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Abstract
When collecting several data sets and heterogeneous data types on a given phenome-
non of interest, the individual analysis of each data set will provide only a particular 
view of such phenomenon. Instead, integrating all the data may widen and deepen 
the results, offering a better view of the entire system. In the context of network inte-
gration, we propose the INet algorithm. INet assumes a similar network struc-
ture, representing latent variables in different network layers of the same system. 
Therefore, by combining individual edge weights and topological network struc-
tures, INet first constructs a Consensus Network that represents the shared 
information underneath the different layers to provide a global view of the entities 
that play a fundamental role in the phenomenon of interest. Then, it derives a Case 
Specific Network for each layer containing peculiar information of the single 
data type not present in all the others. We demonstrated good performance with our 
method through simulated data and detected new insights by analyzing biological 
and sociological datasets.
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1 Introduction

Networks are becoming a prevalent approach to describe complex relationships 
among units in complex systems and to extract information at different levels, Bara-
bási (2016); Pržulj (2019); Vulliard and Menche (2021). Modeling a complex sys-
tem as a network constitutes a flexible representation of the insights since nodes can 
represent either statistical units or observed variables according to specific needs, 
with edges representing distance metrics or correlation between units or probabilis-
tic relationships among variables, such as in the graphical model framework. Given 
a representation of the system in terms of a graph, it is possible to study the network 
topology using different measures, identify the communities, and understand diffu-
sion phenomena. In the literature, there are several approaches to build networks 
from observed datasets (Váša et al. 2018; Korhonen et al. 2021).

Nowadays, vast amounts of data are being gathered across diverse domains, 
encompassing biomedicine, sociology, and the physical sciences. When dealing with 
multiple data sets associated with a phenomenon of interest, the individual analysis 
of each data set yields only a limited perspective on such phenomenon. In contrast, 
integrating all the data may widen and deepen the results, giving a more global view 
of the entire system. Therefore, when data are represented as networks, integrating 
networks from different data sources on the same nodes allows for a better represen-
tation of shared structure and understanding of case-specific peculiarity.

The interest in network integration arises from several applied contexts. For 
instance, in biomedical analysis, patients affected by a particular disease can be 
described using networks according to specific biological data. However, diseases 
are not always caused by a single factor but might occur due to different factors. 
Therefore, data analysis of a single component only allows a partial understanding 
of patient similarities. In sociological analysis, the study of the online relationships 
between people should not be limited to their connections on a single social net-
working website such as Facebook or Twitter. One must consider different contexts 
to understand their relations’ broad and complex structure. Similarly, in text analy-
sis, analyzing a topic (e.g., co-occurrence of terms) only from one source, for exam-
ple, one journal/book or one website, can give only a specific view of it, while merg-
ing different sources will give a more exhaustive view of the entire topic.

The advantages of network integration are shown in different papers. In the 
biomedical field, for example, similarity network fusion (SNF) (Wang et al. 2014) 
integrates patient networks obtained from different omics. Then, it performs com-
munity detection on the resulting network. The integrated analysis led to the iden-
tification of significantly different survival profiles in five cancer datasets that 
could not be identified with the analysis of the individual omics data. In a similar 
framework, iCell (Malod-Dognin et al. 2019) presented a method that better cap-
tures enriched clusters in cancers than the single data analysis. In the textual field, 
Rondinelli et al. (2020) constructed an a-priori aggregation of the books to ana-
lyze the relationships between biblical names’. Despite these diverse approaches, 
a standard methodology for integrating networks from different sources consider-
ing the network structure, is lacking.
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This work presents our novel statistical method, INet, for data integration, which 
is peculiar in that it uses a multilayer network structure and the network topology as 
a basis for integration. According to Interdonato et  al. (2020), our method can be 
defined as a “specific” case of flattening where we not only consider the edges, but 
we introduce, as a novelty, a significant role to the neighborhood contributing to 
the robustness of the relationship between pairs of nodes. INet generate a Con-
sensus Network capable of pulling out important information about the phe-
nomenon under study, assuming that the structure underneath the different layers 
has some similarity that we want to emerge. Moreover, INet generates something 
not present in other works, the Case Specific Networks, one for each layer, 
which captures the unique information exclusive to that specific layer, distinct from 
all the others. Overall, the method is versatile and flexible in handling the integration 
across samples and variables, which yielded analytical enhancements across diverse 
fields. For example, we uncovered patient similarities undetectable through single 
data type analysis and revealed different political scenarios by analyzing the Case 
Specific Networks, demonstrating the method’s broad applicability. Finally, 
the availability of the algorithm INet as the R-package INetTool contributes to 
its usage in practical applications.

This paper is structured as follows. Section 2 presents the theoretical background 
underpinning this research, Sect. 3 presents our method, Sect. 4 describes the simu-
lation study and the performance of our method, and Sect. 5 provides the results of 
an application of INet to two case studies. Concluding remarks are given in Sect. 6.

