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Abstract—The Internet of Things (IoT) framework has trans-
formed sensor data utilization, ushering in a new era of sen-
sors integrated into various aspects of modern environment. A
pressing concern in the realm of wearable technology is efficient
power management, encompassing low power consumption and
reducing battery recharging times. This study introduces an
electronic device equipped with a Bluetooth 5.1 Low Energy
(BLE) module, capable of detecting, collecting, aggregating and
transmitting the Root Sum of Squares Method (RSS) of acceler-
ation readings at consistent time intervals. This multi-frequency
wireless controller functions at both sub-1 and 2.4 GHz band-
widths, endorsing the Bluetooth® 5.1 low energy standard and
diverse wireless modalities via a Dynamic MultiProtocol Manager
(DMM) interface. For demonstration purposes, the BMI160 is
has been programmed to internally manage acceleration analyses
across three axes, reducing data transmission, and minimizing
connection times. This device, integrated with other physiological
parameter monitoring systems of an individual/patient, can help
correlate any variation in these parameters with the amount
of motion. The integration of additional sensors can refine
the precision of physiological metric evaluation, broadening the
potential applications of such systems in sectors like healthcare
and well-being.

Index Terms—Bluetooth Low Energy (BLE), Wireless Sensing,
On-Board Computation, Remote Health Monitoring, Root Sum
of Squares Method (RSS)

I. INTRODUCTION

The Internet of Things (IoT) paradigm has revolutionized
the utilization of data from the sensing devices paving the
way for sensor deployment in virtually every aspect of the
modern environment [1]. In addition to integration of the
physical objects into the IoT network, there is a growing
trend in employing wearable sensors to monitor human-related
parameters. Wearable devices have the capability to implement
diverse technologies and offer numerous possibilities for con-
tinuous monitoring of user-specific information which can be
very valuable in the decision making process for some par-
ticular domains, i.e. e-health, sport, wellness, smart buildings,
entertainment etc [2]. So far, their application has been widely
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spread in the entertainment domain with growing interest for
application in health and well-being segment as a tool for col-
lection of crucial vital parameters of the users. Collected user-
related information can then be further employed for diagnosis
or provided as input to care providers for for specific actions
or interventions [3]. As the IoT framework continues to grow,
new opportunities for wearable technologies are emerging.
Notably, their innovative application within smart buildings
stands out as a device for monitoring human parameters and
behavior in order to adjust indoor environmental conditions to
meet user comfort requirements. Recent studies are addressing
utilization of monitoring technologies for personal thermal
comfort. In this context, wearable technologies have been
applied to collect users information and apply collected data
for decision making process in the building management
system for heating, cooling, ventilation and air conditioning
systems. Through the utilization of wearable devices, informa-
tion about different user’s parameters can be monitored, such
as heart rate, wrist skin temperature, activity-based metabolic
rate, electro-dermal activity and wrist skin relative humidity
which are found to be useful information for personal thermal
comfort modelling. Therefore, personal thermal comfort is
investigating the possibilities for linking user’s behaviour and
/ or vital parameters with their subjective evaluation of the
indoor thermal conditions and can be approached by monitor-
ing different inputs. Further on, from technical perspective,
for data acquisition, diverse technical solutions have been
applied in the literature, most frequently for detecting user’s
skin temperature, metabolic rate, clothing level and heart rate
as systematized in [4]. Complementary, the metabolic rate is
recognized as influential parameter for thermal comfort by
official standard EN ISO 7730 since users thermal sensation is
affected by the type of activity and consequently, the metabolic
response of a person (MET) expressed as the rate of produced
energy per unit surface area of human body (W {m2). A MET
represents the relationship between the energy expenditure rate
during an activity and the energy expenditure rate at rest.
It is stated that thermal discomfort predictions vary within
the metabolic rate and clothing insulation approximation ac-
curacy [5]. Measuring metabolic rate on the site is very
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difficult and represents quite a challenge to be technically
implemented in the smart building infrastructure since it is a
very user - specific information and is dynamically changing
based on the environmental conditions, user’s body properties
and the performed activity [6]. To address aforementioned
challenge, different technologies have been applied through
the thermal comfort studies. In the study [7] kinect camera
was used for extraction of the user’s behavior and mapping
it with heart beats (collected with wearable Fitbit device) to
calculate MET value for detected activity. Human activity
was also monitored with video camera [8] and MET value
for three representative activities was classified with respect
to the key points derived from the pose detector. However,
approach based on camera application enables uncertainties in
the MET calculation since it can not ensure fully individual
data collection and it can also be limited by the camera angle
and performances. Alternatively, custom heart rate and body
temperature sensors were applied in [9] and in paper [10]
authors even used a small cellphone for accelerometer data to
gain more complete information about user and calculate or
predict MET values, depending on the selected approach. Also,
commercially available wearable devices such as Apple watch
series 4 [11], Microsoft band 2 [12], Empatica E4 [13] have
been applied for data acquisition but standardized personal
thermal comfort approach is still not developed due to the
uncertainty of the selected inputs, applied sensors and the
individual differences among the people. In [6] authors have
applied Move 3 sensor (Movisens) for activity based MET
calculations which could then be used as a real-time metabolic
rate input for determining the users thermal comfort satisfac-
tion. However, these sensors are lacking additional information
which could more precisely estimate the energy expenditure
(and MET), with additional sensors (such as skin temperature,
heart rate sensor) instead of just the activity information [14].
Further on, the implementation of additional sensors increases
the price and availability of such a device, while also pushing
extra load to the batteries.

