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ABSTRACT Wi-Fi and magnetic field fingerprinting have been a hot topic in indoor positioning researches
because of their ubiquity and location-related features. Wi-Fi signals can provide rough initial positions,
and magnetic fields can further improve the positioning accuracies, therefore many researchers have tried
to combine the two signals for high-accuracy indoor localization. Currently, state-of-the-art solutions
design separate algorithms to process different indoor signals. Outputs of these algorithms are generally
used as inputs of data fusion strategies. These methods rely on computationally expensive particle filters,
labor-intensive feature analysis, and time-consuming parameter tuning to achieve better accuracies. Besides,
particle filters need to estimate the moving directions of particles, limiting smartphone orientation to be
stable, and aligned with the user’s moving directions. In this paper, we adopted a convolutional neural
network (CNN) to implement an accurate and orientation-free positioning system. Inspired by the state-
of-the-art image classification methods, we design a novel hybrid location image using Wi-Fi and magnetic
field fingerprints, and then a CNN is employed to classify the locations of the fingerprint images. In order
to prevent the overfitting problem of the positioning CNN on limited training datasets, we also propose to
divide the learning process into two steps to adopt proper learning strategies for different network branches.
We show that the CNN solution is able to automatically learn location patterns, thus significantly lower the
workforce burden of designing a localization system. Our experimental results convincingly reveal that the
proposed positioning method achieves an accuracy of about 1 m under different smartphone orientations,
users, and use patterns.

INDEX TERMS Indoor positioning, indoor localization, neural networks, fingerprint, feature extraction.

I. INTRODUCTION

In recent years, various location signals and related tech-
niques have been studied to satisfy the increasing demand
of indoor location-based service (LBS). Such signals
include ultra-wideband (UWB), radio frequency identifica-
tion (RFID), echo, Wi-Fi, and magnetic fields. UWB and
RFID based schemes can achieve competitive accuracies, but
they need to deploy base stations into the indoor environ-
ments [1], [2]. The accuracy of echo schemes are up to 23 cm,
but the dense sampling points prevent it from continuous

positioning in a large-scale deployment [3]. Nowadays,
Wi-Fi networks are ubiquitous in indoor environments
(e.g., shopping malls, offices, airports and railway stations).
Therefore, Wi-Fi information can be used for personal indoor
localization. However, Wi-Fi information can only pro-
vide rough position estimates due to its signal fluctuation,
especially when moving pedestrians are considered [4]-[8].
Researchers also tried to use the Wi-Fi channel state informa-
tion (CSI) [9], [10] to implement high precision positioning,
but the method also needs to sample a large number of dense
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training points, thus making it difficult for large-scale appli-
cations. Formed by the geomagnetic field and building’s iron
structures, the characteristics of the indoor magnetic field are
ubiquitous and unique. Systems based on this signal can pro-
vide meter-level accuracies, but due to the low dimensionality
of magnetic fields, it is difficult for them to provide global
position estimates [11]-[14], [46], [47].

Considering the complementary features of Wi-Fi and
magnetic field signals, researchers have tried to fuse together
the two signals to implement high accuracy positioning
systems that are available in large areas. For example,
Shu et al. [12] fuse the RADAR [6] and magnetic field with
particle filters, reaching 3m accuracy in almost the 80% of a
large supermarket. In order to acquire the moving direction
of particles, this method requires restricting the smartphone
orientation aligned with the user moving direction, but this is
not often easily detectable. Another drawback of the method
is that the scheme needs to sample the training data for
Wi-Fi and magnetic fields separately because of their differ-
ent positioning principles. This aspect increases the cost of
surveying the environment. Thus, in our work, we investigate
whether deep learning—a recent and powerful machine learn-
ing paradigm—can provide a low surveying cost and device
orientation free solution using available Wi-Fi and magnetic
field signals. Considering the outstanding performance of
deep learning in image classification, we construct a novel
fingerprint image using Wi-Fi and magnetic signals to repre-
sent the features of locations. Then, these images are inputted
into a deep CNN to predict real-time location estimates. The
proposed method combines the Wi-Fi and magnetic field
peculiarities in a single image; therefore, the two heteroge-
neous signals can be sampled at the same moment during a
single process. On the other hand, the proposed fingerprint
images are orientation-free, thus they remove the constraint
due to the smartphone orientation alignment.

The main issue in applying CNN to fingerprint images is
how to tackle the heterogeneity of the Wi-Fi and magnetic
field signals. For example, compared with Wi-Fi signals,
magnetic field signals are more stable, and with fewer dimen-
sions and higher sampling rates. These differences make the
feature channels of fingerprint images more complicated than
ordinary images; therefore, it is difficult to learn the location
patterns of these complex images with common convolution
windows. In [15], we had partially described the effects of
different convolution windows and neural network structures
applied to the fingerprint images, and we proposed a Direct
Acyclic Graph (DAG) neural network. The designed network
adopts a two-level hierarchical structure. The neurons in the
first level extract signal-independent patterns, then the sec-
ond level organizes these extracted patterns into high-level
images, analyze their patterns, and estimates final predic-
tions.

Another challenge in creating positioning systems based
on CNNs is to deal with the constraints of the network
training. Traditional neural networks need a large training
dataset to avoid overfitting problems. In order to achieve high
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positioning accuracies, the CNN based positioning system
needs dense classification points. For example, if the target
positioning accuracy is less than one meter, the distance
of adjacent classification points should be less than that to
provide the minimum resolution. However, gathering and
sampling a large training dataset for such a great number
of classification points is a formidable task because a real
deployment cost would be too expensive. Therefore, in order
to extract enough location features from a limited training
dataset, we make full use of the high dimensionality of Wi-Fi
signals and the stability of magnetic fields. We divide the
training process into two steps. The first step leverages an
early-stop method to prevent the overfitting of Wi-Fi features
on small datasets. The second step executes a long-time
training to learn sufficient features from the stable magnetic
fields and the relations between the two signals.

As a conclusion, with respect to our previous work on this
topic [15], the contributions of the paper are summarized as
follows:

« We design a positioning system based on DAG CNN
to overcome the stability difference of Wi-Fi and
magnetic field signals. The proposed method lever-
ages a hierarchical architecture to separately learn
signal-independent and united feature patterns.

« Considering the limited training dataset of a large num-
ber of classification points, we extensively describe a
two-step training method for the proposed positioning
CNN to prevent the overfitting problem.

o According to [16], we test our system in a real test site,
extending our preliminary previous results [15]. Experi-
ments convincingly reveal that the proposed positioning
method reaches remarkable performance also consider-
ing various smartphone orientations and different target
users.

The rest of this paper is arranged as follows: section II
introduces related works and highlights the differences
between our proposal and the state-of-the-art systems,
section III reviews the background and our empirical studies
of magnetic field and Wi-Fi signals, section IV contains an
overview of our system, section V, VI, VII and VIII exten-
sively details the scheme of fingerprint construction, position-
ing model, network training and the fingerprint classification,
section IX describes how the experimental campaign was set
and conducted and, finally, section X describes conclusions
and future works.

Il. RELATED WORK
The request for efficient indoor LBS has spurred the devel-
opment of many indoor positioning techniques, also due to
growing commercial interests. The use of Wi-Fi and magnetic
field signals has attracted continuous attention due to the
ubiquity of wireless access points (APs) and magnetic field
in indoor environments.