2  Integration via network

Nowadays, data integration is a widespread research area that demonstrates the 
capacity to fill the gap between producing a huge amount of data and extracting 
information for their interpretation. Given X(1),X(2),… ,X(N) , N ≥ 2 datasets, where 
each data set X(i) is a matrix X(ni×pi)

 with ni denoting the samples and pi the variables 
or features, one can define the n-Integration as the integration of the same ni = n 
samples measured across the N datasets collecting pi different type of variables or 
the p-Integration as the integration of the same pi = p variables observed over N dif-
ferent sets of ni samples, see for example (Rohart et al. 2017). Moreover, such inte-
grative approaches allow for a better consideration of the individual matrices’ het-
erogeneity, which can also contain different data types, and the simple data merging 
will destroy such specificity. For instance, when analyzing omics data (i.e., genomic, 
transcriptomic, and epigenomic) on the same patients, the n-Integration methods can 
allow significant aspects of the disease to emerge across the different omics. Moreo-
ver, the n-Integration integration allows the proper handling of transcriptomic data 
as quantitative (real or count-value) representing gene expression, methylation data 
as values in the [0, 1] interval providing the amount of methylation, and genomic 
data as binary variables coding genome mutations. Conversely, when performing a 
meta-analysis of the same clinical or omic variables using data sets collected in dif-
ferent laboratories, hospitals, or studies, the p-Integration method can improve the 
power of the analysis and better capture the shared information. Although, in this 
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case, the individual matrices are of the same data type, they can have different prob-
ability distributions. These integrative approaches can also be referred to as horizon-
tal and vertical integration as in Argelaguet et al. (2021).

Network integration is an approach that allows both n- and p-Integration since 
instead of working directly on the data domain X(i) , it is applied after the construc-
tion of a network of relationships. Given a dataset X(i) , a network can be inferred 
regardless of whether the nodes are variables or samples. Specifically, a network is 
a mathematical representation of relationships among the units of a complex sys-
tem and can be represented by a graph. A graph G = (V ,E) consists of a collection 
of V vertices (or nodes) corresponding to the individual units of the observed sys-
tem (e.g., people, patients, genes, words, documents) and a collection of E edges 
(or links), indicating some relations between them. When the nodes represent vari-
ables, the edges are often obtained using probability measures such as correlations, 
partial correlations, or mutual information; instead, when nodes are statistical units, 
the edges can be obtained as a similarity measure or others. Hence, the specific 
construction of the network from a given dataset X(i) depends on the types of data 
encoded and the scientific focus.

A graph G = (V ,E,W) is a weighted structure where W represents the strength 
of the edge E, i.e., the strength of the relationship. Both weighted and unweighted 
graphs G can be represented through an adjacency matrix A of dimension |V| × |V| 
where |V| denotes the number of nodes of G. For unweighted graphs, the adjacency 
matrix A is a square sparse binary matrix where the entry ai,j is set to 1 when an 
edge exists between the nodes (i, j) and 0 otherwise. Similarly, for weighted graphs, 
the entry ai,j is set to the value wi,j > 0 in correspondence to the presence of the 
edge between the nodes (i, j) and zero otherwise. The larger wi,j is, the stronger the 
relationship.

Different networks can represent the same complex system when multiple 
data sets are available. In this case, each network can be viewed as a layer in 
a multilayer network, and an integration of this information is required to syn-
thesize the knowledge. Researchers used many and various approaches for net-
work integration, ranging from the aggregated approach, where edges present in 
at least one network are retained, to the strict consensus approach, where only 
edges present in all networks are preserved. The mean approach was also uti-
lized for weighted networks, which associates each edge with the mean of its 
weights across all networks. We will compare this last approach to our method in 
Sect. 4.1. Although the advantages of network integration are shown in various 
papers, no existing methods for multilayer networks are as broad and versatile 
as INet. In the biomedical field, more customized methods have been devel-
oped, such as iCell (Malod-Dognin et  al. 2019) and SNF Wang et  al. (2014). 
The last one involves an iterative procedure that updates the similarity matrix 
for each data type, considering local affinity through k-nearest neighbours. In 
contrast, INet operates on a multilayer network rather than a similarity matrix. 
Additionally, INet does not require setting a parameter k for the neighbours, 
as it considers all the neighbours in the layers. Furthermore, INet constructs a 
network to which any community detection algorithm can be applied, allowing 
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the detection of clusters without the need for a-priori knowledge of the number 
of clusters, unlike the SNF procedure.