One of the critical challenges today for wearable elec-
tronics is power management and low energy consumption,
including battery recharging. Daily usage patterns, including
data sampling and telemetry frequency, often require continual
monitoring of crucial parameters, which can quickly deplete
the battery. Although instant feedback is desirable, it can be
resource intensive. Furthermore, wearable devices that monitor
vital metrics may encounter limitations in data transmission to
cloud platforms, as they often rely on smartphones connected
to the internet through Wi-Fi or 4G mobile networks [15],
[16], [17]. Such real-time transmission usually faces two
major drawbacks: they result in a large amount of data to be
collected and analyzed on the receiver’s end (such as 3-axis
accelerometer data), and it leads to high energy consumption
due to continuous transmission [15].

This paper is an extension of a paper published previously
in the SpliTech conference [18]. In this paper, we introduce
a modular device that utilizes Bluetooth® 5.1 Low Energy
(BLE) for wireless sensing, coupled with integrated com-
putational capabilities. This device employs a computational
measure, notably the Root Sum of Squares Method (RSS),

within a specified time frame (for instance, 1 minute). This
approach ensures efficient use of the node’s RF component,
facilitating the immediate interpretation of the transmitted
data by the receiver. Empirical studies have demonstrated the
efficacy of the RSS measure in capturing the comprehensive
intensity of an individual’s physical activity, positioning it as
a prime metric for monitoring such activities. Furthermore,
incorporation of energy-efficient computational functionalities
within the sensor node not only optimizes power consumption
but also curtails the volume of data requiring transmission.
This design choice aligns with the potential deployment of
wireless communication protocols with reduced data rates, like
BLE, which are inherently designed for energy-conservative
applications [19], [15], [20], [21], [22], [23], [24], [25]. It
is pertinent to emphasize that the system can be augmented
with auxiliary sensors, such as cardiac rate monitoring devices
or electrodermal activity detectors, to bolster the accuracy
of physiological metric assessments. Integrating data from a
gamut of sensors provides a holistic perspective on an individ-
ual’s physiological condition. The architecture of the proposed
solution remains modular, allowing seamless integration with
diverse sensor types as required.