Traditional outdoor positioning systems require line-of-
sight (LOS) measurements because the positioning schemes
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rely on trilateration and triangulation. The performances of
these approaches drop in indoor environments due to the
frequent blockage of signals by walls and multipath propaga-
tion. Therefore, fingerprinting techniques are widely used in
indoor LBS. After Bahl and Padmanabhan [6] presented the
first Wi-Fi fingerprint positioning system RADAR, various
Wi-Fi based algorithms have emerged to further improve the
positioning accuracy and robustness. These algorithms can be
divided into deterministic and probabilistic methods. Deter-
ministic methods leverage various similarity metrics to differ-
entiate online and offline fingerprints, including Euclidean
distance [17], Tanimato similarity [18], and cosine similar-
ity [19], or using an ensemble of different distances [45]. The
location with the most similar fingerprint in signal space is
considered as the positioning result. Compared with proba-
bilistic methods, deterministic methods are easier to imple-
ment, but the probabilistic methods show better localization
accuracy. Probabilistic methods use statistical inference to
measure the difference between real-time signal fingerprints
and fingerprint models. These algorithms find the target’s
location by evaluating the maximum likelihoods from train-
ing datasets. For example, Horus [20] estimates user locations
using probabilistic models that are able to reflect signal
distributions in the site. Centaur’s [21] Bayesian network,
Ouyang et al’s [22] expectation-maximization and
Xiao et al.’s [23] conditional random field method achieve
decent accuracies through probabilistic inference. Proba-
bilistic algorithms rely on distribution assumptions, such
as Gaussian noise or independence, therefore, the training
of probabilistic models is more complicated and it requires
more datasets than deterministic algorithms. Because of the
random fluctuation of Wi-Fi signals, the performances of
Wi-Fi based algorithms are difficult to achieve high position-
ing accuracies, especially for moving targets.

It is reported that Wi-Fi based schemes achieve about
5-10 meter positioning accuracies; on the contrary, geo-
magnetism schemes can achieve a much higher accuracy
(around 1-5 meters) [24]. There are several approaches to
harness the indoor magnetic field for positioning purpose.
Wang et al. [25] extract magnetic anomalies with unsuper-
vised learning, then exploit these anomalies to pinpoint spe-
cific indoor locations as landmarks. Although these kinds of
methods are simple and efficient to implement, their magnetic
field information are not fully utilized. Magicol [12] models
temporal magnetic measurements as sequences of strings,
then solve target positions with traditional string match-
ing and dynamic programming methods. However, these
dynamic programming based matching schemes are compu-
tationally expensive. Shu et al. [26] propose a leader-follower
mode based scheme. Such a mode is particularly use-
ful when floor plans are missing, but this mode is tai-
lored to some specific applications. Magnetic field based
schemes are found to achieve reasonably high localization
accuracy with low energy consumption, but it is difficult
for them to provide large-scale site deployments due to
the decreasing discernibility of magnetic fingerprints [27].
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Therefore additional sensing information is needed to make
the fingerprints more discernable [13].

Besides deterministic and probabilistic methods, nowa-
days, the literature offers different approaches. Deep learn-
ing is a fast-growing field in machine learning due to
the development of massive amounts of computational
power. Researchers have used deep learning in different
contexts and applications: surveillance camera to localize
vehicles, and channel state information (CSI) to localize
laptops [9], [28], [29]. Vieira et al. [30] investigate the
application of CNNs for fingerprint-based positioning using
massive MIMO channels on the COST 2100 model. A group
fuses cameras and magnetic fields with the neural network,
but this method restricts phone’s attitude to be upright to use
the camera [31]. Nowicki and Wietrzykowski [32] investigate
using the deep neural network to classify buildings and floors.
Researchers also try to implement indoor positioning with
backpropagation neural networks (BPNNs) based on Wi-Fi
fingerprint, however, this method needs massive fingerprint
sampling work [33]. As a summary, current deep learn-
ing based schemes focus on predicting positioning results
with single signal resource, which limits their accuracy and
scalability.

Different from aforementioned deep learning based posi-
tioning methods, our proposed algorithm requires no dedi-
cated hardware (camera or antenna arrays) or specific CSI
signal. We introduce deep learning method to localize the
commodity smartphones. Several ubiquitous signals includ-
ing Wi-Fi and magnetic field signals are used, which is free
of privacy issues. Therefore, our approach is more pervasive
and cost-effective.

For the implementations, engineers have developed various
platforms for deep learning based researches, including Mat-
ConvNet [34], Tensorflow [35], and Caffe [36]. The system
proposed in this paper is built on top of MatConvNet.

As a summary, compared to current positioning systems,
the proposed method combines Wi-Fi and magnetic signals
in a common fingerprint image, therefore the two location
fingerprints can be sampled at the same time, reducing sam-
pling cost. On the other hand, our system requires no orien-
tation information, and consequently, it has no restrictions
on smartphone attitudes. Therefore, users are able to use
their smartphones as usual. To these extents, our system is
more practical than existing Wi-Fi and magnetic field based
positioning systems.

Ill. FEATURES OF INDOOR MAGNETIC

FIELD AND Wi-Fi SIGNALS

Indoor magnetic field signals are relatively stable for a long-
term and have remarkable spatial discernibility in the local
area, but their discernibility decrease when a larger area is
considered [27], [37], [38]. For instance, Fig. 1. illustrates
two magnetic fingerprints gathered along the same corridor
in March and in May, respectively. The similarity of the two
fingerprints reflects the stability of the indoor magnetic field
signals. For the local discernibility example, let us assume
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FIGURE 1. Stability of indoor magnetic field strength. The two fingerprint
traces have been gathered along a 52-meter corridor on two different
days, two months apart.

that a user measures a magnetic strength of 54u7. If we
have a priori knowledge that the user’s rough position has a
distance of 45 ~ 55 meters from the zero point, we can refine
positioning results by comparing magnetic strengths, and
estimate that the user is located approximately 50 meters from
the zero point with an error less than one meter. However,
without this local area prerequisite, we have to average all
eligible positions with the magnetic strength of 54uT. This
averaging method decreases positioning accuracy.

The uniqueness of Wi-Fi media access control (MAC)
address and its limited signal coverage range enable Wi-Fi
signals being used in positioning systems. However, Wi-Fi
based system is not able to reach high-accuracy performances
when the target is represented by a moving smartphone.
In fact, Wi-Fi signals are susceptible to surrounding elec-
tromagnetic noises like transmission rate and power adap-
tions [39], causing signal strength fluctuates over the time.
Thus, Wi-Fi based system generally confuse nearby posi-
tions. Furthermore, the signal scanning process takes several
seconds to traverse all wireless channels; therefore, users may
have walked several meters from the sampling point to the
end of the scanning process. This factor is critical especially
for statistics-based positioning methods [5], [40] that need
several scanning periods to collect enough samples on the
same place to evaluate signal distributions.

IV. SYSTEM ARCHITECTURE

As Fig. 2 shows, the proposed positioning system is com-
prised of five functional modules: the CNN positioning, CNN
training, fingerprint-image classification, fingerprint-image
construction, and step detector module. In addition, the posi-
tion label is a key-value pair (KVP) containing a position
ID and its coordinates. The position label database is a set
of KVP uniformly scattered in the testing area. The neural
network (NN) parameter database stores the CNN positioning
model for different positioning sites. The sensor data used in
our system include Wi-Fi, magnetic field, and acceleration.

A. FINGERPRINT CLASSIFICATION
In order to construct the mapping between environmen-
tal signals and locations. Users collect location signals
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FIGURE 2. The overall architecture of our proposed indoor positioning
system based on convolutional neural network and fingerprint image
learning. Acc means a triaxial accelerometer. Mag means a triaxial
magnetometer. Wi-Fi represents the Wi-Fi chip. CNN means a
convolutional neural network.

(including Wi-Fi and magnetic field data) walking along
sampling lines. Then the fingerprint classification module
cut fingerprint sequence in similar length for every position
labels. The rule is that the distance between fingerprint seg-
ments and position labels should be small enough.

B. FINGERPRINT-IMAGE CONSTRUCTION

Considering the difference in data length and the number of
AP in each fingerprint segments, the fingerprint-image con-
struction module normalize all the fingerprints in the same
data length and AP set. This module is a common module
both in the off-line training and in the online positioning
procedures. The only difference is that the fingerprint-image
in the training phase is labeled and the positioning phase
is not.