Furthermore, examples of works with a similar aim to detect common informa-
tion include those by Núñez-Carpintero et al. (2019) and Giordano et al. (2019). The 
first applies a multilayer community detection method to establish the association 
between disease and genes, and the second one employs a factorization technique 
on multilayer networks to construct a compromise space. However, neither of these 
approaches constructs an integrated network. Another distinguishing aspect of our 
approach is the construction of the Case Specific Network, which investigates 
the unique information that remains in the specific layer. Overall, using INet pro-
vides significant insights across various fields, as Sect. 5 demonstrates.

3  The proposed method: INet

INet uses a message-passing theory, i.e., starting from a multilayer weighted net-
work, it iteratively modifies the layers, updating the edge weights to make them 
more similar at each step. In this way, the algorithm constructs a Consensus 
Network that preserves the edges and the common structures underneath the net-
works, as entities in the same neighborhood tend to have functional similarities, 
making them highly relevant to the phenomenon of interest.

Additionally, from the Consensus Network, INet generates also Case 
Specific Networks, one for each layer.

The idea of our method is illustrated in Fig. 1.
The weight update involves two components that we denominated as the Edge 

weight component and the Ego network component. The latter term arises from a 
specific type of network, known as the Ego-centric network or, briefly, Ego network, 
which comprises a focal node (“ego”) and the nodes directly connected to the ego 
(“alters”) along with the connections between them (Biswas and Biswas 2015).

Figure  2 illustrates a simplified representation of our algorithm. In brief, at 
each iteration, INet tries to update all edge weights in each layer, incorporating 
the information from the other layers in the new proposal. After this proposal 
step, INet computes a network distance between the layers to decide whether 

Fig. 1  Method idea: From a multilayer weighted network where each layer represents a different dataset 
(e.g., same features from different patients), we firstly construct a Consensus Network, which pre-
serves the common structure underneath the layers and secondly form a Case Specific Network 
for each case study
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to accept or reject the proposed weights. The network weights are updated when 
the proposal is accepted, so the layers get closer. If the distance among the net-
works is less than a predefined tolerance, denoted as (tol), the iteration stops; 
otherwise, it continues for another update until the distance tolerance or a maxi-
mum number of iterations is reached. When INet stops, it returns “similar” 
networks that are combined and subjected to a thresholding process to generate 
the Consensus Network.

The rationale behind incorporating an Ego network component in weight 
updates comes from the triadic closure property (Simmel 1908), which asserts 
that nodes sharing several common neighbors are more likely to form connec-
tions. Our integrative procedure removes weak connections (low-weight edges) 
between nodes without common neighbors, reduces the noise in each layer, and 
preserves relevant connections (high-weight edges) when present in more layers 
or when nodes share common neighbors.

To be more precise, we provide the following notations and the mathematical 
formulation of the INet algorithm. Consider a multilayer network M consisting 
of N layers, represented through A(1),… ,A(k),… ,A(N) adjacency matrices. From 
here on in the paper:

(i, j) denotes the undirected edge between vertices i and j,
w
(k)

i,j
 is the entry of A(k) corresponding to the weight of the edge (i, j) in layer k,

ne
(k)

(i|j) is the set of neighbours of node i excluding j in layer k,
Cne(k) = ne

(k)

(i|j) ∩ ne
(k)

(j|i) represents the set of common neighbours of nodes i and 
j in layer k,
a denotes a generic common neighbour of i and j,
na is the number of layers where i and j have node a as a common neighbour.

Fig. 2  INet algorithm
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Then, we first define the weight update proposal and introduce the multilayer 
network distance; after that, we give the explicit formulation of the algorithm.

3.1  Weight updating

The core of INet consists of the network weight updating during the iterations. 
At each iteration, INet updates all weights w(k)

i,j
 of the adjacency matrices A(k) for 

k = 1,… ,N , for (i,  j) belonging to the union of the edges from all layers of the 
multilayer network (denoted in the Algorithm 1 as Union.Edgelist). The weights 
are not updated if the w(k)

i,j
= 0 for all k = 1,… ,N . The update formula considers 

the N layers individually, updating their weights simultaneously. In the following, 
INet distinguishes between the network under update and the networks on the 
other layers since the update formula gives more relevance to the weight of the 
currently updated layer. More specifically, at each step, the algorithm proposes an 
update of the weight w(k,proposal)

i,j
 of the edge (i,j) in the layer k as follows:

where W (k)

ij
 and Wego

(k)

ij
 represent the Edge weight component and Ego network com-

ponent, respectively, and � is a parameter in [0, 1] that gives different relevance to 
the Ego network component. At the end of each iteration over the N layers, INet 
computes the goodness of the updated proposals evaluating a network distance. If 
the update step is successful, the weights are updated as w(k)

ij
= w

(k,proposal)

ij
 , otherwise 

w
(k)

ij
 remains unchanged and the algorithm terminates.

The two components in the updated proposal in Eq. (1) are defined as follows:

Definition 1 For a given edge (i,j), the Edge weight component W (k)

ij
 is given by

i.e., the mean of the edge weight within the kth layer and the mean of the weights of 
the same edge in the other layers.

