5 −146.8 0.074 39.76

Clayton −47.03 −44.92 0.116 2.029 −143.7 −142.1 0.075 14.49

Gumbel −103.8 −101.7 0.088 3.656 −120.9 −119.2 0.081 7.179

Gaussian −93.96 −91.84 0.089 0.898 −141.4 −139.7 0.076 0.985

Joe −100.6 −98.5 0.096 5.135 −93.61 −91.85 0.095 7.474

RCP8.5 Frank −142.6 −140.3 0.073 17.231 −156.7 −155.7 0.041 61.20

Clayton −88.58 −86.29 0.092 3.455 −103.9 −102.9 0.052 10.16

Gumbela,b −146.2 −143.9 0.071 4.436 −161.4 −159.8 0.04 13.79

Gaussian −142.5 −140.2 0.073 0.940 −152.2 −150.5 0.042 0.992

Joe −135.4 −133.2 0.079 6.045 −153.3 −151.1 0.046 20.78

Note: SPI: standardized precipitation index; SPEI: standardized precipitation evapotranspiration index; AIC: Akaike information criterion; BIC: Bayesian
information criterion; NRMSE: normalized root mean square error.
aSelected Copula for SPI6.
bSelected Copula for SPEI6.
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2005). Figure 9a,b shows that the marginal functions of
severity and duration of the SPI6 in the historical period
(Figure 9a) and the SPEI6 under the RCP4.5 scenario
(Figure 9b) have a symmetric correlation in both lower

and upper tails. This attitude of the SPI6 and SPEI6
series follows the behaviour of the marginal functions
generated by the Gaussian (Figure 9d) and Frank cop-
ulas (Figure 9e).

FIGURE 9 Upper and lower tail dependence of observed drought data and generated by copula functions in standardized precipitation

index SPI6 and standardized precipitation evapotranspiration index SPEI6 time series (a, d = SPEI6 under representative concentration

pathway scenario RCP4.5; b, e = SPI6 in the historical period; c, f = SPI6 under the RCP8.5)
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3.5 | Bivariate analysis of the severity
and duration of the present and future
droughts

The bivariate drought return period in the present and
future periods was calculated using the Frank, Gaussian
and Gumbel copulas, which can show the joint behaviour
of the drought characteristics. The average interval time
E(L) between droughts was calculated by taking into
account the probability of the occurrence and non-
occurrence of droughts (Kendall and Dracup, 1992;
Mathier et al., 1992):

E Lð Þ=1= p1*p0ð Þ,

where p1 = 1/number of drought events; and p0 =
1/number of non-drought events. Based on E(L), if the
number of droughts in the series is higher than that of
wet periods, the average interval time between the
drought events will be lower. For example, in the SPI6
series under the RCP4.5 and RCP8.5 scenarios, the num-
bers of drought events are 152 and 176, respectively.
According to E(L), the average interval time between the
drought events is 8.6 and 7.6 months, respectively.
Figure 10 shows the joint return period of severity and
duration of drought in both TAND

SD and TOR
SD based on the

SPI6 in the present and future. As compared with the
present period, the drought return period TAND

SD based on
the SPI6 will increase under the RCP scenarios. As a con-
sequence, the maximum drought return period in the
present period is 50 years, while in future, under the
RCP2.6, RCP4.5 and RCP8.5 scenarios, it will be
200, 80 and 600 years, respectively. On the other hand,
the results showed that a drought event with a similar
return period in future under climate change occurs with
a higher severity and duration than in the historical
period. For example, a drought event with a return period
of 10 years corresponds in the historical period to severity
of −6.11 and 5months’ duration, while in future under
the RCP2.6 scenario to a severity of −9 and a duration of
5months; under the RCP4.5 scenario to a severity of −6.9
and a period of 5months; and under the RCP8.5 scenario
to a severity of −5.8 and a period of 5months. The
drought return period TOR

SD < TAND
SD (Durante and

Salvadori, 2010; Salvadori et al., 2011; Madadgar and
Moradkhani, 2013). In other words, the joint return
period of drought when both the variables, severity and
duration, exceeded a certain value (T(S≥ s and D≥ d))
was longer than either variables, severity or duration,
exceeded a certain value (T(S≥ s or D≥ d)). In contrast to
the return period TAND

SD , the drought return period TOR
SD

will be longer than the historical period only under the
RCP8.5 scenario and will be reduced under the RCP2.6

and RCP8.5 scenarios. Therefore, the maximum return
period of TOR

SD in the historical period is 25 years, and in
future under the RCP2.6, RCP4.5 and RCP8.5 scenarios,
it will be 10, nine and 250 years, respectively. Figure 11
shows the joint drought return period TOR

SD and TAND
SD

based on the SPEI6. According to the SPEI6, the joint
return period TAND

SD under the RCP scenario will be longer
as compared with the historical return period. In particu-
lar, the maximum joint return is 13 years in the historical
period, while in future under the RCP2, RCP4.5 and
RCP8.5 scenarios it will be 200, 106 and 36 years, respec-
tively. According to the SPEI6, a drought event with a
return period of approximately 10 years in a historical
period occurred with a severity of −24 and duration of
12months, while the drought with the same return
period in future under the RCP2.6 scenario has a severity
of −19 and duration of 6months, under the RCP4.5 sce-
nario with a severity of −22 and duration of 13months;
and under the RCP8.5 scenario with a severity of −30 and
duration of 17months. Figure 11 shows that, similar to the
SPI, the return period TOR

SD < TAND
SD . However, according to

the SPEI, in contrast to the SPI, the return period of the
future drought in both cases of the return period (TAND

SD

and TOR
SD ) increases relative to the historical period.