C. CNN POSITIONING

We use a CNN algorithm to compute the user positions.
Because we have discretized indoor locations into position
labels, therefore the result is the ID of these labels. The posi-
tioning CNN is customized to support the different stability
and the number feature channels of Wi-Fi and magnetic field
data in the fingerprint image.

D. CNN TRAINING

The positioning CNN is able to automatically learn loca-
tion features. However, the training dataset for each position
labels is rather small, leading the algorithm to overfitting
problems. Therefore, the CNN training module divides the
learning process into two steps in order to adopt different
learning strategies on the Wi-Fi branch and the rest of the
neural network. Then, the trained NN parameter is stored in
a database.

E. STEP DETECTOR
The positioning result is updated at each step. Every
time a new step is reported by the step detector, a new
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fingerprint-image is generated by the fingerprint-image con-
struction module, triggering the CNN positioning module to
estimate user locations. The step detector is implemented by
forming stride templates offline and applying deep learning
classification with the accelerometer signal online to detect
real-time step events [41].

V. FINGERPRINT-IMAGE CONSTRUCTION

Different from the traditional feature extraction manners of
position signals, we propose a novel image-based method.
Sensor data is a time series containing multiple feature chan-
nels. In fact, an ordinary image is a three-dimensional matrix,
defined by width, height and color channels (red, green, and
blue). Therefore, in order to convert raw sensor data into
the location images, we reconstruct the sensor data series.
We use the first dimension of fingerprint images to represent
the length of the measurements gathered from the sensors,
and the second dimension to store multi-feature channels,
in other words, image width and height respectively. The third
dimension is equal to one, therefore it is omitted.

In order to use images as inputs of the proposed CNN,
the image dimensions have to be normalized to the same size.
The fingerprint image F is composed of magnetic-fingerprint
part F* and Wi-Fi fingerprint part F, represented as:

F™ = [MS,MSs, - ,MS,] (H
[ RSSI;; RSSI» RSSIy,
e | R RS g
| RSSImi RSSIn RSSIyn
r Fm _ Fm
F= ((FW —MEFW;;/U(Fm)} 3)
I HED o ()

where F and F" are resampled to fit the image with the
normalized image width n and MS means magnetic strength.
In order to accelerate the convergence of the training process,
the fingerprint image F' normalizes the F" and F™" by deduct-
ing the mean and dividing the standard deviation respectively.
n is defined by the detection range r and the storage density p
as shown in formula (4). The balanced structure guarantees
the classification point lies in the center of the fingerprint
image.

n=2-round(r-p)+1 @)

The height normalization process of the fingerprint images
is different between the magnetic field and Wi-Fi signals. The
magnetic field part only uses strengths as location features,
so the magnetic strengths F™" are stored as a 1 x n vector.
The Wi-Fi fingerprint image is stored as a m X n matrix,
where the height m is equal to the number of all Wi-Fi MAC
addresses detected in the positioning area. Elements in F*
are equals to the received signals strength (RSS) collected
from APs. In order to keep the consistency of fingerprint
images, the RSS of an AP at point P, whose strength is not
measured is set equal to -120dB. Finally, the final image is
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built by concatenating magnetic field and Wi-Fi parts along
the second dimension.

VI. CNN POSITIONING MODEL

The proposed positioning solution combines the location
features of Wi-Fi and magnetic field fingerprints using a
hierarchical CNN. The network is built using the MatCon-
vNet library that has provided ready-to-use modules. In this
section, we introduce the algorithm architecture and we
describe modules used in our system. Furthermore, we ana-
lyze the network attributes obtained from Wi-Fi and magnetic
field signals, then we present the final design of the position-
ing CNN.

A. BASIC LAYERS OF THE PROPOSED POSITIONING CNN
The proposed positioning CNN has a stacked layer struc-
ture, as Fig. 3 reveals. The convolution, pooling, rectified
linear unit (ReLu) and the fully connected multilayer per-
ceptron (MLP) modules play an important role in learning
location features from multiple fingerprint images.

FIGURE 3. A basic CNN structure of the proposed positioning system.

The convolution layer has H; random initialized convo-
lution windows. In order to learn location features, these
convolution windows slide along the input fingerprint image
with given moving stride S;. For each stride, the convolution
window calculates the dot product of the convolution win-
dow vector and the image part vector under the convolution
window. The length of the convolution window is Wi. The
outputs of the convolution layer is H new feature maps.

Wi m
Yirky = bk, + Zilzl Zjlzl Wiy j 'F?;‘Sl-i'ilyjl.kz
1<i2<1+\‘n—W1
- st )
l <ky <H
F e (F™, F"}

where w;, j, is an element of the convolution windows.
Fiy iy ko is an elem(?nt of .the fingerprint images, and by, is
the bias of a convolution window.

The pooling layer down-samples the feature maps gener-
ated by the previous layer to reduce the data size and keep
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the main location features. In the proposed system, the max-
pooling layer is applied. It leverages a max filter to the
sub-regions of the initial feature map and takes the most
obvious feature of that region, creating a new output feature
maps. Each element of this new output is the most obvious
feature of a region considering the original input. This process
is represented as:

Yig kg = 151’22)%’1/3 Yig-S3+i3,ks
. max(iz) — W3

1 < k4 < max(kz)

where W3 and S3 are the windows width and the windows
stride of the max pooling filter, respectively.

The ReLu layer is a nonlinear activation function, which
adds potential non-linearity to the mapping between features
and locations, represented as:

Yis, ks = max (O, yi4,k4) (7)

Finally, the fully connected MLP calculates prediction values
of all position labels. This layer is a special case of the
convolutional layer when the convolutional window width
We = max(i5). The number of convolutional windows Hg
equals to the number of classification positions C. The output
of this layer is a prediction vector y; (is = 1 : He). Every
element in this vector is a score of the predicted positions.
The estimated location is the position with the highest score.

In the training phase, the CNN scheme tunes the neural
network by comparing the prediction and the ground-truth
position c. In order to evaluate the prediction errors, the pro-
posed system adopts the soft-max loss function. The soft-max
loss is calculated as:

e’

Zg _, &

where y,. is the prediction score of the ground truth label.

¢ =—log 8)

B. Wi-Fi BRANCH

In order to reduce the influence of the signal heterogene-
ity, the proposed positioning CNN leverages a Wi-Fi and
magnetic field branch to separately learn high-level location
features that are signal independent. Then, a united branch is
used to learn the relation between ground-truth positions and
high-level features to predict location estimates.

The biggest challenge of developing Wi-Fi based position-
ing is the random fluctuation of Wi-Fi signals. Therefore,
researchers increase the number of sample time to find the
statistical features of APs, but this solution increases sam-
pling workloads and does not work well for moving targets.
In order to localize pedestrians with less AP samples, we use
long convolution windows and small size neural networks to
prevent the potential overfitting problems.

Convolution windows are able to automatically extract
location features from Wi-Fi fingerprint images. As Fig. 4
shows, Wi-Fi fingerprint images, and convolution windows

6

FIGURE 4. Wi-Fi fingerprint image and convolution window.
The horizontal stripes are RSSs of APs.

can be represented as two matrixes. The convolution matrix
is randomly initialized and slides along the fingerprint image
matrix to extract location features. For each training epoch,
the convolution layer generates a new feature map to rep-
resent high-level location features, and then the network
leverages backpropagation algorithms to update the param-
eters of the convolution matrix. Fig. 5 illustrates a convo-
lution window before and after the neural network training.
Although this filter is randomly initialized, it produces a
strong and clear pattern after the learning process, as depicted
in Fig. 5(b). Therefore, with the learned patterns in the train-
ing phase, the neural network is able to classify real-time
fingerprint images during the positioning phase.