II. BLE PLATFORM FOR RMS IMU DATA ACQUISITION,
ELABORATION, AND TRANSMISSION

An electronic device with a Bluetooth® 5.1 Low Energy
(BLE) radio has been developed that is capable of detecting,
collecting, aggregating, and transmitting the RSS of the accel-
eration data at regular intervals to any standard BLE device.
The system is designed around specific components identified
during technological scouting, including the CC1352R1 from
Texas Instruments. This wireless multiprotocol and multi-
band microcontroller operates on sub-1 GHz and 2.4 GHz
frequencies, supporting Bluetooth® 5.1 Low Energy (BLE)
protocol and other wireless communication protocols through
a Dynamic Multiprotocol Manager (DMM) driver. Its low-
power wireless communication design is ideal for sensing
devices and phisiological parameters. The device can achieve
a maximum transmission power of +5 dBm at 2.4 GHz with a
current consumption of 9.6 mA. Battery life can be maximized
by setting policies for switching between transmission bursts
and standby states, which consumes only 0.85 µA of current
while maintaining complete data in RAM. The CC1352R also
boasts a low standby current of only 5 µA at +85 °C.

The Bosch BMI160 IMU unit is a 6-DOF inertial mea-
surement unit that integrates a 3-axis accelerometer and a
high-performing 3-axis gyroscope with 16-bit resolution. This
system enables the acquisition of acceleration or angular
velocity data while consuming low power. The FIFO buffer
function is partly responsible for this low power consumption,
as it allows for the accumulation of samples in memory
(collected at frequencies up to 1600 Hz) even when the master
microcontroller is in standby. The BMI160 is provided with
standard I2C/SPI communication interface, a 16-bit builtin
AD converter, a 16-bit data gyroscope with ranges ±125,
±250, ±500, ±1000, and ±2000 °/s, and an accelerometer with
ranges ±2, ±4, ±8, and ±16g. To create a compact hardware
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Fig. 1: Architecture of the developed BLE circuit.

solution that meets the project requirements, it was necessary
to develop a device to produce compatible firmware for the
proposed solution.

Fig. 1 shows the architecture of the circuit implemented in
this work. The BLE circuit is powered by a dedicated power
management circuit. The digital interface of the BLE circuit
is connected with the BMI160 accelerometer through the I2C
digital bus. The radio front-end matching network of the BLE
circuit is based on the 0900PC15A0036 passive chip designed
by Johanson Technology1. The circuit block integrates all the
components required for impedance matching, balun transfor-
mation, and harmonic filtering on both radio interfaces on the
CC1352R. Moreover, it properly “merges” together the TX-
RX chains to use a unique antenna.

At the firmware level, the system is optimized for motion
analysis, capturing acceleration data along all three spatial
axes. It can accurately calculate Root Mean Square (RMS)
acceleration values over customizable time intervals, ranging
from 6 seconds to 6 minutes (Fig. 2). This architecture
empowers the system to capture and analyze motion data with
precision, making it suitable for a wide range of applications,
including health monitoring. The firmware is programmed to
alternate between the sleep and active phases, ensuring that the
BMI160 accelerometer operates in specific intervals to capture
data when needed. A sampling rate of 25 frames per second
has been considered to calculate the RMS value. An important
feature of the system is the remote reconfiguration. A specific
BLE characteristic enables external devices to modify sensor
parameters and data acquisition settings. This aspect enhances
the system versatility and adaptability to different monitoring
scenarios, enabling real-time adjustments as needed. More

1https://www.johansontechnology.com/datasheets/0900PC15A0036/
0900PC15A0036.pdf

static void PeriodicTask(void)
{

i2cTransaction.writeBuf = txBuffer2;
i2cTransaction.writeCount = 1;
i2cTransaction.readBuf = rxBuffer;
i2cTransaction.readCount = 1;

txBuffer2[0] = 0x01;
// txBuffer2[1] = 0x01; //shootdown mode
i2cTransaction.slaveAddress = (0xA0>>1);

rslt += bmi160_read_accel_xyz(&myaccelxyz);
Display_printf(dispHandle, 22, 0, "accelo: x = %d, y = %d,z = %d\n",myaccelxyz.x