Definition 2 For a given edge (i,j), the Ego network component Wego
(k)

ij
 is given by

i.e., the mean of the ego measure of the kth layer and the mean of the ego measures 
across all the other layers, where the ego measure is defined as:

(1)w
(k,proposal)

ij
= W

(k)

ij
+ � ∗ Wego

(k)

ij
k = 1,… ,N

(2)
W

(k)

ij
=

w
(k)

ij
+

∑
l≠k w

(l)

ij

N−1

2
,

(3)
Wego

(k)

ij
=

EgoMeasure
(k)

ij
+

∑
l≠k EgoMeasure

(l)

ij

N−1

2
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3.2  Multilayer network distance

INet uses a multilayer network distance to evaluate the update proposal’s good-
ness and decide when to terminate the iterations. The multilayer network distance 
is obtained from the Jaccard similarity measure (Jaccard 1901), as follows. Given 
two vectors x = (x1, x2,… , xn) and y = (y1, y2,… , yn) with all real xi, yi ≥ 0 , the 
Jaccard weighted similarity is defined as:

Hence, the Jaccard distance, also known as the Soergel distance, is Deza et  al. 
(2009)

From here, we define the Mean Weighted Jaccard Distance for Multilayer Networks 
to quantify the difference among the different layers of the multilayer network, and 
we used this distance in our algorithm. The distance is defined as follows:

Definition 3 The Mean Weighted Jaccard Distance for a Multilayer Networks M is 
the mean of the weighted Jaccard distances between all pairs of layers:

where S is the set of all the possible pairs of layers (p, t) of the multilayer network 

and |S| is equal to the binomial coefficient 
(
N

2

)
=

N!

2!(N−2)!
.

This distance ranges between 0 and 1, where values closer to 0 indicate high 
similarity between the layers, while values near 1 suggest dissimilarity.

3.3  Algorithms

Algorithm  1 is the core of INet. In each iteration, the algorithm updates the 
weights within each adjacency matrix of the multilayer network by computing 
the proposed weights using Eq. (1). It accepts the proposal if the distance dJW in 

(4)EgoMeasure
(k)

ij
=

⎡
⎢⎢⎢⎣

∑
a∈Cne(k)

na

N

�
w
(k)

(i,a(k))
+ w

(k)

(j,a(k))

�

�ne(i�j)(k)� + �ne(j�i)(k)�

⎤
⎥⎥⎥⎦

1

�Cne(k) �

.

(5)JW(x, y) =

∑
i min(xi, yi)∑
i max(xi, yi)

.

(6)dJW(x, y) = 1 − JW(x, y).

(7)dJW(M) =
1

�S�
�

(p,t)∈S

⎡⎢⎢⎣
1 −

∑
i,j∈V min(w

(p)

i,j
,w

(t)

i,j
)

∑
i,j∈V max(w

(p)

i,j
,w

(t)

i,j
)

⎤⎥⎥⎦
,
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Eq. (7) decreases, meaning that the networks will be more similar after the update 
step. Otherwise, the weights remain unchanged, and the algorithm terminates. 
At the end of each iteration, the algorithm verifies if the network distance dJW 
is below a predefined tolerance (tol), stopping the procedure if this condition is 
met. Alternatively, it proceeds with a new iteration. Upon reaching the tolerance, 
INet computes the mean adjacency matrix whose entries are the means of the 
weights and constructs the Consensus Network after the thresholding step 
that retains significant edges.
Algorithm 1  Consensus Network

Input: A(1), ...,A(k), ..,A(N) = M, θ, tol, nitermax and threshold
step=0

Repeat
D ← dJW (Mcurrent)
for k = 1, . . . , N do

for (i, j) ∈ Union.Edgelist do

w
(k,proposal)
ij = W

(k)
ij + θ ∗Wego

(k)
ij

end for
end for
DPost ← dJW (Mproposal)
if D > DPost then

Mcurrent ← Mproposal

else
Break return Mcurrent

end if
step=step+1
Until DPost < tol or step > nitermax

Define the mean adjacency matrix A such that:

Ai,j ←
∑

k w
(k,current)
ij

N

Define the Consensus Network such that:
Consensus.Networki,j ← Ai,j [Ai,j > threshold]

Output: Consensus.Network

Algorithm 1 provides the algorithm’s pseudocode. The algorithm takes as input the 
adjacency matrices of the multilayer weighted network, the parameter � that determines 
the relevance assigned to the Ego network component, the tolerance (tol) representing 
the acceptable distance between layers, the maximum number of iterations ( nitermax ), 
and the threshold for constructing the consensus network after merging the similar net-
works. The output of Algorithm 1 is the Consensus Network.
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Algorithm 2  Case Specific Networks

Input: A(1), ...A(k)..,A(N), Consensus.Network
for k = 1, . . . , N do

S(k) ← A(k) −Consensus.Network
percSpecificity(k) ← ecount(S(k))/ecount(A(k))

end for
Output: S, percSpecificity

While the Consensus Network shows a shared network structure among the 
different layers, it is also crucial to investigate the differences between the layers 
in several applications. For this purpose, INet constructs the Case Specific 
Networks given by the differences in terms of edges between the original net-
works and the Consensus Network. This step is accomplished by using the 
respective adjacency matrices. A Case specific network provides different 
insights into a specific layer. Additionally, as a global measure, we compute the 
specificity percentage for each layer, representing the proportion of specific edges 
compared to the total initial edges.