(@ (b)

FIGURE 5. Weights of a convolution window for Wi-Fi positioning
branch. Figure 5(a) shows the initial weight state of a convolution
window. The windows are randomly initialized. Figure 5(b) shows the
convolution window after the training phase. The two lines in circle 1
and circle 2 show the features learned from AP 68 and AP 141.

FIGURE 6. The proposed Wi-Fi positioning branch applying to an example
of our system.

Fig. 6 specifies the structure of the long convolution win-
dows and the small-size neural network. The proposed CNN
uses one convolution layer to extract location features from
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the inputted fingerprint images, followed by a batch norm
layer to accelerate convergence, and then a ReLu layer to
add nonlinearity, finally the MLP converts feature maps to
location labels. Based on our experiments, we set the length
of the fingerprint images as 10.4 meters, approximately equal
to the length of 16 steps (about 0.65 meters for one-step
length). The length of convolution windows is set to 4 meters,
with 50% overlap between different windows. Considering
the storage density of Wi-Fi samples equal to 12.5 sam-
ples/meter, the input 10.4 meter fingerprint image corre-
sponds to 130 samples, and the 4 meters convolution window
comprises of 50 samples as shown in Fig. 6. The height
of the fingerprint images and the convolution windows are
equal to the number of access points within the positioning
area (151 AP addresses in our experiments). The output of
the neural network is a weight vector of all predictions,
consequently is equal to the number of classification points
(244 points in our experiments). In conclusion, the proposed
network decreases the network freedom, therefore relieves
the overfitting problem.

C. MAGNETIC FIELD BRANCH

Magnetic field features are more stable and complex than
the previously described Wi-Fi features. In order to learn
these feature patterns, we propose a deeper CNN structure
with smaller convolution windows. Both the small window
size and deep CNN structure can increase network freedoms,
therefore improve the learning ability for complex position
patterns. As Fig. 7 shows, the proposed network consists of
nine layers: three convolution layers for learning features,
three batch normalization layers for accelerating the training
convergence, one max-pooling layer for reducing data size,
one ReLu layer for adding nonlinearity, and one fully con-
nected MLP layer for outputting final predictions.

FIGURE 7. The proposed magnetic positioning branch applying to an
example of our experiments.

The proposed magnetic CNN learns feature pattern by
adjusting the bias of convolution windows. The convolution
window consists of two kinds of parameters: weights and
bias. During the training phase of the Wi-Fi positioning
branch, the network mainly tunes the weight. However, con-
sidering the magnetic field branch, the network mainly tunes
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FIGURE 8. Bias values of a convolution window for magnetic field based
positioning branch. We run the training program for 60 epochs,

the figure shows four epochs as an example. The four bias vectors are
evaluated during the last convolution layer. We trim the first 70 biases
from the whole 244 biases for clarity.

the bias. As Fig. 8 shows, the bias patterns become gradually
stronger as the training proceeds. The network is learning the
location pattern from magnetic field fingerprints. Magnetic
strength is stable, so its bias has a constant pattern. Com-
pared with Wi-Fi branch, the convolution window size of the
magnetic field is smaller and the number is larger. Therefore,
hundreds of random initialized magnetic convolution window
weights have covered almost all possible patterns. Hence,
with respect to the magnetic fingerprint images, the main
differences between them are the combination of convolution
window biases, rather than window weights.

D. UNITED BRANCH

In order to take the advantages both of the magnetic field
and Wi-Fi fingerprint images, this paper compares two kinds
of united positioning methods: the direct and the branch
method. The direct method uses convolution windows slid-
ing across the united fingerprint image and produces pre-
dictions as outputs. The branch method calculates separate
positioning results with the proposed Wi-Fi and magnetic
field branches, and then these results are used as inputs of
the united branch. Finally, the united branch is responsible
for outputting predictions in terms of positioning evaluations.
As Fig. 9 shows, the united branch method achieves the best
positioning results compared with the performances achieved
by the Wi-Fi branch only or the magnetic field branch only.
Furthermore, the performance of the direct method is the
worst, because the common convolution windows are not
able to simultaneously capture features from both Wi-Fi and
magnetic field fingerprint parts.

FIGURE 9. Performances comparison using different localization
methods.
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FIGURE 10. The architecture of our proposed CNN. Our system consists of
three branches: the Wi-Fi branch, the magnetic branch, and the union
branch.

As Fig. 9 shows, the maximum Wi-Fi branch error is
equal to 18 meters. Considering indoor environments, these
results are not high. On the contrary, the magnetic field
branch can easily achieve high positioning accuracy, but it
also suffers from big jitter error problems. The proposed
positioning CNN takes the advantages from both Wi-Fi and
magnetic branches. As Fig. 10 reveals that the proposed CNN
leverages a DAG structure to combine the Wi-Fi and magnetic
branches. United fingerprint images are decomposed into
separated Wi-Fi and magnetic field parts. Then, the Wi-Fi
branch produces a high-level signal-independent prediction
vector as intermediate outputs. Namely, it is a vector whose
elements are the prediction scores of the classification posi-
tions. Similarly, the magnetic field branch produces a second
prediction vector. Successively, the united branch concate-
nates the Wi-Fi and magnetic field prediction vectors, then
uses the combined prediction vector as the input of the united
branch to find the patterns between ground-truth positions
and the combined prediction vector, and finally estimates the
user locations.

E. TIME COMPLEXITY ANALYSIS

The key parameters affecting the time complexity of the pro-
posed positioning CNN is the number of APs M, the length
of fingerprint features N, the number of convolution windows
in Wi-Fi branch H,,, the number of convolution windows in
magnetic field branch H,,, the number of convolution win-
dows in united branch H,, and the number of classification
points P.

8

Wi-Fi branch time complexity: considering the convolu-
tion layer is the multiplication of Wi-Fi fingerprint images
and filter matrices, based on formula (5), the time complexity
of the convolution layeris O (H,, - M - N). The time complex-
ity of the batch normalization and ReLu layer is O (M - N).
The time complexity of the MLP layer is O (P-M - N).
Therefore, the total complexity of the Wi-Fi branch is
OMHy, - M-N)+OM - -N)+O(P-M-N)~ O(Hy,+P)-
M -N).

Magnetic field branch time complexity: the convolution
process of the magnetic field branch is the multiplication of
magnetic field fingerprint image and filter matrices, the time
complexity of convolution layers is O (H,, - N). The time
complexity of the pooling, batch normalization and ReLu
layer is O (N). The time complexity of the MLP layer
is O (P - N). Therefore, the total complexity of the mag-
netic field branch is O (H,,-N) + O(N) + O(P-N) ~
O((Hpu + P) - N).

United branch time complexity: the convolution process of
the united branch is the multiplication of concatenated images
and filter matrices, the time complexity of convolution layers
is O (H, - N). The time complexity of the concatenation,
batch normalization and ReLu layer is O (N). The time com-
plexity of the MLP layer is O (P - N). Therefore, the total
complexity of the united branch is O (H, - N) + O (N) +
O(P-N)~O(H,+P)-N).

Positioning CNN time complexity: in conclusion,
the overall time complexity of the positioning CNN is
O(Hy+P)-M-N)+O((Hu+P)-N)+O((H,+P)-N)
~O(Hy, - M+P-H,+2-P+H, +H,) -N). The order
of magnitudes of H,, H,, H,,M, N and P are the same,
therefore the overall time complexity can be simplified as
O (N?). Considering the length of fingerprint features N is
limited, the calculation complexity of our proposed algorithm
is acceptable.

VIi. CNN TRAINING

Considering that training methods influence the performance
of the network, we present the training method for every sin-
gle branch, and we propose the early-stop assisting training
method.

The number of training epochs influences the performance
of neural networks. Considering that the Wi-Fi and magnetic
branches have different features, we use different training
methods to tune the parameters of different branches.