, myaccelxyz.y, myaccelxyz.z);

if(timer == IMUINTERVAL) {
//primo ciclo
myaccelxyzRMS.x = myaccelxyz.x;
myaccelxyzRMS.y = myaccelxyz.y;
myaccelxyzRMS.z = myaccelxyz.z;

}
else{
myaccelxyzRMS.x= sqrt(((myaccelxyzRMS.x* myaccelxyzRMS.x) + (myaccelxyz.x*

myaccelxyz.x))/2);
myaccelxyzRMS.y= sqrt(((myaccelxyzRMS.y* myaccelxyzRMS.y) + (myaccelxyz.y*

myaccelxyz.y))/2);
myaccelxyzRMS.z= sqrt(((myaccelxyzRMS.z* myaccelxyzRMS.z) + (myaccelxyz.z*

myaccelxyz.z))/2);
}

charValue5[0] = ((pktnum)>>8) & 0xff; // seq number
charValue5[1] = ((pktnum)>>0) & 0xff; // seq number
charValue5[2] = ((myaccelxyzRMS.x)>>8) & 0xff;
charValue5[3] = ((myaccelxyzRMS.x)>>0) & 0xff;
charValue5[4] = ((myaccelxyzRMS.y)>>8) & 0xff;
charValue5[5] = ((myaccelxyzRMS.y)>>0) & 0xff;
charValue5[6] = ((myaccelxyzRMS.z)>>8) & 0xff;
charValue5[7] = ((myaccelxyzRMS.z)>>0) & 0xff;
charValue5[8] = txBuffer2[0];
charValue5[9] = txBuffer2[1];

SetParameter(CHAR5, CHAR5_LEN, charValue5);
}

timer--;
}

Fig. 2: Sketch of the code implementing the routine to get,
elaborate, and transmit acceleration values.

in general, the firmware has been optimized to manage the
power usage. Moreover, the radio power configuration is set
to -3 dBm during communication, which is ideal for reliable
connections with nearby smartphones. However, the system
architecture is designed for adaptability, allowing the dynamic
adjustment of the radio output power to 5 dBm when an
increased transmission strength is required. This flexibility

https://www.johansontechnology.com/datasheets/0900PC15A0036/0900PC15A0036.pdf
https://www.johansontechnology.com/datasheets/0900PC15A0036/0900PC15A0036.pdf
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Fig. 3: The designed low-power BLE device equipped with
BMI160 accelerometer device.

ensures that the system can adapt to different operating en-
vironments and distances.

III. RESULTS

In this section, the designed BLE device shown in Fig. 3
has been tested to verify its applicability in clinical studies.
Specifically, the device has been designed and specifically
programmed to perform acceleration processing on the three
measured axes on-board, thereby reducing the amount of data
to be transmitted as well as the communication time. Indeed,
the data communication phase is known to be power hungry.

To achieve this, for every minute of observation (although
this time can be adjusted as desired), the device evaluates the
root mean square value (RMS) of the acceleration along the
x-axis, the y-axis and the z-axis, and then communicates it to
the collecting BLE node, which can be a smartphone or any
data collection node.

This device, integrated with other physiological parameter
monitoring systems of an individual/patient, can help correlate
any variation in these parameters with the amount of motion.
In fact, an increase in heart rate during long and strenuous
physical activity is certainly less significant than the same
increase during rest.

Once the device was developed and tested in the laboratory,
several experiments were conducted asking a volunteer to
place the prototype device in the pocket and connect it to
a smartphone via BLE. The volunteer performed various
activities: i) running from one wall to another and back with
sensor on pelvis, ii) running on the spot with sensor on
pelvis, iii) doing intense activity with sensor on pelvis, iv)
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Fig. 6: Doing intense activity (sensor on pelvis position)

doing intense activity with sensor on the wrist, v) doing soft
homework with sensor on pelvis and vi) running up and down
on two ramps of stairs while sensor on pelvis. Data is related
to different activities after the elaboration. In each case there
are approximately 3 minutes of data. Data are taken averaging
each 6 seconds.

