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The rank-size plots of a large number of different physical and socio-economic systems are usually said to
follow Zipf’s law, but a unique framework for the comprehension of this ubiquitous scaling law is still lacking.
Here we show that a dynamical approach is crucial: during their evolution, some systems are attracted towards
Zipf’s law, while others present Zipf’s law only temporarily and, therefore, spuriously. A truly Zipfian dynamics
is characterized by a dynamical constraint, or coherence, among the parameters of the generating PDF, and the
number of elements in the system. A clear-cut example of such coherence is natural language. Our framework
allows us to derive some quantitative results that go well beyond the usual Zipf’s law: (i) earthquakes can
evolve only incoherently and thus show Zipf’s law spuriously; this allows an assessment of the largest possible
magnitude of an earthquake occurring in a geographical region. (ii) We prove that Zipfian dynamics are not
additive, explaining analytically why US cities evolve coherently, while world cities do not. (iii) Our concept of
coherence can be used for model selection, for example, the Yule-Simon process can describe the dynamics of
world countries’ GDP. (iv) World cities present spurious Zipf’s law and we use this property for estimating the

maximal population of an urban agglomeration.

DOLI: 10.1103/PhysRevResearch.3.013084

I. INTRODUCTION

Zipf’s law [1,2] is an empirical scaling relation that con-
nects the sizes of a set of objects with their ranking when
sorted according to the size itself. Being ubiquitous in nature,
it represents one of the most studied topics in complex sys-
tems: it has been observed in the size distribution of cities [3],
firms [4], and GDPs [3], but also in natural language [1], web
page visits [5], scientific citations [6,7], and many natural sys-
tems, such as earthquakes [7,8] and lunar craters [7]. There are
currently numerous approaches to explain Zipf’s law based
on different mechanisms including multiplicative processes
[9,10], adjacent possible framework [11,12], sample space
reducing processes [13], and information theory arguments
[14,15]. However, while all these models give insights on
the upset of Zipf’s scaling, they fail in providing a general
explanation of the phenomenon.

In this work, we show that the dynamical evolution in
space or time of these models and natural systems, when
analyzed from the perspective of Zipf’s law, provides unprece-
dented quantitative insights. A first result is that while some
systems are dynamically attracted toward Zipf’s law, others
show Zipf’s law only temporarily and, as a consequence, we
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can label them as spuriously Zipfian. This relatively simple
observation has a number of crucial implications. Indeed,
spuriously Zipfian systems during their evolution deviate from
Zipf’s law by sampling the tail of the (power-law) probability
density function (PDF) from which their sizes are extracted.
More precisely large events are completely sampled. This
allows to determine the upper cutoff of the PDF and since
we demonstrate that earthquakes follow Zipf’s law only spu-
riously, we can determine the maximum possible magnitude
of an earthquake occurring in a given geographical region.
Conversely, systems for which Zipf’s law is a dynamical at-
tractor are intrinsically undersampled and, as such, in a sort of
permanent out of equilibrium or transient state. These genuine
Zipfian systems are characterized by a dynamical constraint,
that we call coherence, relating the sampling rate to the lower
and upper cutoffs of the generating PDF.

Natural language, the first and most famous application
of Zipf’s law, is a genuine Zipfian system, and this can
be seen both considering the progressive writing of a text
or the learning of a language. Moreover, our approach al-
lows to understand why Zipf’s law holds for the cities of
single countries, but not for larger sets of nations, a phe-
nomenon abundantly debated in the literature [3]. Finally, we
applied our dynamical approach also to generative models
such as multiplicative processes [10] and the Yule-Simon
model [16,17]. We analytically show that both processes are
genuinely Zipfian and, as a byproduct, that the preferential
attachment mechanism reproduces the dynamical evolution of
world countries.

Using these results we can provide also a novel insight
about Heaps’ law [18], a likewise ubiquitous scaling law
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whose connection with Zipf’s law has been largely debated.
By generalizing previous analyses [19], we demonstrate that
Heapsian systems are a subset of the Zipfian ones. This al-
lows us to predict that US cities evolved according to Heaps’
scaling, a result confirmed by empirical analysis.

From this body of analysis, it clearly emerges that our
framework is completely general and can be applied to any
system or model claimed to show Zipf’s law or characterized
by an inherent power-law distribution.

II. ANALYTICAL RESULTS

A. Dynamical constraint determine Zipfian dynamics

In order to fix the notation, we give a formal definition of
Zipf’s law. Given a set of N objects and denoting by S(k) the
size of the kth largest one Zipf’s law reads

S(1)
S(k) = -
For instance, N could be regarded as the number of cities in a
country and S(k) as the population of the kth most populous
urban settlement. More generally, S(k) can be fitted using
the Zipf-Mandelbrot relation [15], which accounts for the
presence of deviations at low ranks:

5
k+Q)y’

where § and Q are generally regarded as free parameters.
Also Zipf-Mandelbrot law has been observed in an astonish-
ing number of systems, such as cities [20], language [21],
citations [22], earthquakes [23], and sport [24]. Zipf’s law
is recovered for § = S(1) and Q = 0: as such, Q can be
regarded as an empirical measure of the deviation from a
pure Zipf’s law, whose importance is also given by the spe-
cific involvement of the largest objects. Even if this way
of measuring deviations could be at first sight hard to in-
terpret compared with more standard measures such as the
Kolmogorov-Smirnov distance, as we are going to show it is
possible to link Q to the parameters of the inherent power-
law distribution. In this way, the extent of deviations from
Zipf’s law can be directly related to the level of sampling
of the power-law distribution, making the parameter Q easily
interpretable.

Zipf’s law is usually associated to a power-law probability
distribution function (PDF) according to which sizes are dis-
tributed [3,7]. Real power laws are always characterized by an
upper and a lower cutoff, which correspond to intrinsic physi-
cal limits and that will play a fundamental role in determining
the Zipfian behavior of the system.! Let us suppose to consider
N objects whose sizes are distributed according to a truncated
power-law PDF of the form

S(k) = ey

0 for S < s,,

PS) =5 fors, <S<sum, @

0 for S > sy

!The effect of the only upper cutoffs has been previously consid-
ered [58,61]; in any case, never from a dynamical point of view.

where s,, is the lower cutoff and s), the upper one. As we show
in the Methods section, the parameters of the Zipf-Mandelbrot
relation (1) describing these objects can be written as simple
functions of N and the parameters of the PDF:
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Note that we also recovered the well known result y = ﬁ
which links the exponent of the PDF to the asymptotic ex-
ponent of the rank-size plot [3,25]. Moreover Q is explicitly
related the level of sampling of the distribution, relating the
extension of the PDF to the number of elements in the sys-
tem, and it is a non-negative parameter. Substituting these
expressions into the Zipf-Mandelbrot scaling law, we get the
rank-size relation followed by N objects whose sizes are
power-law distributed:
¥
D= @
(kN ()" ]

All the systems where Zipf’s law is found are, in a certain
sense, dynamical: both the number N of objects in the system
and the parameters of the generating PDF will in general vary
over time. Since the adherence to Zipf’s law, as measured by
0, is a function of both N and these parameters, it is then
natural to investigate how Q is influenced by the dynamics,
so to determine if Zipf’s law is dynamically stable. Consider,
for example, a very simple situation in which new objects are
drawn with the passage of time, keeping the parameters of
the PDF fixed. From Eqgs. (3), it is clear that in this case the
deviation parameter Q is expected to increase with time. As
a consequence, a static approach would address the system as
Zipfian while N remains relatively small, and would address it
as not-Zipfian when N becomes large with respect to (zﬂ L
Clearly, one should consider the first situation as a spurious
manifestation of Zipf’s law, because it is only due to a tem-
porary undersampling of the PDF. In other words, in this case
Zipf’s law is not stable and consequently it does not represent
an attractor of the dynamics.