Wi-Fi branch training: Fig. 11 illustrates that the classi-
fication error rate of the Wi-Fi branch in different learning
epochs. If the training error rate drops continuously after
each training epoch, it indicates that the network keeps
learning features from training data. The top-one valida-
tion error rate has little change in Fig. 11(a), because the
fluctuation of Wi-Fi signals makes confused classification
between adjacent points. Consequently, the top-one error rate
is not able to reflect the learning process of the Wi-Fi branch
when the validation dataset is analyzed. Fig. 11(b) shows
the trend of the error rate, considering the top-15 error rate.
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FIGURE 11. The classification error rate of Wi-Fi branch training. The blue
lines show the error rate during the training phase. The red lines are
related to the validation phase.

During the validation phase, the error rate drops at the begin-
ning. When over-training occurs (after the sixth training
epoch), the error rate begins to rise. Therefore, we propose
the early-stop method that fully trains the Wi-Fi positioning
branch until minimum top-15 error rate is determined, then
chooses the CNN model at the minimum epoch as the final
model.

(a) (b)

FIGURE 12. The classification error rate of the magnetic field branch
during the training phase. The blue lines represent the error rate during

lidati

the training phase. The red lines are related to the ion ph

Magnetic field branch training: indoor magnetic fields are
more stable than Wi-Fi signals, so magnetic field branch
performance improves as the training process continues.
As Fig. 12 shows, when the training phase starts, both the
training and the validation error rate drops continuously.
The simultaneous drop indicates the high similarity between
training data and validation data. Therefore, we suggest con-
tinuing the magnetic field training phase until the error-rate
keeps stable.

The early-stop assisting training method for the united
positioning CNN: considering the multi-branch structure of
the proposed positioning CNN, this paper divides the training
procedure into two steps, as Algorithm 3 shows. The Wi-Fi
branch training phase is considered separately. The magnetic
field and the union branch training phase runs simultaneously.

VIIl. FINGERPRINT CLASSIFICATION

The proposed system leverages classification methods to
localize real-time positioning fingerprints. Therefore, the sys-
tem discretizes continuous indoor positions into separate
classification points. In order to improve positioning accu-
racy, the classification points should be dense enough. For
example, in order to achieve meter-level positioning, our

VOLUME 6, 2018

FIGURE 13. Fingerprints within the detection circle are labeled belonging
to point P. As light gray is shown a T shaped corridor. r is the radius of the
detection range.

experiment set the density higher than one classification point
per square meter.

As the Algorithm 2 reveals, features from nearby classi-
fication points are sampled in order to be utilized as inputs
in the neural network-training phase. In our practice, a tester
walks at a uniform speed (~1 m/s), following a sample line,
and holding a smartphone. As Fig. 13 shows, the sample line
could be a straight line (L.1), or a polygonal line (L2) along
with a corridor intersection. Then, these raw samples are
classified into different classification points. All fingerprint-
images are required to have similar lengths. Given a finger-
print length /, we extracts feature segments with the help of
a detection circle. The radius r of the detection circle is half
of the fingerprint length /. Then feature segments within the
circle are cut out as candidate segments. All the candidate
segments shorter than the 80% (based on our experiments) of
the diameter are discarded because they are considered too far
from the current classification point to convincingly represent
its features. Then, the rest segments are labeled as fingerprints
of the classification point P.

IX. EXPERIMENTS AND RESULTS

We evaluate the key coefficients used in our proposed CNN
based localization algorithm, and we perform further applica-
ble tests considering different devices, users, and use cases.
Finally, we compare our presented solution with other state-
of-the-art positioning methods.

A. SETUP OF THE EXPERIMENTAL CAMPAIGN

The system is tested on the seventh floor of the Research
Building of the Institute of Computing Technology, Chinese
Academy of Sciences. This representative office building
covers an area of 60m x 40m, and have fourteen floors, each
with ceiling heights of 3 meters. The test site is comprised of
office rooms and workstations, as Fig. 14 reveals. Worksta-
tions are made of wood and plastics, and the heights of work-
stations are 1.5m. There are few iron filing cabinets along
the paths. The test site includes two scenarios: corridors and
working areas. Different from the working areas, corridors

9
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FIGURE 14. The floor plan of the test site. The yellow zone represents
reachable areas. The red dash lines stand for data sampling routes.
The gray blocks represent office rooms. The orange blocks represent
workstations.

are near walls and pillars, therefore the magnetic field fea-
tures gathered are distinctly different. All the reachable areas
are discretized into 533 classification points. In the sampling
phase, users collect data four times along all the sample lines.
In the positioning phase, testers walk inside the reachable area
and make marks when reaching the testing points. Finally,
the error distances between the positioning and the testing
points are calculated with 2D Euclidean distance. The testing
paths are longer than 200 meters.

The positioning system is implemented on a cloud-
computing platform, because the cloud platform has high
flexibility in testing new versions of positioning algorithms
and more powerful data-processing capability, compared to
smartphone platforms. It takes about 2 milliseconds to calcu-
late positioning results for each positioning request.

FIGURE 15. Positioning performance of different early-stop parameters.

B. THRESHOLD INFLUENCE OF THE TRAINING-STOP

In order to evaluate the training-stop parameter ¢ of the united
positioning CNN, we compare the accuracy using different
training-stop thresholds. In Algorithm 1, after training the
Wi-Fi branch and keeping it unchanged, we train the magnetic
and the united branch. For each training epoch, a sliding
window with five adjacent top-one error rates is leveraged to
calculate the standard deviation. As Fig. 15 reveals, the posi-
tioning performance increases as the standard deviations of
learning rates drop, which introduces more training cost.

10

Algorithm 1 Early-Stop Training of the United Positioning
CN

I Initialization: e,

2: Initializing united positioning CNN with random
coefficients.

® ;N kW

9:  Updating the training model with the minimum
top-15 error rate.

11:

12:

13:

14: Replacing the Wi-Fi branch of the united CNN with the
trained Wi-Fi model

15: Setting the learning rate of the Wi-Fi branch to be zero.

16: Magnetic and united branches training

17: Inputting training data and labels.

18: for each training epoch do

19: Calculating the standard deviation e of the last few
top one error rates

20:
21:
22:
23: end for

When standard deviation is less than 0.042, the performance
improvement brought from the training becomes less signifi-
cant. To balance the training cost and performance, we choose
0.042 as the typical value of the training-stop parameter ¢ in
this paper.

C. INFLUENCE OF DIFFERENT FINGERPRINT LENGTHS

In this experiment, we evaluate the Influence of different
fingerprint lengths on positioning accuracies. We separately
test positioning accuracies with different lengths using Wi-Fi
branch only, magnetic field branch only and the united
CNN, respectively. Our system is triggered by step events,
and we measure fingerprint lengths with strides (2 steps,
~1.3m). In this experiment, performed along a single cor-
ridor, we compare the positioning performances with finger-
print lengths ranging from 1 stride to 20 strides.

1) Wi-Fi BRANCH
Fig. 16 shows that longer Wi-Fi fingerprints generally achieve
better positioning accuracies. When fingerprint images are

VOLUME 6, 2018



W. Shao et al.: Indoor Positioning Based on Fingerprint Image and Deep Learning

IEEE Access

Algorithm 2 Procedure of the Fingerprint Classification
1: Uniformly generating N, position labels into the testing

2: Considering as input the begin and the endpoints of
sampling lines

12: end for

FIGURE 16. Positioning performances of Wi-Fi positioning branch using
different strides.

too short (e.g., from 1 to 4 strides) the obtained positioning
accuracies are low. A Wi-Fi scan takes about 2 ~ 3 seconds to
finish, which roughly corresponds to the length of four steps.
Therefore, the fingerprint images with less than four steps
have the same features and, consequently, the branch shows
the same performance. On the other hand, when fingerprint
images are too long, e.g. 20 strides, the positioning accuracy
drops to the same level of eight strides. In fact, the 20 stride
fingerprint images cover a path longer than 13 meters, and
it contains too many features of adjacent locations. In con-
clusion, the length of the Wi-Fi fingerprint image should be
neither too short nor too long.