In Fig. 4 it can be seen that the person started running at
time 0 from nearly static conditions, since the orange curve
is along Z (up and down) and under static conditions should
be 9.81. Moreover, the gray curve is along X (in front of the
person) under static conditions, is 0, while the blue curve is
along Y (to the right and left of the person), where under static
conditions, it is 0.
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For soft indoor running on the spot in Fig. 5 it can be
seen that the curve along Z is greater than 9.81 because while
running on the spot, there are accelerations along Z up and
down. However, there are no significant accelerations along
X and Y, which indeed remain low and comparable to each
other.

On the other hand, considering the graph in which the
person is running (soft) forward and backward in Fig. 4, it
can be seen that the gray curve (Y) increases because there is
a displacement in that direction, while the blue curve remains
almost unchanged because there are no significant variations
in acceleration along X.

Now let us observe the graph related to an intense activity

in Fig. 6. In this case, we expect variations along Z to be less
pronounced compared to running. This is clearly visible in the
graph, where we can observe on Acc_Z value closer to 9.81
compared to the previous cases, and accelerations comparable
to those during running along the other two directions. When
moving the sensor to the player’s wrist in Fig. 7, the situation
changes dramatically, with significant accelerations possible
in all directions, as can be seen from the graph. The graph
related to stairs is also interesting in Fig. 8. The tester starts
strong, and we observe accelerations along Z much higher than
those during a soft run. However, after a while, fatigue sets
in, and the accelerations stabilize at values slightly above 10
m/s². In this case as well, accelerations along X are higher
than those along Y, as naturally expected. Devices like these
are also useful for monitoring the daily activities of patients or
the elderly. For this purpose, we analyzed a daily life situation.
The volunteer was asked to perform light household chores:
turning on the stove, taking food from the fridge, moving
small furniture, etc. The graph in Fig. 9 shows that there
is, in fact, no significant acceleration along Z, but there are
irregular accelerations compared to the other directions. As a
final point, it is important to emphasize once again that all tests
have been conducted in an environment almost empty where
only a single BLE sensor was present, and the receiving BLE
device at not more than 10 m of distance. While the findings
provide valuable insights, it is essential to acknowledge that
certain limitations may arise. However, these limitations are
inherently related to the BLE technology itself. Specifically, it
is expected that increasing the number of sensors, scalability
considerations are reasonable. Specifically, the system is de-
signed to support the number of active connections permitted
by the BLE technology, which consists in a maximum of
37 active connections in a limited space comparable with
a room, considering the number of available channels and
the collision avoidance protocol employed. Moreover, the
maximum expected communication distance of 10 meters
has been verified using a personal smartphone as the data
collector. While the presence of obstacles or non-line-of-sight
(nLOS) conditions can potentially reduce this range, it is not
a significant concern in our specific case due to the proximity
of the devices. Moreover, variations in signal strength due
to environmental factors such as interference, obstacles, and
non-line-of-sight conditions may impact the practical range
of the system. Nevertheless, these observations align with
common considerations in BLE-based applications, and the
proposed work serves as a step towards the exploration of this
technology for physiological parameter monitoring.

Power consumption

To show the low-power nature of the proposed system,
current consumption has been measured using EnergyTrace
Technology2. Figure 10 shows the current absorption of the
proposed set-up. As can be seen, BLE advertisement messages
are sent approximately every 40 ms, with peak absorption
reaches 7.2 mA, while the duration of packet transmission
is around 7 ms. The duration of BLE connection and data

2https://www.ti.com/tool/ENERGYTRACE

https://www.ti.com/tool/ENERGYTRACE
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TABLE I: Monitoring technologies employed in personal thermal comfort studies