Real systems are characterized by different and non triv-
ial behaviors concerning the dynamics of the rank-size plot.
Figure 1 provides some empirical examples of such dynam-
ics. In the first column we show the rank-size plots of the
earthquakes occurred in Italy, collected from INGV historical
dataset [26]. We recall that in this case the size S is defined as
the exponential of the (moment) magnitude of the earthquake
considered. In panel (a), we consider only the earthquakes
occurred between 1900 and 2000, that perfectly adhere to
Zipf’s law, while in panel (b) those which occurred in the same
area, but during a wider time window (1000—2000). In this last
case the first ranks clearly deviate from a pure Zipfian scaling
being Q relatively large. Note, however, that other systems
show a different trend when N is increased, as in the case
of the novel Moby Dick, second column of Fig. 1, and US
metropolitan areas, third column of the same figure. Here the
sizes are, respectively, the number of word occurrences and
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FIG. 1. The deviation Q from a pure Zipf’s law depends on the sampling. [(a) and (b)] Rank-size plots of Italian earthquakes in the period
1900-2000 and 1000-2000. [(c) and (d)] Rank-size plots using the first 1600 or the first 90000 words of the novel Moby Dick. [(e) and (f)]
Rank-size plots of US metropolitan areas in 1790 and in 1900. For earthquakes the magnitude is the logarithm of the size, for metro areas the
size is the population, while in the case of words the size is the number of occurrences. In all three systems, a different sampling leads to a

more or less Zipfian behavior.

population. The population of US metro areas comes from the
work of Schroeder [27]. In the case of Moby Dick, an increase
of the words considered does not result in a increase of Q,
which, instead, slightly decreases. The dynamics of US metro
areas is even more peculiar and evident. Indeed, metro areas
were not distributed according to Zipf’s law in 1790 [panel
(e)], soon after the Declaration of Independence, while this
scaling relation is found considering the same system at the
beginning of the last century [panel (f)]. In both these systems,
N is increasing and the parameters of the PDF are varying,
but, unlike from what happens considering earthquakes, they
are varying coherently, that is, in such a way to make Q
decrease with the dynamics. The essence of a genuine Zipfian
system, as opposed to a simpler set of objects whose sizes are
drawn from a power-law distribution, is then contained in the
dynamical relations among N and the parameters of the PDF
o, Sy, and sy.

B. Coherence of the “time” evolution

The considerations of the previous paragraph strongly sug-
gest that an indicative study of Zipf’s law can be performed
only dynamically, by checking the deviation parameter Q as a
function of time. Therefore we propose to focus the attention
not on the static identification of systems which show Zipf’s
law, but on the dynamics which makes N and the parameters
of the PDF evolve coherently, that is, in such a way that Q
decreases. We call this behavior Zipfian dynamics: a system
shows Zipfian dynamics when the rank-size plot, following
the dynamics, does not present increasing deviations from
a straight line. In mathematical terms, this is equivalent to
requiring the underlying PDF to be a power law and the
parameter Q(n) to be not increasing with n, where n is a
variable which plays the role of time. We call genuine Zipfian
a system which shows Zipfian dynamics.

In order to visualize the evolution of systems under this
perspective, we introduce the Zipf’s plane, defined by the axes
Ns)/” and s,)” . Figure 2 shows how the systems introduced
above and other we will study in detail in the following moves
in the Zipf’s plane. The color gradients from blue to yellow
correspond to increasing values of log Q. A trajectory from the
yellow to the blue region corresponds to a Zipfian dynamics,
while going in the opposite direction indicates that Zipf’s law
can be followed only temporarily and so spuriously.

The implications of Zipfian dynamics can be better under-
stood considering as temporal variable the sum of sizes at a
given point of the evolution,

N
n= ZS(k).
k=1

For example, in regard of cities, n coincides with the total
urban population, for what concerns books it represents the
total number of words used in the sampling, while in the
case of earthquakes it is directly related to the total energy
released by all the events considered. Using n as a temporal
variable, the condition for the onset of a Zipfian dynamics can
be written as

d dN N dR
49 <0— ——RYr £ ZR1ZZ <,
dn dn y dn
where we defined R = s,,/s),. This yields
dln (zﬂ) S dInN 5)
an 2V an

This dynamical constraint, that we call coherence, relates the
growth of the probabilistic space (left side) to the growth
of the physical space (right side), regarded as the number
of groups or elements N into which n is partitioned. For
systems showing Zipfian dynamics, a fast increase of N
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FIG. 2. Zipf’s plane. Trajectories in Zipf’s plane of US metropolitan areas, world cities, Italian earthquakes, world countries, the novel
Moby Dick, a multiplicative process, the conditioned sampling and a typical trajectory of the Yule-Simon process. Real systems are denoted
by circles, while models by triangles. We recall that for earthquakes the magnitude is the logarithm (in base 10) of the size, i.e., of the maximal
amplitude detected, for cities the size is the population, in the case of words size is the number of occurrences while for countries the size is
defined as the GDP per capita. Italian earthquakes and world cities are moved toward high values of Q by dynamics and so evolve incoherently.
Differently, Moby Dick, US metropolitan areas and World countries tend to the low Q region and consequently show a Zipfian dynamics. For
what concerns models, the conditioned sampling is not Zipfian, while the Yule-Simon model and the multiplicative process show Zipfian
dynamics. However while the multiplicative process performs a trajectory very far from the ones of the real systems we considered, the
evolution of the Yule-Simon process (blue triangles) is very similarly to the one of world countries (green circles).

must be compensated by an even faster growth of the range
of the PDF. This implies that Zipfian systems are out of
equilibrium driven, because even if the system evolves and
the number of elements enlarges, the underlying distribution
is never completely sampled. In other words, for Zipfian
systems, the empirical frequencies do not coincide with the
generating PDF and this is a direct consequence of coherence.
Indeed, the growth of the probabilistic space is faster than
the enlargement of the physical one, making the upper cutoff
grow faster than the rate at which the probabilistic space is
explored. Conversely, if the dynamics is not Zipfian and the
system shows Zipf’s law only temporally and so spuriously,
the system evolves toward equilibrium: the probabilistic space
is fully explored and the empirical frequencies become a good
approximation of the inherent PDF. We can then divide the
systems showing Zipf’s law in two distinct categories, which
show radically different dynamical properties.

(1) Spurious Zipfian systems which present Zipf’s law only
at a certain moment of their evolution due to a temporary and
accidental undersampling. For these systems, Zipf’s law does
not represent an attractor of the dynamics and therefore this
scaling law can not be used for characterizing their behavior.
In this case the eventual observation of Zipf’s law is entirely
attributable to the underlying scale free distribution;

(2) Genuine Zipfian systems which dynamically evolve
toward Zipf’s law. Such behavior is produced by a fast
enlargement of the probabilistic space, which makes these
systems be out of equilibrium driven. In this case, the
underlying scale free distribution is not sufficient to ex-
plain the stability of Zipf’s law, indeed there must also
be a dynamical constraint, that we call coherence, mak-
ing the parameters of the PDF evolve in an appropriate
way.