2) MAGNETIC FIELD BRANCH

Fig. 17 shows, the performance of the magnetic branch
increases as the length of magnetic images increases. Mag-
netic field signals are more stable than Wi-Fi signals, which
is helpful in precisely align the real-time and the model

VOLUME 6, 2018

FIGURE 17. Positioning performances of magnetic positioning branch
with different strides.

fingerprint images. Comparing Fig. 17 with Fig. 16, we can
find that the positioning errors produced by the Wi-Fi branch
are concentrated around the ground-truth location and the
errors of the magnetic branch are distributed around the whole
positioning area.

FIGURE 18. Positioning performances of the united branch of the
positioning CNN with different strides.

3) UNITED BRANCH

Fig. 18 illustrates that the united branch of the positioning
CNN performs better than the single Wi-Fi and magnetic field
branches. With respect of the lowest errors, the united branch
performs as good as magnetic field branch. On the other
hand, the largest errors are limited to the same level as the
Wi-Fi branch. The experimental result convincingly reveals
that the proposed positioning CNN successfully gathers the
advantages of the Wi-Fi and magnetic field signals. It is worth
noting how the one and two stride lines are confused together
in single Wi-Fi branch and magnetic field branch perfor-
mances. The proposed CNN produces well-distinguishable
lines for one and two strides. This phenomenon is caused
by the fact that the magnetic field branch finds many similar
model images as candidates in the whole positioning area.
On the other hand, the Wi-Fi branch increases the weights
of candidate models that are near to the Wi-Fi branch pre-
dictions. As a result, the probability of selecting correct
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location improves. As a conclusion, positioning accuracies
increase as the lengths of fingerprint images enlarge. How-
ever, longer images also bring in larger time delay. Therefore,
it is important to find a tradeoff between the accuracy and the
delay, and it depends on the application scenario.

D. PERFORMANCES WITH DIFFERENT

DEVICE ORIENTATIONS

This experiment tests the performance with different smart-
phone orientations. A tester holds a smartphone with different
device orientations: pointing forward, backward, leftward
and rightward. When the smartphone is pointing forward or
backward, the smartphone’s long edge is parallel to the user
moving direction. When the device is leftward or rightward,
the long edge is vertical to user direction. The forward mode
is the most common scenario for various LBS applications.
The e-compass orientation of this mode is in accordance
with the user moving direction. Similarly, the backward ori-
entation is inverse to moving direction. Fig. 19 shows the
positioning performances of Wi-Fi, magnetic field and united
positioning CNN under the abovementioned device orienta-
tions. The results indicate that the proposed method performs
well under different smartphone orientations. This is because
the scheme leverages the RSS of Wi-Fi and the strength of
the magnetic field as fingerprint images. The two kinds of
features are irrelevant to the different device directions.

FIGURE 19. Positioning performances with different smartphone
orientations.

E. ACCURACIES WITH DIFFERENT USERS

The above experimental results on positioning accuracies are
based on the traces mainly collected by one of our authors.
In order to examine the system adaptability when used by
other people that may walk with different stride lengths and
speeds, we recruited other four volunteers (one female and
three males) with different heights (between 1.62m to 1.95m)
and asked them to test our proposed system in the positioning
area. The CNN model is trained based on the data collected
by the user one. Fig. 20 denotes the positioning performances
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FIGURE 20. Box graph of positioning performance for different users.

FIGURE 21. Positioning performance comparison with different
positioning systems.

using a box graph. Observing the segments between the first
and third quartile, we can find that the segment of user one
is the shortest and close to the x-axis, indicating that most
of the positioning results are near to ground-truth positions.
This is because the user one is the model trainer. Compared
with user one, the first quartile of the other four users are
similar to the user one, but the third quartiles have a larger
variation. The first quartile is strongly influenced by the mag-
netic field branch, so the magnetic field images are stable for
different users. On the other hand, Wi-Fi features are prone
to be affected by human bodies, therefore the third quartile
performances decrease. Although the proposed solution has
adopted several techniques to overcome the fluctuation of
Wi-Fi signals, it is still difficult to completely eliminate the
overfitting problem of Wi-Fi images with a few samples.
In the future, we will try crowdsourcing techniques to collect
more data as described in [42] and [43] with less human
resources and maintaining the Wi-Fi fingerprint updating on
time.

F. PERFORMANCE COMPARISON

To evaluate the performance of our proposed algorithm,
we compare the localization accuracy with several state-
of-the-art positioning systems, i.e., Radar [6], EZ [44],
Zhou and Wieser’s BPNN method [33] and Magicol [12]. As
Fig. 21 reveals, the Radar presents a radio-frequency (RF)
based system which records and processes signal strength
information of multiple base stations. The EZ system aims
at performing indoor localization with no pre-deployment
effort. It utilizes opportunistically obtained GPS location

VOLUME 6, 2018



W. Shao et al.: Indoor Positioning Based on Fingerprint Image and Deep Learning

IEEE Access

fixes to estimate AP positions and then uses trilateration
to calculate user locations with the estimated AP positions.
Radar, EZ and Zhou’s method only utilize Wi-Fi signals to
implement infrastructure-free indoor positioning and achieve
decent positioning accuracies. Magicol incorporates Wi-Fi
signals, magnetic field signals and dead reckoning with a
particle filter, therefore improves positioning performances
compared to Wi-Fi only based schemes. Compared with
the Magicol method, the proposed fingerprint image method
achieves similar accuracies, but the proposed scheme does not
rely on dead reckoning, therefore, has no restrictions due to
different smartphone orientations.

X. CONCLUSION

This paper proposes a mixed fingerprint image based indoor
positioning system utilizing the deep learning. It introduces
a novel fingerprint representation scheme to convert Wi-Fi
and magnetic field signals into fingerprint images. These
high-resolution images are the input of the proposed posi-
tioning system and assure the achieving of high positioning
accuracies. Compared with traditional positioning methods
that needs much effort in designing algorithms for fitting
heterogeneous signals, filtering results and tuning parame-
ters, our system uses CNN to automatically learn the map-
ping between ground-truth positions and fingerprint images.
Because of the powerful learning ability of CNN and the
orientation insensitivity of the fingerprint image, the pro-
posed positioning scheme achieves orientation-free position-
ing ability with remarkable accuracies. To make clear the
principles of our proposal, we also design and test our system
considering Wi-Fi branch only and magnetic field branch
only. In order to utilize deep learning technique inside of
the indoor positioning context, we also design an indoor
position labeling method and an image construction method
for creating image-based positioning fingerprints. And the
early-stop assisting training method helps the system to learn
location features in small training datasets, which makes
it applicable in large application. Finally, our experiments
convincingly reveal that the proposed positioning method
reaches remarkable performances with various smartphone
orientations, users, and use cases. For future work, we plan
to develop schemes to artificially expanding the training data
from sparse Wi-Fi samples to reduce sampling workload.

REFERENCES

[1]1 G. Zhang and S. V. Rao, “Position localization with impulse ultra wide
band,” in Proc. IEEE/ACES Int. Conf. Wireless Commun. Appl. Comput.
Electromagn., Apr. 2005, pp. 17-22.

[2] Y. Guo, L. Yang, B. Li, T. Liu, and Y. Liu, “RollCaller: User-friendly
indoor navigation system using human-item spatial relation,” in Proc.
IEEE INFOCOM IEEE Conf. Comput. Commun., Apr/May 2014,
pp. 2840-2848.

[3] K. Liu, X. Liu, L. Xie, and X. Li, “Towards accurate acoustic localization
on a smartphone,” in Proc. IEEE INFOCOM, Apr. 2013, pp. 495-499.