R package The R package INetTool implements the above-described algo-
rithms and contains other additional routines valid for pre or post-analysis. All the 
functions are listed in Supplementary Table 3. The method implementation and a 
vignette for the usage are available on the GitHub page https:// github. com/ Valer 
iaPol icast ro/ INet- Tool.

4  Simulations

To assess the performance of our method, we used simulations generating differ-
ent networks using the LFR benchmark (Lancichinetti et  al. 2008), with different 
parameters, as detailed in Table 1. This new class of benchmarks consists of graphs 
in which node degree and community size distributions are power laws with tunable 
exponents. Hence, they allow us to model essential features of real networks.

To investigate the impact on the number of nodes and the modularity, we gener-
ated networks of different sizes N (100, 500, and 1000 nodes), and for each case, we 

Table 1  Simulation settings Parameters Definitions Settings

N Number of nodes 100-500-1000
k Average degree 5-25-50
maxk Maximum degree 10-50-100
� Mixing parameter 0.01,0.05,0.1,0.15,0.2
minc Minimum community sizes 1
maxc Maximum community sizes 20-100-200

https://github.com/ValeriaPolicastro/INet-Tool
https://github.com/ValeriaPolicastro/INet-Tool
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chose different mixing parameters � (0.01,  0.05,  0.1,  0.15,  0.2) to allow different 
levels of modularity. A lower mixing parameter corresponds to higher modularity. 
We repeated the simulation 10 times. These networks constitute the ground truth 
networks. From each of these networks, we generated three perturbed ones varying 
the percentages of edge perturbation as 0%, 5%, 10%, and 15%. These three per-
turbed networks represent those we want to integrate to recover the ground truth. 
Finally, we used a Beta distribution, whose values range between [0,1], to generate 
the network weights. We adopted the formulation of the Beta distribution character-
ized by the two parameters 𝛼 > 0 and 𝛽 > 0 from which the mean � is given by �

�+�
 

and the variance �2 is ��

(�+�)2(�+�+1)
. In particular, following Ji et al. (2005), we first 

sampled the weights from two different Beta distributions, i.e., from a B(8,2) for 
assigning substantial weights to the edges present in the network and from a B(2,8) 
for smaller weights to all the other edges, leading to a beta mixture. After that, we 
fitted a beta mixture and set all the weights with a posterior probability less than 
0.01 to zero to obtain sparse networks.

In this way, the simulated networks differ depending on the different perturba-
tion levels, the weights distributions, and the cutting point of the weights. For these 
reasons, the differences with the ground truth networks are greater than the original 
percentage of perturbations.

Computational aspects For the generation of the network, we used the C++ 
Package 1 of the LFR benchmark graphs (Lancichinetti et al. 2008) from the web-
site https:// www. santo fortu nato. net/ resou rces. For the perturbation strategy, we used 
the rewire function of igraph package with the keeping_degseq option that 
preserves the degree distribution of the network. For the random generation of the 
weights from the Beta distribution, we used the function rbeta. To fit the mix-
tures of beta regression models via maximum likelihood with the EM algorithm, we 
applied the function betamix from the package betareg.

4.1  Performance evaluation

To evaluate the performance of our method, we compared our Consensus Net-
work and the classical mean approach, defined as the Baseline method from 
here on, with the network representing the ground truth. To ensure comparability 
between the methods, we applied a threshold of 0.5 for the edge weights in both 
cases. To this purpose, we measured the true positive edges (TP), the true negative 
edges (TN), the false positive edges (FP), and the false negative edges (FN). Fur-
thermore, we also used the F-score and the Accuracy, where

and

(8)F1 =
TP

TP +
1

2
(FP + FN)

,

(9)Accuracy =
TP + TN

TP + TN + FP + FN
.

https://www.santofortunato.net/resources
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Figure 3 shows the F1 score performances of our method in comparison to the Base-
line method on the simulated networks with 100 nodes. The results corresponding 

Fig. 3  The F-score is associated with the simulation networks containing 100 nodes. Each panel cor-
responds to a distinct choice of � ; in each panel, on the x-axis, we plot the mixing parameter ( � ) for both 
methods: INet and Baseline represented with dotted and continuous lines. The different box-plot col-
ours are related to the different percentages of perturbation (color figure online)