These different dynamical behaviors can be both visualized
through the Zipf’s plane, Fig. 2, and by considering the evo-
lution of Q with respect to n, as shown in Fig. 3. In this last
case, red trajectories represent spurious Zipf’s law, while blue
ones are indicative of a Zipfian dynamics, so of genuine Zipf’s
law. The figure well demonstrates the need of approaching
Zipf’s law from a dynamical point of view, because in this
way systems which could appear, at first glance, statistically
similar, show all their differences.

C. Relation with Heaps’ law

The dynamics of N with respect to n is usually described
in terms of Heaps’ law. Lu et al. [19] derived an expression
relating the growth of n to N, more precisely

¥

I—y

n(N) = [N'=Y —1]. (6)

This relation holds under the assumption of a stable Zipf’s
exponent y and lower cutoff equal to one. In the limit N — oo
the scaling of N thus satisfies

N(n)~n fory <1,
N(n) ~ nv  for y > 1. @)
Proceeding as done by Lu et al., but taking into account the

presence of an eventually nonzero Q, we can write n summing
over the N sizes of the elements composing the system

N_fN dk
5 _
1 (k+ Q)

N -
n—=
k=

5
< (k+0)
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FIG. 3. The dynamics of deviations. Evolution of the deviations parameter Q as function of the “time” variable n for different systems and
models (see main text and Fig. 2). Red trajectories (those for which Q is increasing with n) are indicative of a spurious Zipf’s law, for instance
earthquakes and the conditioned sampling show this behavior. Differently, blue trajectories (those for which Q is constant or decreasing in
n) correspond to a Zipfian dynamics, and so to a genuine Zipf’s law. Yule-Simon model and US metro areas are examples of this kind of
dynamics. We considered also casualties provoked by volcanic eruptions [28] and a typical trajectory of the Sample Space Reducing process

[13].

Recalling that 5§ = N7s,, and using the expression for Q, we

obtain
N7s s\ /7Y
Alven(B) ]
_y SM

s 1/yq1-vy
SR 6 I I

This expression has to be compared with that derived by Lu
et al. Eq. (6).

First of all, let us consider a system for which the cutoffs
s, and sy are fixed and let us suppose sy > s,,, in this case
Eq. (8) predicts the presence of two different regimes. For
N K (‘;—“:)l/y, so for Q < 1, Eq. (8) can be approximated as

n(N) =

NYs,,
n(N) ~

1/y
[N"V 1] forN<<<sﬂ) ,
Snl

which, apart for the presence of s,,, coincides with the expres-
sion derived by Lu et al. However, when the sampling level
enlarges and Q increases, the situation changes. Indeed, for
N > (‘;—’:)1/” we can rewrite Eq. (8) as

Ns s\ 7
il G)

-y Sm
S (=y)/y Sy 1/y

- — forN > | — .
Sm Sm

The conclusion is that, apart for an initial transient, the growth
of N(n) is linear for any y if the cutoffs are fixed. The
crossover N, between the two regimes satisfies

1y
N, = (sﬂ> .
Sm

n(N) ~

Clearly an analogous conclusion holds also if the cutoffs are
not fixed but the dynamics is not Zipfian. Indeed, in this case,
Q=N(™ )1/ Y is growing and therefore the scaling identified
by Lu et “al. holds only transiently for Q < 1. This behavior is
reported in Fig. 4, where we plotted different Heapsian trajec-
tories. More precisely we performed four random samplings
from a power law with exponent « = 3/2 (which corresponds
to a Zipf’s exponent y = 2) and we studied the scaling of
N(n) considering the following upper cutoffs: 102, 10*, 109,
and 108 [from panel (a) to panel (d)]. The theoretical crossover
is represented by red dashed lines, while the black lines
enlighten the two scaling regimes, namely, N(n) ~ n'/? and
N(n) ~ n.

We can now turn to genuine Zipfian systems, for which,
being the dynamics Zipfian, Q does not increase with n. As
a consequence if N is growing and for n sufficiently large, it
will hold N(n) > Q(n) and therefore Eq. (8) reduces to

n(N) =

"Sm N1 1), ©)
—y

This expression is analogous to the one derived by Lu et al,
but there is an explicit dependence on s,,. This implies that
the scaling defined by Eq. (7) asymptotically holds, but only
if the lower cutoff is constant in time. As a consequence the
conclusion that any system showing a stable Zipf’s exponent
always presents Heaps’ law is not correct. Nevertheless Zipf’s
scaling is more fundamental than Heaps’ one, as suggested
by Lu er al. [19], even if the relation among these laws is
more complicated than previously noticed. In particular, (1)
if the system shows spurious Zipf’s law and the lower cutoff
is fixed, then Heaps’ exponent is asymptotically equal to one,
independently of the Zipf’s exponent. For y > 1 a transient
regime is present, and it lasts up to Q ~ 1. In this case, Heaps’
exponent coincides with that found by Lu et al. [19].
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FIG. 4. Heaps’ law and spurious Zipf’s law. Effects of a finite upper cutoff s,, on the growth of N (n). If the Zipf’s exponent y is larger than
one and the dynamics is not Zipfian, two scaling regimes are present. For N < (3£ )7 thatis Q < 1, it holds N ~ n!/?  while for Q >> 1 the
growth of N(n) is linear in n. Here we represented these different behaviors for 7’; = 2, by performing a random sampling from a power-law
distribution with @ = % and different upper cutoffs, namely 53, = 10% (a), 10* (b), 10° (c), and 108 (d). Red dashed lines represent the transition
point between the two regimes, which are enlightened by the black dashed lines [N (n) ~ n'/?] and by the black dotted ones [N (n) ~ n].

(2) Also, if the system shows Zipfian dynamics and so a
genuine Zipf’s scaling, then Heaps’ law is found and Heaps’
exponent asymptotically (i.e., as soon as N 3> Q) coincides
with that derived in Ref. [19], provided that the lower cutoff
s,, does not vary over time.

(3) Additionally, if the lower cutoff s, is varying in time,
the scaling of N(n) can not be easily derived, being explicitly
influenced by that of s,,. However, moving to the reference
frame in which the lower cutoff is held fixed, this case can be
traced back to those discussed above.

This explains, for instance, why the Sample Space Reduc-
ing process shows, for large n, a stable Zipf’s law without the
presence of Heaps’ scaling [29]. Moreover, it also clarifies the
findings in Ref. [19] concerning the increasing of the Heaps’
exponent in presence of an exponential cutoff in the tail of the
generating power law.

D. Spurious Zipf’s law and the upper cutoff

We previously noticed that while a system showing Zipfian
dynamics is out of equilibrium driven, never sampling the
inherent PDF, spurious Zipfian systems completely explore
the full range of the distribution during their evolution. As
we are going to show, this property can be used to give an
estimate of the upper cutoff s), for these systems. We recall
that the deviation parameter satisfies

S 1y
OQ=N(—)
Sm
while, using Eq.(4), we see that the largest object in the system
is given by
NVs,

SO=T50r

It then follows
ren(E) ()
Sy s(1)

1+0=0. (10)

where we defined the empirical deviation parameter Q,,
whose expression is

s, \ /7
QFN(m) '

We can then relate the upper cutoff of the PDF to the rank one
object, in particular we obtain

N v
m :sm<Qe_ 1) .

For Q. = 1, that is for a perfect Zipf’s law, the upper cut-
off diverges, meaning that we can not infer it starting from
the data. However, if the dynamics is not Zipfian, Q in-
creases with time and, as shown by Eq. (10), Q. does the
same. As a consequence, for N sufficiently large, it will hold
Q. > 1. In this limit we can expand the previous expression,
obtaining

vl )] (e 2)
M o, o.)]] ~ 0.

1 14

Using this expression we can estimate the upper cutoff s;, for
any system showing spurious Zipf’s law.