Therefore, the maximum drought return period TOR
SD

based on the SPEI6 in the historical period is nine years
and in future under the RCP2, RCP45 and RCP8.5 sce-
narios will be 98, 20 and 32 years, respectively.

3.6 | Conditional return period

The drought return period based on the two characteris-
tics, severity and duration, in addition to the two cases
TAND
SD and TOR

SD can also be expressed as conditional
(Shiau, 2006). In this case, the conditional return period
(T(D | S≥ s)) is determined for drought duration given a
drought severity that exceeds a certain threshold
(Equation 15):

TDjS≥s =
E Lð Þ

1−FS sð Þ½ � 1−FD dð Þ−FS sð Þ+C FS sð Þ,FD dð Þð Þ½ �
ð14Þ

where TDjS≥s0 is the conditional return period for D given
S≥ s. Figure 12 shows the conditional return period of
drought duration based on severity larger than the cer-
tain threshold in the historical and future periods under
the RCP scenarios for the SPI6 and SPEI6 series. In the
present study, drought severity threshold(s) was deter-
mined based on the maximum and minimum severities.
For example, the return period of a drought event
according to the SPI6 in a historical period with a
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duration of four months and a severity > 6 (< −6) is
15 years. At this level (S≥ 6), the return period for
drought duration exceeding four months, given a drought
severity > 6 under the RCP2.6 scenario, is 13 years, under

the RCP4.5 scenario is 16 years, and under the RCP8.5
scenario is 23 years. Also, according to the SPEI, the his-
torical return period for drought duration exceeding four
months, given a drought severity > 6, is three years,

FIGURE 10 Joint return period of drought TAND
SD (left) and TOR

SD (right) in the historical period (a) and under representative

concentration pathway scenarios (RCP2.6 (b), RCP4.5 (c), RCP8.5 (d)) based on the standardized precipitation index SPI6
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under the RCP2.6 scenario is six years, under the RCP4.5
scenario is six years, and under the RCP8.5 scenario is
three years. The results showed that the drought return
period in the joint and conditional cases is longer

according to the SPI as compared with the SPEI. In other
words, according to the SPEI, the study area will experi-
ence more severe droughts and a shorter return period in
future.

FIGURE 11 Joint return period of drought TAND
SD (left) and TOR

SD (right) in the historical period (a) and under representative

concentration pathway (RCP) scenarios (RCP2.6 (b), RCP4.5 (c), RCP8.5 (d)) based on standardized precipitation evapotranspiration

index SPEI6
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FIGURE 12 Conditional return period of drought duration given drought severity exceeding the threshold level (s1, s2, s3, s4) (T(D|

S ≥ s) based on standardized precipitation index SPI6 (left) and standardized precipitation evapotranspiration index SPEI6 (right) in the

historical period (a) and under representative concentration pathway (RCP) scenarios (RCP2.6 (b), RCP4.5 (c), RCP8.5 (d))
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4 | CONCLUSIONS

Most of Iran has a dry and semi-arid climate, and it is
very much affected by climate change. A decrease or
increase in climate parameters, such as precipitation and
temperature, is affecting extreme events such as
droughts. In the present study, the meteorological
drought in Yazd province, located in the centre of Iran,
as an example of a dry area under water stress and long
droughts (Dastorani et al., 2011) was studied in the pre-
sent and future periods under climate change conditions.
The standardized precipitation index (SPI) and standard-
ized precipitation evapotranspiration index (SPEI), con-
sidered as the most used meteorological drought indices,
were employed to study the drought condition in future
under climate change. Using copula theory, the joint
behaviour of drought duration and severity was analysed
in terms of the SPI and SPEI. Based on the selection
criteria of the best copula, three copula functions were
selected, that is, Frank, Gaussian and Gumbel, for the
analysis of the joint behaviour of drought characteristics.
The six month time scale was selected for bivariate analy-
sis because of the higher frequency of droughts than
other scales in both indices, the SPI and SPEI. The SPEI,
which considers the effect of evaporation on drought,
because of including the temperature parameter in addi-
tion to precipitation for calculating drought periods,
showed more severe droughts with higher duration in
comparison with the SPI (Homdee et al., 2016). In fact,
the use of the temperature parameter allows the consid-
eration of the impact of climate change on the drought
situation in the area, and the drought is determined bet-
ter than the SPI in terms of global warming. According to
the results of both indices (SPI6 and SEPI6), the study
area will experience a more severe and longer drought in
future; in particular, based on the RCP8.5 scenario, more
severe droughts will occur in future. Also, according to
the SPEI6, the severity of droughts will increase as com-
pared with the SPI6 (Homdee et al., 2016). The joint and
conditional return periods of the drought characteristics
were calculated using the Gaussian, Frank and Gumbel
copula functions for the SPI6 and SPEI6 series in the his-
torical and future periods. The results showed that the
joint return period of drought when the severity and
duration exceeded a certain value (TAND

SD ) was longer than
that either variables, severity and duration, and exceeded
separately a certain value (TOR

SD ). According to the SPI6
and SPEI6, the study area will experience droughts with
a longer return period in future as compared with the
historical period. The joint and conditional return periods
are a useful tool for managers and water resource plan-
ners to provide useful information for risk assessment
(Shiau, 2006; Song and Singh, 2010). By knowing the

joint return period of drought in future, one can improve
the policies of water resources management since current
policies may not be able to reduce the negative effects of
droughts. In general, the results have important implica-
tions for the management of environment risk in a long
period.
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