INet for network integration  

to networks with 500 and 1000 nodes are in Supplementary Figs. 9 and 10 respec-
tively. Comparing the box plots with no perturbation among the edges, we observe 
that our method behaves similarly to the Baseline, and both report excellent perfor-
mance with an F1 score close to 1. However, when increasing the perturbation, our 
method performs significantly better than the Baseline. As expected, the F1 score 
decreases when differences among the networks increase; however, the loss in the 
F1 score of our method is much less than that of the Baseline. The Accuracy perfor-
mances are shown in Supplementary Figs. 16, 17 and 18. For the sake of complete-
ness, we compared INet also with the union and intersection approach in Supple-
mentary Figs. 19 and 20. In this case, we also show that INet performs better than 
the competitors.

Moreover, when evaluating the parameter � (see Eq. (1)) in the different plots, we 
can observe that our approach and the Baseline show the same performances with 
� = 0 ; this is an almost obvious result as the differences between our method and 
the Baseline are primarily due to the Ego network component in the weight update. 
When � = 0 , this term is not considered, and the weight in Eq. (2) is not the sim-
ple mean of the weights in the different layers, as in the Baseline method. When � 
increases, our method usually improves. However, the optimal choice of � requires 
attention. For example, when the number of nodes increases, a smaller value of 
𝜃 > 0 is preferable since with a larger value of � , some performances are similar or 
lower compared to the Baseline. More details are discussed in Sect. 4.2.

To assess that the F-score performance of our method is statistically better than 
the Baseline’s, we applied the Wilcoxon signed rank test with paired samples (Wil-
coxon 1992) and one-side alternative. The results of the Wilcoxon signed rank test 
are shown in Fig. 4 for the simulated networks of 100 nodes, and in Supplementary 
Figs. 13 and 14 for respectively 500 and 1000 node networks. The tests are in agree-
ment with the results seen above. All the tests are statistically significant as they are 
all above the red line, which represents a p-value equal to 0.05 except for � = 0 and 
0 perturbation, where the performances are similar to the baseline method, and for 
� = 0.1 only for the 500 and 1000 nodes networks.

Note that our simulation study aimed to investigate the differences between the 
ground truth network and the Consensus Network regarding structure topol-
ogy, focusing on the presence and absence of edges. However, other simulations 
could also be designed to assess the strength of the weights and evaluate the relative 
root mean square error as suggested in Jin and Xu (2024, 2024).

4.2  Impact of the Ego network component on the performance

From Eq. (1), the parameter � can be chosen for tuning the relevance of the net-
work structure in updating the weights. Increasing � gives more relevance to the Ego 
network component and allows our method to perform better. As noticed before, if 
� = 0 , the performances of our method are similar to the Baseline method as it will 
not add the network component in the construction of integrated networks. While 
increasing the � , we add information on the neighbours and improve the perfor-
mance. Figure 5 shows the mean of the F-score that varies with � (x-axis) for 100 
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Fig. 4  One-side paired Wilcoxon Test testing the improved performance of INet compared with the 
Baseline approach. The results correspond to the simulation with networks of 100 nodes. Each panel cor-
responds to a distinct choice of � ; in each panel, on the x-axis, we plot the mixing parameter ( � ), and on 
the y-axis, the p-values for the test. The red line corresponds to a p-value = 0.05. p-values above the red 
line correspond to statistically significant tests (color figure online)
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node networks; in Supplementary 11 and 12, we also report the results for the 500 
and 1000 nodes networks, respectively. Each figure contains four panels, one for 
each percentage of perturbation, with five curves, one for each mixing parameter. 

Fig. 5  F-score obtained by INet for different parameter values � for the simulation with networks of 100 
nodes. Each panel represents different percentages of perturbation. Each line colour corresponds to a dif-
ferent mixing parameter � (color figure online)
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We can observe an increase in the performance with the increase of � until a certain 
�∗ represents the optimal choice. However, the choice of �∗ varies with the network 
size. The 100-node networks have a maximum F-score between � = 0.06 and 0.08, 
while for the 500 and 1000-node networks, the highest performances are around 
� = 0.04.

5  Applications of INet to real data

We applied our method to two case studies. The first example concerns integrating 
multi-omics data to identify the subtypes of glioblastoma multiforme, an aggressive 
adult brain tumour, and the second is a social analysis of the Italian political debate 
from social media. For the first data analysis, we downloaded the preprocessed 
multi-omics data and patient survival data associated with the example GMB.zip 
from the website (http:// compb io. cs. toron to. edu/ SNF/ SNF/ Softw are. html), which 
stores different TCGA (The Cancer Genome Atlas) datasets used in the paper (Wang 
et al. 2014). We used Twitter (nowadays named X ) data for the sociological data, 
downloading them via Twitter API.