Other approaches [30,31], based on maximum likelihood
(ML in the following) techniques, have previously been

This yields
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proposed for computing the upper cutoff of power-law dis-
tributions, however, they can easily fail if applied without an
appropriate dynamical analysis. Indeed, as we shown many
systems are characterized by a non trivial dynamical behavior
with respect to Zipf’s law. Some of them present a decreasing
value of Q and thus tend to Zipf’s law, while others, evolving,
deviates more and more from Zipf’s law. This is tangled to the
dynamics of the upper cutoff of the distribution sy, being the
deviation parameter Q function of sy, itself. In other words,
many systems are characterized by a non constant upper cut-
off. This implies that using a ML technique to infer the upper
cutoff of a distribution that is evolving is not very meaningful,
since, even if the estimate is precise, the upper cutoff may
vary. Consider, for instance, a sample showing an high Q and
suppose to use our procedure or any other statistical method to
infer the upper cutoff of the inherent distribution. The mean-
ingfulness of the results depends much more on the nature
and the dynamics of the system rather than on the technique
adopted. Indeed, if looking at the history of the system we
discover that Q = N(s,,/sy)"/? is decreasing, the systems is
Zipfian and this implies that inferring the upper cutoff at a
successive moment of the evolution will return a completely
different value. This is the case, for instance, of US cities.
Looking at the high Q in 1790, one would have concluded
that no city much larger than those observed would rise in
the following years, while New York increased its population
of a factor ten in just fifty years. Standard ML techniques
completely neglect this aspect, considering distributions as
fixed object, while, instead, they do vary. Also note that ML
approaches are computationally heavy, since a long procedure
has to be repeated many times in order to understand which
value of the cutoff better describes data [31], while our method
only requires a fit to Zipf-Mandelbrot law. A combination
of our dynamical analysis, a crucial step to understand if
estimating the upper cutoff is meaningful, and ML approaches
could then improve both the precision and the efficiency of
estimations. Indeed, Eq. (11) can be used to focus the search
of the upper cutoff, limiting the number of iterations needed
to ML algorithms.

III. PRACTICAL APPLICATIONS

In the following, we apply the methodology introduced in
the previous section to earthquakes, cities, and language. In
all three cases our dynamical approach will provide novel
and quantitative insights into the considered systems. Then
we discuss two models which notoriously lead to Zipf’s scal-
ing: multiplicative processes [10] and the Yule-Simon model
[16,17], showing analytically that they produce a truly Zipfian
dynamics.

A. Earthquakes

It is well known that earthquakes follow the Gutenberg-
Richter law [32], i.e., the energy released is power-law
distributed, and it is reasonable to assume that, in a given
seismic zone, the upper cutoff of this PDF can only vary
over geological times. By using Eq. (3), we thus deduce that
increasing the numerosity N of the set, that is by considering
larger and larger time windows (but always much smaller

than geological scales), results in higher values of Q. This is
confirmed by the corresponding trajectory in the Zipf’s plane,
Fig. 2, where we plotted the trajectory of Italian earthquakes.
From right to left, the points correspond to an interval of
50 years (1950-2000), of 100 years (1900-2000) and so on,
up to 1000 years (1000-2000). These points accumulate in
correspondence of the maximum possible size for an earth-
quake occurring in Italy, enlightening the absence of a Zipfian
dynamics. This is also confirmed by the growth of Q(n), repre-
sented in Fig. 3. The conclusion is that earthquakes can show
only spurious Zipf’s law. This result directly derives from
the fact that earthquakes, neglecting short time correlations,
are by a good extent independent over long periods (tens of
years). Correlations like Omori’s law [33], observed in the af-
tershocks following a large earthquake, are not influential for
what concerns the first ranks. Indeed, the so called Bath law
[34] states that the average magnitude difference between a
main-shock and the largest aftershock is approximately 1.2M.
In other words, aftershocks are generally much smaller than
the original earthquakes causing them. Being we interested in
the low ranks, so in the largest earthquakes, we can neglect
the correlations described by Omori’s law. Note, moreover,
that we analyzed a catalog spanning 1000 years, a time period
over which no correlations has (at the best of our knowledge)
never been observed.

It is therefore clear that power-law distributed objects can-
not tend to Zipf’s law if they evolve independently, as long
as the cutoffs of the inherent PDF are fixed. Moreover, by
looking at 1, it is possible to conclude that no future Italian
earthquake will be substantially stronger than the largest event
already recorded, which is a rather interesting and nontrivial
result, being obtained only from simple statistical consider-
ations. Indeed, the deviation parameter Q is large and we
can use Eq. (11) for obtaining an estimate of the maximal
magnitude of an earthquake occurring in Italy

M ~17.4.

max

These considerations also explain the findings of Newman
[7]1 and Sornette et al. [8] about Californian earthquakes.
Newman analyzes only events recorded in the period 1910-
1992, finding a pure Zipf’s law with no deviations. Anal-
ogously Sornette et al. considered earthquakes occurred in
Southern California in the period 1930-1990. In both cases,
no deviations from Zipf’s law are observed and this is due
to the small dimension of the samples used. Indeed, the time
window considered is too small to appreciate the upper cut-
off and deviations appears increasing the sampling interval.
This is shown in Fig. 5, were we plotted the rank-size plot
of Californian earthquakes occurred between 1769 and 2000
with the corresponding fit. Being O ~ 9 we conclude that
also in this case the largest earthquake registered in the sam-
ple we considered, whose magnitude is M(1)** ~ 7.9, is a
good estimator of the upper cutoff of the earthquakes size
distribution.

Our dynamical approach consequently shows that a crit-
ical usage of the rank-size plot provides information which
goes well beyond the simple identification of a scale free
distribution. Indeed, the presence of deviations at low ranks
and the identification of spurious Zipf’s law allow to per-
form risk assessment and to understand if the available data
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FIG. 5. Natural hazards. (a) Rank-size plot of Californian earthquakes registered between 1769 and 2000 and with magnitude larger than 4.
The larger deviations with respect of the smaller time interval analyzed in [7] indicate the lack of Zipfian dynamics. Moreover such deviations
imply that the strongest earthquake observed is a good approximation of the upper cutoff. (b) Rank-size plot of world tsunami occurred from
2100 BC to 2020. In this case, considering a large time window does not make deviations appear. The conclusion is that the available sample
does not allow to infer the upper cutoff of tsunami height, which, as in the case of earthquakes, is expected to vary only over geological scales.

are a sufficient statistic of the phenomenon considered. For
instance, if the rank-size plot of earthquakes occurred in a
given region is straight, then the most powerful earthquake
observed will not be, in general, a good estimate of the upper
cutoff of the distribution. Clearly this has strong implications
for the planning of antiseismic measures. As a consequence,
when studying the risk connected with natural hazards, an
inspection of the rank-size plot can be a very fast procedure
to understand the effective reliability of the available data.
For example, in respect of world tsunami, considering a very
large time window does not make deviations from Zipf’s law
appear. This is shown in Fig. 5, where we plotted the rank-
size plot of tsunami occurred worldwide since 2100 BC. For
tsunami run-up heights, we used NOAA NCEI/WDS Global
Historical Tsunami Database, 2100 BC to present [35]. Also
in this case the upper cutoff of the distribution is expected to
be fixed over human times, therefore the conclusion is that
there is no statistical evidence that the highest tsunami ever
observed represents a good estimate for the upper cutoff of
tsunami distribution.