[4] K. Wu, X. Jiang, Y. Youwen, G. Min, and L. M. Ni, “FILA:
Fine-grained indoor localization,” in Proc. IEEE INFOCOM, Mar. 2012,
pp. 2210-2218.

[5] S. Yang, P. Dessai, M. Verma, and M. Gerla, “FreeLoc: Calibration-free
crowdsourced indoor localization,” in Proc. IEEE INFOCOM, Apr. 2013,
pp. 2481-2489.

VOLUME 6, 2018

[6]

[71

[8]

[9]

(10]

(11]

[12]

[13]

[14]

[15]

[16]

(17]

(18]

[19]

[20]

(21]

(22]

(23]

(24]

[25]

(26]

(27]

(28]

P. Bahl and V. N. Padmanabhan, “RADAR: An in-building RF-based
user location and tracking system,” in Proc. 19th Annu. Joint Conf. IEEE
Comput. Commun. Soc. (INFOCOM), vol. 2, Mar. 2000, pp. 775-784.

N. Hernandez, M. Ocafia, J. M. Alonso, and E. Kim, “Continuous space
estimation: Increasing WiFi-based indoor localization resolution without
increasing the site-survey effort,” (in English), Sensors, vol. 17, no. 1,
Jan. 2017, Art. no. 147.

F. Zhao, H. Luo, X. Zhao, Z. Pang, and H. Park, “HYFI: Hybrid floor
identification based on wireless fingerprinting and barometric pressure,”
IEEE Trans. Ind. Informat., vol. 13, no. 1, pp. 330-341, Feb. 2017.

X. Wang, L. Gao, S. Mao, and S. Pandey, “CSI-based fingerprinting for
indoor localization: A deep learning approach,” IEEE Trans. Veh. Technol.,
vol. 66, no. 1, pp. 763-776, Jan. 2017.

K. Wu, J. Xiao, Y. Yi, D. Chen, X. Luo, and L. M. Ni, “CSI-based
indoor localization,” IEEE Trans. Parallel Distrib. Syst., vol. 24, no. 7,
pp. 1300-1309, Jul. 2013.

K. P. Subbu, B. Gozick, and R. Dantu, “LocateMe: Magnetic-fields-based
indoor localization using smartphones,” ACM Trans. Intell. Syst. Technol.,
vol. 4, no. 4, Sep. 2013, Art. no. 73.

Y. Shu, C. Bo, G. Shen, C. Zhao, L. Li, and F. Zhao, “Magi-
col: Indoor localization using pervasive magnetic field and oppor-
tunistic WiFi sensing,” IEEE J. Sel. Areas Commun., vol. 33, no. 7,
pp. 1443-1457, Jul. 2015.

H. Xie, T. Gu, X. Tao, H. Ye, and J. Lv, “Mal.oc: A practical magnetic fin-
gerprinting approach to indoor localization using smartphones,” presented
at the UBICOMP, Seattle, WA, USA, Sep. 2014.

H. Luo, F. Zhao, M. Jiang, H. Ma, and Y. Zhang, “Constructing an
indoor floor plan using crowdsourcing based on magnetic fingerprinting,”
Sensors, vol. 17, no. 11, p. 2678, 2017.

W. Shao, H. Luo, F. Zhao, C. Wang, A. Crivello, and T. M. Zahid, “DePos:
Accurate orientation-free indoor positioning with deep convolutional neu-
ral networks,” presented at the Conf. UPINLBS, Wuhan, China, Mar. 2018.
F. Potorti et al., “Comparing the performance of indoor localization sys-
tems through the EVAAL framework,” Sensors, vol. 17, no. 10, p. 2327,
2017.

A.W.S. Au et al., “Indoor tracking and navigation using received signal
strength and compressive sensing on a mobile device,” IEEE Trans. Mobile
Comput., vol. 12, no. 10, pp. 2050-2062, Oct. 2013.

Y. Jiang et al., “ARIEL: Automatic Wi-Fi based room fingerprinting for
indoor localization,” presented at the ACM Conf. Ubiquitous Comput.,
Pittsburgh, PA, USA, 2012.

S. He and S.-H. G. Chan, “Sectjunction: Wi-Fi indoor localization based
on junction of signal sectors,” in Proc. IEEE Int. Conf. Commun. (ICC),
2014, pp. 2605-2610.

M. Youssef and A. Agrawala, “The Horus WLAN location determination
system,” presented at the 3rd Int. Conf. Mobile Syst., Appl., Services,
Seattle, WA, USA, 2005.

R. Nandakumar, K. K. Chintalapudi, and V. N. Padmanabhan, *“Centaur:
Locating devices in an office environment,” presented at the 18th Annu.
Int. Conf. Mobile Comput. Netw., Istanbul, Turkey, 2012.

R. W. Ouyang, A. K.-S. Wong, C.-T. Lea, and M. Chiang, ““Indoor location
estimation with reduced calibration exploiting unlabeled data via hybrid
generative/discriminative learning,” IEEE Trans. Mobile Comput., vol. 11,
no. 11, pp. 1613-1626, Nov. 2012.

Z. Xiao, H. Wen, A. Markham, and N. Trigoni, “‘Lightweight map match-
ing for indoor localisation using conditional random fields,” presented at
the 13th Int. Symp. Inf. Process. Sensor Netw., Berlin, Germany, 2014.

S. He and K. G. Shin, “Geomagnetism for smartphone-based indoor local-
ization: Challenges, advances, and comparisons,” ACM Comput. Surv.,
vol. 50, no. 6, pp. 1-37, 2017.

H. Wang, S. Sen, A. Elgohary, M. Farid, M. Youssef, and R. R. Choudhury,
“No need to war-drive: Unsupervised indoor localization,” presented at the
10th Int. Conf. Mobile Syst., Appl., Services, Lake District, U.K., 2012.
Y. Shu, K. G. Shin, T. He, and J. Chen, ‘“Last-mile navigation using
smartphones,” presented at the 21st Annu. Int. Conf. Mobile Comput.
Netw., Paris, France, 2015.

W. Shao et al., “Location fingerprint extraction for magnetic field mag-
nitude based indoor positioning,” J. Sensors, vol. 2016, Oct. 2016,
Art. no. 1945695.

A. K. T. R. Kumar, B. Schiufele, D. Becker, O. Sawade, and 1. Radusch,
“Indoor localization of vehicles using Deep Learning,” in Proc. IEEE
17th Int. Symp. World Wireless, Mobile Multimedia Netw. (WoWMoM),
Jun. 2016, pp. 1-6.

13



IEEE Access

W. Shao et al.: Indoor Positioning Based on Fingerprint Image and Deep Learning

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

X. Wang, X. Wang, and S. Mao, “CiFi: Deep convolutional neural net-
works for indoor localization with 5 GHz Wi-Fi,” in Proc. IEEE Int. Conf.
Commun. (ICC), May 2017, pp. 1-6.

J. Vieira, E. Leitinger, M. Sarajlic, X. Li, and F. Tufvesson, *““Deep convolu-
tional neural networks for massive MIMO fingerprint-based positioning,”
in Proc. Pers., Indoor Mobile Radio Commun., Oct. 2017, pp. 1-6.
Z.Liu, L. Zhang, Q. Liu, Y. Yin, L. Cheng, and R. Zimmermann, “‘Fusion
of magnetic and visual sensors for indoor localization: Infrastructure-free
and more effective,” IEEE Trans. Multimedia, vol. 19, no. 4, pp. 874888,
Apr. 2017.

M. Nowicki and J. Wietrzykowski, “Low-effort place recognition with
'WiFi fingerprints using deep learning,” in Proc. Int. Conf. Automat., 2017,
pp. 575-584.

C. Zhou and A. Wieser, “Application of backpropagation neural networks
to both stages of fingerprinting based WIPS,” in Proc. 4th Int. Conf. Ubig-
uitous Positioning, Indoor Navigat. Location Based Services (UPINLBS),
2016, pp. 207-217.