Ref Environmental sensors Sensors for occupant-related information
[7] Kinect camera, Fitbit
[6] Data logger TROTEC BZ 30 for indoor environment (temperature,

relative humidity and CO2 level)
Move 3 wearable device

[11] Hot-wire anemometer sensor, SHT75 digital sensor Apple watch series 4
[13] Digital psychrometer thermo-hygrometer Empatica E4 wristband
[26] Siemens thermostat, sper scientific data logger Hesvit S3 wristband
[10] iButton for air temperature near subject iButton device (skin temperature), Polar H7 strap (heart rate), small-

size cell-phone for accelerometer data (activity levels)
[27] Air temperature, ambient light level sensors BLE proximity beacon (Estimote proximity beacons), motion sensor

Fig. 10: Current absorption of the overall setup.

transmission is around 50 ms, with a peak reaching 10 mA.
Once the connection has been established, in addition to the
advertising message, an active connection is sent. This clearly
indicates that low current consumption of the device, as well
as sub-mA consumption of the Bosch BMI160 IMU unit with
low BLE consumption, makes the device an ideal choice for
activity monitoring applications during a longer time period.

IV. DISCUSSION - LIMITATIONS AND THE FUTURE WORK

The proposed technical solution has a perspective for ap-
plication as a standalone device or combined with other
user-related sensors, i.e. heart rate, skin temperature. This
approach can be applied to develop user monitoring platforms
in various domains such as health [28], biomedicine [29],
ambient assisted living [30], sport [31], smart building [4].
In the study presented herein, a focus was placed on the
application of an accelerometer for personal thermal comfort.
Through the literature, accelerometry data was frequently used
in thermal comfort studies, as presented in Table I. In existing
studies, the accelerometer was applied most often as a part
of a smart wearable device to obtain additional user-specific
information. In studies [13] and [6], specialized platforms were
applied for monitoring with corresponding wearable devices
designed for research purposes, Empatica E4 [13] and Move
3 [6]. Furthermore, in research [11], [7], [26], commercially
available branded smart bracelets / watches were applied for
user-related data acquisition, more specifically Apple watch
4 [11], Fitbit [7] and Hesvit S3 [26]. However, commercially
available products are within the higher price range, which
limits their wider application. Therefore, the authors in stud-
ies [10] and [27] have proposed a more affordable approach
with custom sensors. In [10], authors used a small-size cell-
phone in a wrist pocket to measure accelerometer data for

activity level representation and in [27] authors also used a
custom onboard motion sensor.

The experimental approach in [7] and [11] did not empha-
size the accelerometry data but rather the heart rate data for
the MET calculation and in [26] also the skin temperature
and relative humidity. The activity information from the ac-
celerometer was complementary information in later studies.

On the other hand, in the studies [6], [13], [10] accelerom-
etry data was processed to infer the activity level of the user
to calculate the metabolic rate, an important parameter for
thermal comfort. In [6], authors pointed out the importance
of measured dynamic MET (with accelerometry sensor) over
static MET (constant, tabular values), since it reflects the
state of occupant sensation more accurately. Activity - based
metabolic rate can further be used for the calculation of the
predicted mean vote index (PMV) and determine occupant sat-
isfaction with the thermal comfort criteria [6], or development
of novel predictive thermal comfort models [13], [10]. So far,
the authors have applied various machine learning prediction
algorithms for different approaches, with accelerometry data
being one of the inputs. In [6] artificial neural network (ANN)
was applied for predicting MET response with validation
being above 90%. In [10] personal comfort models were
most effectively developed using algorithms falling under the
"Ensembles of Trees" category with accuracy of 76% and
Cohen’s kappa 35%. Authors are pointing out that existing
smart wristbands equipped with time, heart rate, and acceler-
ation data exhibit a maximum predictive power of 71% and
Cohen’s kappa 18%. However, according to [10], prediction
power could be enhanced to 77% accuracy and 43% Cohen’s
kappa if skin temperature and weather data streaming are
added to the device. In [13] the influence of activity-based
metabolic for predicting personal thermal comfort rate was
studied employing a wearable monitoring device together
with environmental sensors. Authors have recorded superior
predictive performances up to 8.5% when leveraging metabolic
rate as a predictor. Although personal thermal comfort is
well covered topic lately, it is still developing and lacking
of standardization in the methodology and results evaluation.
As a part of the future work this issue should be addressed
through systematization of potential parameters to be used and
extraction of optimal machine learning algorithms and per-
formance validation indicators to facilitate the comparability
among proposed solutions.