B. Cities
1. US cities are Zipfian

The population of metropolitan areas is a prototype of sys-
tem usually claimed to follow Zipf’s law. Here we show that,
while US cities follow a Zipfian dynamics, when we consider
world cities the dynamics is not Zipfian, a direct consequence
of the nonadditivity property of Zipfian dynamics, that we
analytically prove below.

Let us first focus on the time evolution of US cities. The
dynamics of this system can be visualized by the correspond-
ing trajectory in the Zipf’s plane (Fig. 2, black circles). The

size of the largest possible city S}W/V increases very fast with

respect to N - s,l,,/ ¥, leading to a decrease of Q(n), as shown in
Fig. 3.2

Being the dynamics Zipfian, we can that expect US cities
to follow also Heaps’ law. Indeed, the lower cutoff of the dis-
tribution, which coincides with the size of the smallest urban
settlement, remained almost constant during the development
of US urban system, being administratively fixed at 2500 in-
habitants. The applicability of Heaps’ law to urban structures
has been widely ignored and only recently this point has been
considered [36], even if not from a dynamical point of view.
More precisely previous works [36] study the functional form
of N(n) by plotting the number of cities as function of the
population for many countries at present days. This yield a
static and aggregate picture, which lacks in providing any
information about the urban development of a given nation.
Differently, here we focus on the dynamics of a single country,
namely the US, following its urban development over time.
We reported in panel (a) of Fig. 6 the growth of the number of
US cities N(n) as function of the urban population 7, also a fit
to Heaps law is drawn. The adherence to this scaling relation
is strict and the exponent B of Heaps’ scaling satisfies

B =0.8768 (0.8459, 0.9077)

This sub-linear growth is what one would expect being the
size of the system finite and the average (over the period
1790-1900) Zipf’s exponent y =~ 0.86 [19]. The fact that also

ZNote that the size of the smallest urban settlement, s,,, is by a good
extent constant: even if existing cities grow, new ones are constantly
founded, avoiding the growth of the lower cutoff.
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FIG. 6. (a) Growth of the number of US cities as function of the urban population. Being the dynamics of US cities Zipfian and the size of
the smallest urban settlement constant, we expect the system to show Heaps’ law. Note that this growth is sub-linear as expected from the finite
size of the system considered. (b) Evolution of Q(n) as function of “time” n for a random sampling and world cities. Dashed lines represent
the trend Q(n) ~ n. As predicted by Eq. (12), Q(n) grows linearly in n for the random sampling. Remarkably this linear growth is observed
also considering world cities. Being the lower cutoff of such system fixed (and equal to 300,000 inhabitants), this suggest that the largest urban

centers are reaching the intrinsic upper cutoff of the distribution.

urban systems evolve according to Heaps’ law has never been
pointed out, but it is a very natural consequence of the dynam-
ical framework we developed.

2. World cities are not Zipfian

Now we consider an aspect of Zipf’s law that, despite its
relevance, has been only partially discussed [3]: is the union
of two Zipfian set still Zipfian? In this section we prove that
Zipfian dynamics is not an additive property. Urban systems
constitute a perfect framework to apply our framework to
fully understand this phenomenon. Zipf’s law is observed for
almost any country [37] and therefore, also guided by our
findings regarding the US, one could expect that also the
system formed by all cities in the world is Zipfian. For each
individual country, k coherence is respected, consequently we
have

(k)
din () dinN®
dn®) dn®

where the apex (k) indicates that all these quantities are
referred to the kth nation. Denoting by M the number of coun-
tries, the system formed by world cities is obtained summing
over the M national urban system, this implies

M
N=Y N®,
k=1

M
n= n®),

where N, the physical space, is the number of cities in the
world and £ the total urban population. The lower cutoff 5%
is clearly country independent and so we can set s = s, for

any k. Differently, the upper cutoff of the world system sﬁ)

2

coincides with the largest sj((;), let us say s(M"). Note that this cut-
off will not be, in general, the one growing faster. We finally
assume that the Zipf’s exponent is approximately the same
for all countries, i.e., y® ~ y for any k. This approximation
is well supported by empirical studies [37]. We can now write

the coherence condition for the world system: the right side of
Eq. (5)is

dinN _y % dN dn® y f:dN(k)

Y“in TN — dn® dn N P dn®’

Dividing and multiplying by N®) and introducing the frequen-
cies x®) = % we rewrite this expression as

M
dInN® dInN®
o S = e
k=1 k

dn® dn®

where (-) is the average over the different countries. The left
side of Eq. (5) is instead

(a)
dIn (iﬂ) dIn (Y%) dIn
dn - dn o
We then obtain that coherence is found if it holds

S(ﬂ)
dln (%) dIn N®
m >
dn@ < dn® >

This implies that the system formed by world cities is Zipfian
only if the growth of the probabilistic space characteristic of
the country with the largest upper cutoff is bigger than the
average growth of the physical space. Clearly this condition is
not a direct consequence of the coherence of country (a) and,
indeed, world countries do not show a Zipfian dynamics, as
confirmed by the corresponding trajectory in the Zipf plane
Fig. 2 and the evolution of Q(n) in Fig. 3. The historical
population of world cities comes from the World Urbanization
Prospects 2018 of the Department of Economic and Social Af-
fairs (UN) [38]. In particular, we used the “Annual Population
of Urban Agglomerations with 300,000 Inhabitants or More
in 2018, by country, 1950-2035” (ignoring 2021-2035 data).
The dynamics of Q for world cities is shown in more detail
in panel (b) of Fig. 6, where we plotted also the trend which
results from a random sampling with fixed cutoffs. Note that O
and n have been rescaled for better comparing the two systems
and moreover we used only values Q 2> 1 for avoiding the
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effect of noise on small Q. In the case of the random sampling,
Q(n) is expected to be a linear function of n, indeed, recalling
Egs. (3) and the results of Sec. II C regarding spurious Zipfian
systems, it holds

s 1y s 1y
Q(n) = N<—’") ~ n(—’”) ) (12)
Sm Sm

Being the cutoffs and the Zipf’s exponent fixed, QO grows
linearly with n, as also confirmed by panel (b) of Fig. 6.
Remarkably this trend is observed also considering world
cities, as shown in the same figure. Being s, fixed (and equal
to 300 000), this suggest that also in this case sy, is fixed,
meaning that the largest cities in the world are getting closer
and closer to an upper limit of population. This is consistent
with many studies asserting that large urban centers are not
efficient due to, for instance, traffic jams, pollution, complex-
ity of water management or vulnerability to natural hazards
[39—41]. Exploiting Eq. (11), we can then give an estimate of
the upper cutoff of urban population, it results

sy ~ 41 x 10° inhabitants.

This number has to be compared with the population of Tokyo
metro area, that, with a population of ~37 x 10° inhabitants,
is the largest urban settlement in the world. Clearly, in contrast
with earthquakes, the upper cutoff of world cities may vary
thanks to, for instance, technological innovations, as happened
with the development of skyscrapers in the past century. As a
consequence, the value we computed should be considered as
a limit of population which is expected not to be overcome in
the next few years. In this sense, our estimate, obtained only
by statistical arguments, is in good agreement with projections
[42], according to which this population limit will substan-
tially hold up to 2050.