A. Vedaldi and K. Lenc, “MatConvNet: Convolutional neural networks for
MATLAB,” in Proc. 23rd ACM Int. Conf. Multimedia, 2015, pp. 689-692.
M. Abadi et al., “TensorFlow: A system for large-scale machine learning,”
Oper. Syst. Design Implement., 2016, pp. 265-283.

Y. Jia et al., “Caffe: Convolutional architecture for fast feature embed-
ding,” presented at the 22nd ACM Int. Conf. Multimedia, Orlando, FL,
USA, 2014, pp. 675-678.

M. Angermann, M. Frassl, M. Doniec, B. J. Julian, and P. Robertson,
“Characterization of the indoor magnetic field for applications in localiza-
tion and mapping,” in Proc. Int. Conf. Indoor Positioning Indoor Navigat.
(IPIN), Nov. 2012, pp. 1-9.

E. Le Grand and S. Thrun, “3-Axis magnetic field mapping and fusion for
indoor localization,” in Proc. IEEE Int. Conf. Multisensor Fusion Integr.
Intell. Syst., Sep. 2012, pp. 358-364.

W. Wang, A. X. Liu, M. Shahzad, K. Ling, and S. Lu, “Understanding and
modeling of WiFi signal based human activity recognition,” presented at
the 21st Annu. Int. Conf. Mobile Comput. Netw., Paris, France, 2015.

M. A. Youssef, A. Agrawala, and A. U. Shankar, “WLAN location
determination via clustering and probability distributions,” in Proc. Ist
IEEE Int. Conf. Pervasive Comput. Commun. (PerCom), Mar. 2003,
pp. 143-150.

W. Shao, H. Luo, F. Zhao, C. Wang, A. Crivello, and M. Z. Tunio,
“DePedo: Anti periodic negative-step movement pedometer with deep
convolutional neural networks,” in Proc. IEEE Int. Conf. Commun. (ICC),
May 2018, pp. 1-6.

W. Zhao, S. Han, R. Hu, W. Meng, and Z. Jia, “Crowdsourcing and
multisource fusion-based fingerprint sensing in smartphone localization,”
IEEE Sensors J., vol. 18, no. 8, pp. 3236-3247, Apr. 2018.

K. Chen, C. Wang, Z. Yin, H. Jiang, and G. Tan, “Slide: Towards fast
and accurate mobile fingerprinting for Wi-Fi indoor positioning systems,”
IEEE Sensors J., vol. 18, no. 3, pp. 12131223, Feb. 2018.

K. Chintalapudi, A. P. Iyer, and V. N. Padmanabhan, ““Indoor localization
without the pain,” presented at the 16th Annu. Int. Conf. Mobile Comput.
Netw., Chicago, IL, USA, 2010.

F. Potorti, A. Crivello, M. Girolami, P. Barsocchi, and E. Traficante,
“Localising crowds through Wi-Fi probes,” Ad Hoc Netw., vols. 75-76,
pp. 87-97, Jun. 2018.

W. Shao, H. Luo, F. Zhao, and A. Crivello, “Toward improving indoor
magnetic field-based positioning system using pedestrian motion mod-
els,” Int. J. Distrib. Sensor Netw., vol. 14, no. 9, 2018.

W. Shao, H. Luo, F. Zhao, C. Wang, A. Crivello, and M. Z. Tunio, “Mass-
centered weight update scheme for particle filter based indoor pedestrian
positioning,” in Proc. IEEE Wireless Commun. Netw. Conf. (WCNC),
Apr. 2018, pp. 1-6.

WENHUA SHAO (S’16) is currently pursuing
the Ph.D. degree in software engineering with the
School of Software Engineering, Beijing Univer-
sity of Posts and Telecommunications, Beijing,
China. He is also a Research Assistant with
the Institute of Computing Technology, Chinese
Academy of Science, Beijing. His current main
interests include location-based services, indoor
localization, inertial navigation, pervasive com-
puting, neural networks, and machine learning.

HAIYONG LUO is currently an Associate Pro-
fessor with the Institute of Computing Technol-
ogy, Chinese Academy of Science, Beijing, China.
His main research interests are location-based ser-
vices, pervasive computing, mobile computing,
and Internet of Things.

FANG ZHAO is currently a Professor with the
School of Software Engineering, Beijing Univer-
sity of Posts and Telecommunications, Beijing,
China. Her research directions are key technology
of things, short-range wireless positioning, inno-
vative mobile Internet applications, and mobile
information.

YAN MA (M’03) received the degree in computer
and telecommunications from the Beijing Univer-
sity of Posts and Telecommunications (BUPT),
Beijing, China, in 1982. He is currently a Pro-
fessor with the Institute of Network Technology,
BUPT. He has participated in several national
key technology research projects, including net-
work management technologies, distance learn-
ing systems and multimedia transmissions, IPv6,
and embedded systems. He is responsible for the
planning, construction, and operation of computer campus network with
BUPT. Since 1994, he has been actively participated in the construction and
operation of China Education and Research Network (CERNET). He is a
member of the expert committee of CERNET, where he is also the Director
of the North China. He has participated in the CNGI-CERNET2 network
design, construction, and operation, which is one of the backbones of the
China Next Generation Internet Project. He is a Senior Member of the China
Institute of Communications. He was a recipient of several national science
and technology awards from 2007 to 2009.

ZHONGLIANG ZHAO received the B.S. degree
from Southeast University, China, the master’s
degree from the Politecnico di Torino, Italy, and
the Ph.D. degree from the University of Bern
in 2014, under the supervision of Prof. T. Braun
from the Communication and Distributed Systems
Group. He is currently a Post-Doctoral Senior
Researcher with the University of Bern. His cur-
rent research interests include mobile ad hoc
and sensor networks, mobile cloud computing,
SDN/NFV, and urban computing.

ANTONINO CRIVELLO (S’ 18) received the Ph.D.
degree in information engineering and science
from the University of Siena, Italy, in 2018.
He is currently a Researcher with the Informa-
tion Science and Technology Institute, Consiglio
Nazionale delle Ricerche, Pisa, Italy. His research
interests include active and assisted living, indoor
localisation, sleep monitoring, and wireless ad hoc
networks.

VOLUME 6, 2018



	INTRODUCTION
	RELATED WORK
	FEATURES OF INDOOR MAGNETIC FIELD AND Wi-Fi SIGNALS
	SYSTEM ARCHITECTURE
	FINGERPRINT CLASSIFICATION
	FINGERPRINT-IMAGE CONSTRUCTION
	CNN POSITIONING
	CNN TRAINING
	STEP DETECTOR

	FINGERPRINT-IMAGE CONSTRUCTION
	CNN POSITIONING MODEL
	BASIC LAYERS OF THE PROPOSED POSITIONING CNN
	Wi-Fi BRANCH
	MAGNETIC FIELD BRANCH
	UNITED BRANCH
	TIME COMPLEXITY ANALYSIS

	CNN TRAINING
	FINGERPRINT CLASSIFICATION
	EXPERIMENTS AND RESULTS
	SETUP OF THE EXPERIMENTAL CAMPAIGN
	THRESHOLD INFLUENCE OF THE TRAINING-STOP
	INFLUENCE OF DIFFERENT FINGERPRINT LENGTHS
	Wi-Fi BRANCH
	MAGNETIC FIELD BRANCH
	UNITED BRANCH

	PERFORMANCES WITH DIFFERENT DEVICE ORIENTATIONS
	ACCURACIES WITH DIFFERENT USERS
	PERFORMANCE COMPARISON

	CONCLUSION
	REFERENCES
	Biographies
	WENHUA SHAO
	HAIYONG LUO
	FANG ZHAO
	YAN MA
	ZHONGLIANG ZHAO
	ANTONINO CRIVELLO