5.1  Multi‑omics data analysis

This example consists of three different omics types: DNA methylation, mRNA 
expression, and miRNA expression from the same 215 patients affected with glio-
blastoma multiforme (GBM). The DNA methylation matrix contains 1305 probes, 
the mRNA gene expression contains 12,342 genes, and miRNA expression includes 
534 microRNA. The preliminary data preprocessing is described in Wang et  al. 
(2014). Our analysis aims to show that integrating the different omics types allows 
for better identifying GBM subtypes. The dataset also contains survival data. Simi-
larly to Wang et al. (2014), the survival information is not used for the integration 
but can be used for validating the identification of the cancer subtypes.

As the first step, we constructed a patients’ network for each data type, apply-
ing the constructionGraph function (See Table  3) of our package, which 
computes a person correlation, setting the parameter percentile to 0.9 preserving, 
in this way, we retain only the 10% of the most relevant connections in each net-
work. Therefore, we obtained three patient similarity networks, each consisting of 
215 nodes representing patients and 2204 edges connecting them. Then, we used 
INet to construct the Consensus Network that integrates all three different 
data types. The resulting patient Consensus Network, shown in Fig. 6a, con-
sisted of 215 patients; out of them, 197 were connected by 847 edges.

To validate the goodness of the Consensus Network, we first identified 
GBM sub-types, and then we showed that each subtype is associated with a statisti-
cally significant difference in their prognosis.

To this purpose, given the Consensus Network, we first applied the meth-
odology proposed in the robin package (Policastro et al. 2021) to determine the 
appropriate community detection algorithm. We selected the Label propagation 

http://compbio.cs.toronto.edu/SNF/SNF/Software.html
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algorithm as the more robust choice in this case (see Supplementary Fig.  15). 
Then, we used the Label propagation algorithm on the Consensus Network 
to cluster the patients corresponding to potential GBM sub-types. We detected 
three different groups of patients and a few isolated nodes that we labelled as 
belonging to the fourth cluster.

Finally, we estimated the survival curves of the patients of these four groups 
using the Kaplan-Meier method (Fig. 6b), and we performed a long-rank test to 
evaluate the significance of the differences in survival profiles between sub-types. 
We found a statistically significant difference in survival with a p-value 0.0006 
between the groups; see Table  2. Overall, the consensus network resulting by 
INet gives a much clearer picture of clustering in our patients with GBM, iden-
tifying three sub-types with different survival. In particular, the second group of 
patients identified by INet shows a significantly better survival prognosis than 
the others. The fourth group identified patients who appeared different from the 
others (i.e., disconnected in the Consensus Network), with a poor prognosis.

(a) Patient Consensus Network
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Fig. 6  a The Consensus Network of GBM patients obtained using INet with three different multi-
omics data types. The colours of the dots correspond to the cluster. b The Kaplan-Meier curves of the 
groups of patients identified by the community detection algorithm on the Consensus Network. The 
colours of the lines correspond to the cluster (color figure online)

Table 2  Survival

Chisq= 17.2 on 3 degrees of freedom, p = 6e-04

N Observed Expected (O-E)⌃2/E (O-E)⌃2/V

Membership = 1 175 160 143.43 1.915 7.310
Membership = 2 17 16 37.17 12.057 16.831
Membership = 3 5 5 3.85 0.346 0.356
Membership = other 18 18 14.56 0.815 0.889
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5.2  Sociological data analysis

We downloaded the data from Twitter. In particular, we extracted the tweets until 2023-
01-31, of the 51 most followed Italian politicians with a Twitter account. For each tweet, 
we considered the hashtags, whether a politician was mentioned or retweeted from 
another politician. We classify the hashtags of interest according to three different top-
ics: the coronavirus, the Russia-Ukraine war, and Italian internal politics. As hashtags 
related to coronavirus, we took #Covid, #Coronavirus, #COVID19, #greenpass, #vac-
cino, #novax, and others. For the one related to the war between Russia and Ukraine, we 
took hashtags as: #Ucraina, #Russia, #Putin, #NATO, #UkraineRussiaWar, #Kiev etc... 
. For the last topic, Italian internal politics, some of the hashtags are: #PNRR, #Lavoro, 
#carobollette, #caroEnergia, #DecretoPNRR #lavoro. We used such information to con-
struct three topic-specific networks with the politicians as nodes. For each of these top-
ics, we constructed a weighted network where the nodes were the politicians, and two 
politicians were linked if they were present in the same tweet, i.e., if they were mentioned 
or retweeted. To construct a weight for the edge that varies between [0,1], we defined 
the weight as the number of tweets of that topic where the pair of politicians are present 
divided by the maximum weight in that topic.