C. Language
1. The dynamics of language

Natural language is the first and most prominent applica-
tion of Zipf’s law. We can confirm that this system is Zipfian
by looking the evolution of Q(n) Fig. 3 and the trajectory in
the Zipf’s plane Fig. 2, both referred to the words occurrences
in the Moby Dick novel. Here the objects are the different
words, the sizes S are their numbers of occurrence, and “time”
n is the progressively increasing fraction of words of the novel
we consider. In this case, occurrences of different words are
not independent events, being them constrained by grammar
and semantic rules, which makes the upper limit of the num-
ber of occurrences grow faster than the product NV - s,,. We
recall that N is the number of different words observed. For
instance, in order to increase N, new meaningful sentences,
semantically coordinated with the previous text, are to be
composed. Howeyver these sentences must contain, on average,
many occurrences of the most frequent word, which is the
article “the.” This makes s, grow faster than NV - s, and thus
a coherent, Zipfian dynamics emerge.

We argue that Zipfian dynamics may emerge as a con-
sequence of the effect of correlations induced by grammar
and semantic rules, as can be seen considering two differ-
ent systems in which such rules are adopted to a different

extent [43,44]. In panel (a) of Fig. 7, we show the rank-
size plot of the most common words used by children and
adults. In particular, we used CHILDES database [45] and
we analyzed with CLAN program all the American English
corpora available to obtain two rank-size lists, one referred
to children below six and the other to adults (see Method
section for more details). It is evident that childish language is
characterized by considerable deviations from Zipf’s law and
so by a larger value of Q, in particular performing two fits
we obtained Qchilgren = 3.358 (1.957,4.758)° and Quauis =
0.7959 (0.3447, 1.247). Language, seen as a system which
evolves during its learning, is then characterized by a Zipfian
dynamics.

2. Zipfian dynamics increases language efficiency

A well know argument explaining the onset of Zipf’s law in
language is due to Mandelbrot [15,46] and it is based on infor-
mation theory. Let us consider a dictionary of N words, each
of them will be characterized by a frequency of occurrence
which can be regarded as its normalized size. If we want to
efficiently store and transmit sentences the best thing to do is
to associate low coding numbers to the most common words.
Denoting by C (k) the coding of the kth word by frequency the
most efficient choice is

C(k) = Iny (k).

The average information per word is given by the entropy of
the language H, defined as

N
H==% fk)n f(k),

k=1

where f (k) is the frequency of the kth most common word.
As pointed out by Mandelbrot, an efficient language should
maximize the average information, while lowering the average
cost C, whose expression is

N
C =Y Clhfk).

k=1

In other words, the quantity A = C/H must be as small as
possible. By minimizing A one obtains that f(k) follows
Zipf’s law [15,46], but the Zipf’s exponent y depends on
the vocabulary size N and diverges for large N [21]. This
drawback seriously compromise the argument as originally
formulated, however Mandelbrot’s idea can still be used for
understanding Zipfian dynamics in language. Indeed, a large
Q implies that the empirical distribution f(k) is curved at
low ranks, making the most common words being equally
frequent. This is expected to lower the efficiency of the lan-
guage, as follows from the expression of the cost C. We have
numerically proved this by studying the value of A as function
of O at fixed Zipf’s exponent. In particular, we extracted
N frequencies using different values of the upper cutoff sy,
and we repeated the process for various Zipf’s coefficients y.
Results are reported in panel (b) of Fig. 7. It clearly emerges

395% confidence bounds in parenthesis.
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FIG. 7. Dynamics of language. (a) Rank-size plot of the most common 50 words used by children and adults. Deviations from Zipf’s law
are much more prominent in the former, a consequence of the imperfect adoption of grammar rules at the early age. This suggests that the
dynamics of language is Zipfian. (b) Average cost per information of simulated languages as function of the deviation parameter Q. As it is
possible to see, at fixed Zipf’s exponent y, lower is Q, larger is the efficiency of the language (inverse of A). The Zipfian dynamics of language

can then be explained in terms of an optimization process.

that, ceteris paribus, the lower is Q the lower is A. As a conse-
quence the presence of a Zipfian dynamics in natural language
has a very natural explanation in the context of linguistic and
information theory, because an evolution towards low values
of Q increases the efficiency of the language in terms of the
ratio between information and cost. In other words, even if
Mandelbrot’s argument does not explain why a finite Zipf’s
exponent is observed, it allows to understand why, if Zipf’s
exponent is hold fixed by some other mechanism, the language
evolves with a Zipfian dynamics.

D. Multiplicative process

Multiplicative processes are a well known example of mod-
els capable of explaining the onset of power laws [10]; in
particular, they have been used to model the evolution of
incomes and stock prices [9,46]. Given the variable S;, repre-
senting for instance the price of a stock at time ¢, its evolution
is defined as

Sir1=r-5,

where r, is a random variable drawn at ¢ from a given PDF,
usually a normal or a uniform distribution. This stochastic
dynamics is equivalent to a random walk in logarithmic space
and it is easy to show that, under mild assumptions, the
variable S is asymptotically log-normally distributed [47]. If
however we constrain S; to be larger than a lower cutoff s,,
(that is, S, performs a random walk with a reflecting barrier in
Sm), then the limiting distribution of S becomes a power law
[10]. Making the continuum approximation the process can
be described in terms of a Fokker-Planck equation with drift
v and diffusion coefficient D. In particular, it holds [48]

v={nr)
D = ((Inr)*) — (Inr)?

and the limiting distribution of S is a power law of the form

v
with © = %

In the transient regime, however, the power-law distribution
above presents an upper cutoff s), given by [48]

VD

P(S) ~ §~11

13)

In other words, the probabilistic space enlarges exponentially
fast with time. Now we show that this leads to a Zipfian
dynamics.

Let us consider an ensemble of N objects, which could
be, for instance, a set of stock prices, evolving according to
the multiplicative process with lower cutoff described above.
Suppose that all the prices are initially equal to s,,, Recalling
the expression of Q Eq. (3) and using Eq. (13), we obtain that
the deviation parameter Q evolves in time according to

sy(t)=c¢e

O(t) = Ns/7e=vDily,

So Q exponentially decreases towards zero and the system
shows Zipfian dynamics. The coherence condition Eq. (5) can
be written as

dln (iﬂ) dln (iﬂ) 1

dn dt 4o ™
dt

dInN
dn

Using the example of stock prices, here n would be the total
value of the stocks considered, being the sum of the N prices.
N is fixed, so we rewrite this condition as
din(3) 1o
—— >0
e
The first derivative, by virtue of Eq. (13), is positive, and
the second is non-negative, because all the prices are initially
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set equal to the lower cutoff s,,. We conclude that the multi-
plicative process is an example of Zipfian dynamics, as also
shown by a typical trajectory in the Zipf plane Fig. 2 and
the decrease of Q(n) in numerical simulations Fig. 3. Also,
we note that even if the dynamics is Zipfian, the systems
can not show Heaps’ law because N is constant. This could
look like a contradiction, because we stated that Heaps’ law
asymptotically holds whenever the dynamics is Zipfian and
the lower cutoff is fixed. A remark clarifies this point, after an
initial transient, n fluctuates around a constant value, as shown
in Fig. 3, because the ensemble reaches a stationary Zipfian
distribution, whose parameters can be derived using Eq (3)

NY s,
kv

As a consequence, being N, s, and y fixed, there is no growth
of n * and then Heaps’ law can not be defined at all.

S(k) =

E. Yule-Simon model

Yule-Simon process [16,17], based on the concept of pref-
erential attachment, is one of the most famous examples of
power laws generating model. We shortly illustrate the process
in the contest of urban systems. Consider a set of N initial
urban centers, each with unitary population. At each time #,
(1) with probability 1 — p a unit of population is added to a
random urban center j, selected with a probability propor-
tional to its population S,(j); and (2) with probability p a
new urban settlement, with unitary population, is added to the
system.

It has been proven that these cities are asymptotically
power-law distributed, more precisely

1
P(S)~ S with =1+ T—> 14)
P
Now we prove that the Yule-Simon model shows coherence.
We start by noting that Eq.(10) implies that if Q, is decreasing
also Q decreases. This consideration implies that coherence is

found if it holds

dln (%0) _dInN

dn dn

In the context of urban settlements, S,,(1) is the population of
the largest city, N is the number of different urban settlements,
and n is the total population. Moreover, the lower cutoff s, is
equal to one (cities with unitary population are injected into
the system at a constant rate). The population of the largest
city, S, (1), evolves according to

5)

=

Sp(1) dS,(1) Sp(1)
S =8+0-pp—> ——=0U0-p—
n dn n
while the growth of N satisfies
dN
Nn+1)=Nn)+p—> — =p, N(n) =Ny+ pn.

dn

“We recall that n = YN S(k).

Plugging these expressions into Eq. (15), and recalling
Eq. (14), we get

= N()
n =0
+ p

That is always satisfied, since Ny > 0 and p > 0. We have thus
proved that also Yule-Simon model satisfies the coherence
condition and, therefore, that it shows Zipfian dynamics. This
is also visually confirmed by the corresponding trajectory in
the Zipf’s plane Fig. 2, which corresponds to a Yule-Simon
process with Ny = 100 and p = 0.5, and by the evolution of
Q reported in Fig. 3. Finally, it is interesting to note that such
trajectory is very similar to the one performed by world coun-
tries, where the size of a country is given by its GDPppp. The
rich get richer mechanism seems therefore more appropriate
than a multiplicative process for describing the evolution of
the world system.

IV. CONCLUSIONS AND DISCUSSION

Zipf’s law is a scaling relation present in the rank-size
plots of many different natural and socio-economic systems.
Despite its ubiquity and the numerous empirical and the-
oretical investigations, a deep understanding and a unified
framework of analysis is still lacking. In this work, we start
from the empirical observation that the deviation parameter
0 of a given system changes with time, or even considering
different subsets of the same database. The importance of this
parameter is enhanced by its connection to the first ranks, i.e.,
the largest objects, the larger is Q, the more the first ranks
deviate from Zipf’s law. A probabilistic argument permits us
to express the deviation Q as a function of the intrinsic natural
cut-offs of the underlying power-law PDF (s,, and sy), its
exponent «, and the number of elements in the system N,

Eq. (3):
Sm 1y
0= N(J) s

This relation permits to understand why a dynamical approach
is crucial: in general, for real systems N, s,,, and sy, vary dur-
ing evolution and, as a consequence, deviations from Zipf’s
law can increase, as in the case of earthquakes, or decrease,
as happens with US cities. For this reason, we introduce the
concept of Zipfian dynamics, which drives the system to exact
Ziptf’s law, and Zipf’s plane, a visual tool which allows study-
ing deviations dynamically. In particular, we demonstrate that
Zipfian dynamics can not be produced by a simple truncated
power-law PDF of sizes. Indeed, it is connected to the pres-
ence of mechanisms which make the level of sampling and
the parameters of the PDF evolve in a peculiar way, such
that O decreases during evolution. More precisely, we find
a dynamical constraint, that we name coherence, relating the
growth of the probabilistic space sy/s;, to the enlargement
of the physical space N, meant as the number of elements
composing the system, Eq. (5); we call a system or a model
Zipfian if

dln (%) dInN
- 2 y b
dn dn
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This expression implies that Zipfian systems, i.e., those that
satisfy the above inequality, are attracted toward Zipf’s law
and evolve out of equilibrium, never fully sampling their
probabilistic space. Moreover, by generalizing the treatment
of Lu et al. [19], we demonstrate that Heaps’ law is a particular
case of Zipfian dynamics.

Conversely some systems, such as earthquakes, show
Zipf’s only temporarily. We call this effect, a consequence of
a possibly accidental undersampling, spurious Zipf’s law. In
this case, the growth of N is fast enough to ensure a sam-
pling of the large events, this allowing to estimate the upper
cutoff of the PDF. For instance, we determine the maximal
possible magnitude of an earthquake occurring in Italy and
we show that, on the contrary, the largest tsunami database
does not provide a sufficient statistic for inferring the upper
cutoff of the distribution. This technique can be easily gen-
eralized to other natural or man-provoked hazards, such as
hurricanes or terrorist attacks, both claimed to be power-law
distributed [49,50]. We stress that a spurious Zipf’s law can
be identified only by performing a dynamical analysis, and
this opens questions about the effective ubiquity of Zipf’s
scaling. Indeed, many systems where Zipf’s law is claimed
to be found, such as world cities and earthquakes, are actually
evolving towards a high Q configuration, so departing from
Zipf’s law.

Then we studied a number of concrete applications of our
quantitative framework of analysis. (1) We show that earth-
quakes, being essentially independent (in the sense specified
before) and characterized by a fixed upper limit, can evolve
only incoherently and show Zipf’s law spuriously. As afore-
mentioned we used this property for computing the maximal
magnitude of an earthquake occurring in Italy.

(2) Natural language presents Zipfian dynamics, both
considering the progressive writing of a text and the learn-
ing of the language. Zipfian dynamics, moreover, increases
the efficiency of the language and can be directly re-
lated to the renowned optimization argument proposed by
Mandelbrot.

(3) US metropolitan areas evolved Zipfianly from the Dec-
laration of Independence and the number of different US cities
grew according to Heaps’s law.

(4) We analitically show that Zipfian dynamics is not addi-
tive, confirming this finding also empirically by comparing the
evolution of US versus world cities. Moreover, the dynamics
of world cities suggests that the largest urban settlements are
getting closer to an intrinsic upper limit of population, that we
also estimated.

Our framework can be directly applied also to theoretical
generative models, in particular we considered multiplicative
processes and the Yule-Simon model. We find that both pro-
cesses are characterized by Zipfian dynamics, but only the
latter presents an evolution which, albeit qualitatively, reflects
the one of the real systems we considered. In particular, using
the Zipf’s plane, we show that the Yule-Simon process repro-
duces the trajectory followed by world countries, suggesting
the presence of a rich-get-richer mechanism. This dynami-
cal approach thus allows to understand not only if a model
reproduces the emergence of Zipf’s scaling, but also if it is
suitable for describing the evolution of systems toward the
Zipf’s regime.

Recently, Corominas-Murtra et al. [13] introduced sample-
space-reducing processes, showing that they produce Zipf’s
law. We note that the kind of random walks with space restric-
tion introduced in Ref. [13] can be seen as a very particular
case in which the space that the walker can visit at each times
reduces coherently with the previous dynamics. However we
stress the fact that the mechanism behind the generation of
genuine Zipfian dynamics is from one hand much more gen-
eral and and from the other much more interesting when the
space limits enlarge coherently with the dynamics, as in the
case for instance of natural language. Indeed, only in this
case, Zipf law emerges as stable self-averaging dynamical
feature of the system. For instance the recently proposed Urn
Model with Triggering [11], based on the concept of adjacent
possible [12], goes in this direction.

In Table I, we summarize if the various systems and models
we analyzed are Zipfian or not, and the main specific findings
our framework provides. Clearly, our approach can be applied
to all systems that are claimed to follow Zipf’s law.