With this procedure the Coronavirus network was made of 34 nodes (politicians) and 
40 edges, the Russia-Ukraina network of 29 politicians and 37 edges and the Internal poli-
tics network of 41 politicians and 77 edges. We applied INet on this multilayer network 
to construct a consensus network which gave us the overall idea of the political relation-
ship (Fig. 7).

From the Consensus Network in Fig. (7), we can see that the politicians of the 
Democratic Party (PD) seem to tweet always together, while in the other parties, it seems 
that only the leader tweets with another politician of the same party, for example, for the 
Fratelli d’Italia party (FdI) we can see that Giorgia Meloni (the leader at this time) tweets 
with Daniela Santanchè and for the Italia Viva party Matteo Renzi tweets always with 
Maria Elena Boschi. Furthermore, we can see that the Movimento 5 Stelle party in the 
Consensus Network, which takes into account all the different topics together, giv-
ing a more global view of the entire system, is not present probably because they retweet 
or mention other people, not politicians. In this field, a union of networks is often used. 
However, while the Consensus Network includes a subset of edges selected based 
on topology and the strength of weights in the layers, the union network contains all edges 
present in at least one layer, resulting in a noisier outcome. The union of the different lay-
ers is shown in Supplementary Fig. 21, where we can observe connections such as the 
one between Matteo Renzi and Alemanno, two politicians from opposing parties. This 
particular edge is weak and noisy and, ideally, should not appear in the integration, as it is 
present only in the Internal Politics Network, and the two nodes do not share any common 
neighbors. This behavior is a potential inconsistency our Consensus Network aims 
to face.

Moreover, we applied the Case Specific Networks algorithm to construct 
the three specific networks coronavirus, Russia-Ukraine war, and Italian internal 
politics, which are shown in Fig. 8.

From the Coronavirus Specific Network in Fig. 8a, it stands out that there is no 
community structure due to the political parties, but it shows the map of the politicians 



INet for network integration  

involved firsthand in the political decision of the COVID period. We can see Conte, 
who was President of the Council of Ministers in the COVID period, mostly tweets with 
Roberto Speranza, who was designated as Minister of Health by Conte at that time, with 
Giuseppe Sala, who was mayor of Milan (the first Italian city where the virus exploded) 
and Dario Franceschini Minister of Culture. Moreover, we can see that Meloni, today’s 
President of the Council of Ministers, is not present, maybe because, at that time, she was 
not so inside the political scenario.

From the Russia-Ukraine war Specific Network in Fig. 8b we can see that 
it is not a topic covered by a specific party but involves quite all the Italian political 
parties as they are all present in the network. We can also highlight that PD politi-
cians, also in this case, interact more between them than with the other politicians 
and that there is a connection between Giorgia Meloni (President of the Council of 
Ministers) and Guido Crosetto as he is the Defence Minister.

The last Specific Network is the one related to Internal politics (in Fig. 8c), from 
this network, we can see that all the political parties are involved in this theme. All the 
politicians in the network interact with other politicians, not considering the political party 
to which they belong. However, there is still a higher connection between the politicians 
of the PD party. To summarize, we can say that all four political networks, the Consen-
sus one and the Specific ones, gave us different information and accurately described 
the Italian political environment with the presence of different parties in different themes, 
and without a preponderant party in any of them.

Fig. 7  Politician Consensus Network: the Consensus Network of politicians obtained using 
INet with the three different topic networks. The colours of the dots correspond to the political parties 
(color figure online)
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Fig. 8  Case Specific Networks obtained using specificNet function (see Table 3). The colours 
of the dots correspond to the political parties. a The coronavirus Specific Network. b The Russia-
Ukraina Specific Network. c The internal politics Specific Network (color figure online) 
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To conclude, the INet method applied to datasets from two different contexts gen-
erated useful insights into the complex system they were describing.

6  Conclusion

In this paper, we presented INet, a novel method to integrate networks based on differ-
ent data types, showing that such an approach allows the identification of structures not 
visible with the analysis of a single data set. Since INet works on networks instead of 
on the data domain, it is capable of handling both n- and p-Integration, and it captures 
the structure underneath all the different datasets to understand better the complex system 
analyzed in a multilayer weighted network. The INet Algorithm constructs a Con-
sensus Network, which captures the complete spectrum of underlying datasets and 
Case Specific Networks, to highlight the information present only in that network 
and not in all the others. We assessed our method’s performance and advantages using 
simulated and real data. For the real data, we used two examples: one in the biomedi-
cal field, integrating multi-omics data, and the other in the sociological field, integrating 
social media data. We limited our attention to the network’s topology for the simulated 
data; therefore, we used performance measures to capture the network structure. How-
ever, in the future, we could also assess quantitative measures such as the strength of 
the estimated weights, for example, with the relative root mean square error. In the next 
works, we plan to expand INet capabilities with more analytical functions and consider 
the nodes’ attributes in the different layers, which is a more complex but promising goal.
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