In short, the main points of our work are the following.
(1) Zipf’s law should be studied during its evolution: this is the
only way to recognize if the system or, better, its dynamics, is
truly Zipfian or not. (2) Zipf’s law may appear only temporary
and, so, spuriously: in particular, any power-law distributed
system can show Zipf’s law the underlying PDF is undersam-
pled. (3) If a system shows a spurious Zipf’s, then one can
estimate the upper cutoff of the generating distribution. (4)
If a system is truly Zipfian, then is inherently out of equilib-
rium, since its the probabilistic space enlarge faster than the
physical one. (5) Systems showing Heaps’ law are a subset of
those characterized by a Zipfian dynamics. (6) Studying the
dynamics allows to determine if a generative model is capa-
ble of explaining not only the emergence of Zipf’s law, but
also the dynamical evolution of systems toward this scaling
regime.

Finally we stress that our study opens also a series of ques-
tions which should be deeply investigated. Firstly, most of the
analysis concerning Zipf’s scaling are performed statically,
by checking the straightness of the rank-size plot at a given
time. As a consequence the list of systems showing genuine
Zipf’s law may be drastically smaller than usually claimed.
Focusing only on genuine Zipfian systems may allow to find a
universal generating mechanism for Zipf’s law; clearly such
a goal is not achievable without the exclusion of spurious
Zipfian systems. For example the Zipfian distribution of Lunar
craters, a never explained manifestation of this scaling law,
could be addressed as the result of an accidental undersam-
pling provoked by the low rate of asteroids collisions and
so as a spurious manifestation of Zipf’s law. The possibil-
ity of analyzing systems from a never considered dynamical
perspective is another novel aspect made available by our
framework. For instance, we noticed that while some systems,
such as natural language or metro areas, present a regular
evolution of Q, other systems, such as that formed by world
conflicts, show a dynamics characterized by sudden decreases
of Q. This behavior could be explained in terms of a jump
of the upper cutoff, as follows from Eq. (3), and therefore
our framework can also be used for gathering novel insight
on that phenomena usually defined Black swans. These and
other topics will be the object of future studies.
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TABLE L. Variables overview and main findings. Summary of the systems and models considered with the corresponding variables and the

main findings obtained thanks to the dynamical approach.

System Size S Physical space N Temporal variable n Zipfian dynamics? Main findings
Maximal amplitude
Earthquakes (exponential of Number of earthquakes Total energy released No Estimation of the
the magnitude) maximal magnitude
US cities Population Number of urban Total urban population Yes us c.1tles evolved
Settlements following Heaps’ law
World cities Population Number of urban World urban population No Zl.pﬁan dyn.afmcs
Settlements is not additive
Language Number of counts Number of distinct Total word used Yes leﬁan dynamics
words optimizes the language
World countries GDPppp Numbe.r of World wealth Yes Prefsence of a r1c.h get
countries richer mechanism
Multiplicative . Total value of
Price Number of stocks Yes
process the stocks
Yule-Simon Population Number of urban Total population Yes Explain the traJecFory
model settlements of world countries
V. METHODS

A. Derivation of the relation between the PDF of sizes
and the Zipf-Mandelbrot distribution

Let us consider the truncated power-law distribution of
sizes, P(S), expressed in Eq.(2), where c is the normalization
constant, and s, and s,, respectively correspond to the natural
lower and upper cutoffs, always present in real systems. These
cutoffs are connected to ¢ by the normalization condition

C =

M ds
c — =1 - 2"
s 59 Sl—a o

Sm m  °M

a—1 (16)

It is possible to express the rank-size relation as a function of
the PDF parameters using the fact that given the PDF P(S) of
a continuous variable S, the values of its Cumulative Distribu-
tion Function (CDF) C(S), associated to the different values of
S, are approximately equiprobable. In fact, if P(s) is the PDF
of the variable S defined in the interval [s,,, s)/], then C(S) =
/; S ds' P(s)). By performing the change of variables from S to
C'=C(S), and calling f(C) its PDF, we get by definition of
PDF and CDF f(C) = £ P(S)[s_sc)y =1 for 0 < C < 1.
This implies that, given N values of S independently extracted
from P(S), with good approximation they can be taken as
uniformly spaced in the corresponding variable C. Thus the
kth size ranked value S(k) approximately corresponds to the

N+1—k
CDF value & -7+ In formulas

S0 S gy N+1—k
/ P(S)dS:c/ Pl
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which, together to Eq. (16), gives
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By assuming N + 1 & N, sy, > s, and introducing y = alT],
we end up with the final rank-size formula

NVs,
Sky=|—F7— | =——F—
[+ N ()" ]

1
Ns;, + ksy,

A similar computation has been performed by Lu ef al. [19]
in order to study the relation between Heaps and Zipf’s laws.
By comparing Eqs. (4) and (1), we can derive the following
expressions:

that relate the number of values/objects and the parameters of
the PDF P(S) on one side, and the Zipf-Mandelbrot parame-
ters on the other, that is Eq. (3) of the Results section.

B. Databases

All the databases we used are freely accessible on the web.
In the following, we shortly describe them. (1) Earthquakes
For our analysis of the Italian earthquakes we used the INGV
Parametric Catalogue of Italian Earthquakes, which “provides
homogeneous macroseismic and instrumental data and param-
eters for Italian earthquakes with maximum intensity >5 or
magnitude >4.0 in the period 1000-2017” [26]. For what
concerns Californian ones, we used the California Department
of conservation database [51]. It ranges from 1769 to 2000 and
is an extension of Petersen ef al. catalog [52].

(2) Tsunami The study of world tsunami has been per-
formed using NOAA NCEI/WDS Global Historical Tsunami
Database, 2100 BC to the present [35].
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(3) US metropolitan areas Our study of US metro areas is
based on the work of Schroeder [27]. The database, which
contains historical estimates of US metro areas and counties
population, can be accessed here [53] .The number of different
US cities and the urban population can be found in Ref. [54].

(4) World cities The historical population of world cities
comes from the World Urbanization Prospects 2018 of the
Department of Economic and Social Affairs (UN) [38]. In
particular, we used the ”Annual Population of Urban Agglom-
erations with 300 000 Inhabitants or More in 2018, by country,
1950-2035” (ignoring 2021-2035 data).

(5) Language In order to study the evolution of language
we used CHILDES database [45]. In particular, we analyzed
with CLAN program all the American English corpora avail-
able to obtain two rank-size list, one referred to children below
six and the other to adults. This has been done collecting all
the corpora available here [55] and then merging them to bet-
ter sample the frequencies of world, that have been computed
using CLAN program.

(6) GDP PPP of countries Maddison database [56] provides
GDP PPP of countries from 1 AD to 2008. We integrated it
with IMF [57] data to obtain a database which ranges from
1900 to 2019.

(7) Volcanic eruptions The casualties provoked by volcanic
eruptions have been collected from NOAA historical dataset,
which ranges from 4300 BC to the present.

C. Fitting procedure

If an high level of precision is needed, the fitting of power-
law distributions is a particularly difficult procedure which
has been studied extensively [58,59]. In particular, it has been
shown that using least squares techniques give biased esti-
mates of the slope of the PDF. However, in our work, we are
not interested in obtaining a precise estimate of the parameters
of the PDF, but rather in checking the trend they follow. We
then adopted a standard non linear least squares fitting proce-
dure, whose accuracy, when applied to the rank-size plot or
to the complementary cumulative distribution, is comparable
to maximum likelihood estimates [60]. In particular, we used
Eq. (4) partially linearized through logarithms

1 S a—1 o
[ In |:k +N(—> } +1In (NaTsy,).

— Sy

InS(k) = —

The use of a more sophisticated technique would probably
remove some noise from the trajectories, but in our opinion
the trend is clear also with the procedure we followed. The
presence or absence of deviations at first ranks can be easily
checked at glance and is definitely less problematic than the
computation of an unbiased estimator of the slope.
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