When talking about the proposed low cost BLE accelerom-
etry device in thermal comfort context, it could bring valuable
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contribution in the low power perspective. Also, it could
be combined with other compatible user-oriented or envi-
ronmental sensors to gain additional information. However,
this approach is not without limitations. When applied in
massive buildings, Bluetooth signal strength decreases with
increasing distance between receiver and transmitter which
makes it the most critical point for application in the real
environments [28]. Therefore, as a part of the future work,
testing BLE accelerometer with other sensors in the real
environment would be valuable.

In conclusion, we highlight the potential of using
accelerometer-based devices for monitoring personal thermal
comfort, emphasizing the need for future research to address
challenges in signal strength and integration with other sen-
sors, to enhance the applicability and accuracy of these low-
cost, user-friendly devices in diverse real-world settings.

V. CONCLUSION

The study has successfully highlighted the potential of wear-
able technology in monitoring and enhancing personal thermal
comfort in smart building infrastructures. Some circuits have
been designed, which include a BLE device (equipped with
the BMI160 accelerometer) along with a power management
circuit and a balun circuit. The approach, which exploits
synthetic IMU measures such as RSS, has shown promise in
clinical studies, emphasizing its capability to process acceler-
ation on multiple axes, thereby optimizing data transmission
and communication time. The integration of such devices with
other physiological monitoring systems can provide valuable
insights into individual variations in response to different
activities. Moreover, the challenges posed by real-time data
transmission to cloud platforms were addressed by proposing
a modular Bluetooth low energy device for wireless sensing.
This approach not only conserves energy but also offers inter-
pretable data for various applications. As wearable technology
continues to evolve, it holds the potential to revolutionize
the way we understand and respond to individual thermal
comfort needs in smart environments. For future work, a
broader set of activities could be performed to increase the
system capabilities by training a machine learning algorithm
in order to classify thermal comfort for other activities of
patients/elderly/sportspeople based on both the actions per-
formed and the energy used to perform them.
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as patients monitoring platform: range restrictions,” in 2022 IEEE
International Conference on E-health Networking, Application Services
(HealthCom), 2022, pp. 119–123.

[29] A. Kuzmin, A. Ivashchenko, and E. Ryabova, “Biomedical
applications of accelerometers: general directions and publication
trends,” Biomedical Engineering, 2023, cited by: 0. [Online].
Available: https://www.scopus.com/inward/record.uri?eid=2-s2.0-
85176752625&doi=10.1007%2fs10527-023-10320-9&partnerID=40&
md5=1cb6d0a1fb7b0178d22c7e1025858980

[30] P. Martínez, N. Gordillo-Castillo, and D. Cortés Sáenz, “Towards fluid
intake quantification in older adults: An algorithm for movement
detection using accelerometry and gyroscope sensors,” vol. 96,
2024, Conference paper, p. 222 – 231, cited by: 0. [Online].
Available: https://www.scopus.com/inward/record.uri?eid=2-s2.0-
85177197509&doi=10.1007%2f978-3-031-46933-6_24&partnerID=
40&md5=10ce9c9e318051a2df67d2d05e649fef

[31] A. Biró, S. M. Szilágyi, L. Szilágyi, J. Martín-Martín, and
A. I. Cuesta-Vargas, “Machine learning on prediction of relative
physical activity intensity using medical radar sensor and 3d
accelerometer,” Sensors, vol. 23, no. 7, 2023, cited by: 1;
All Open Access, Gold Open Access, Green Open Access.
[Online]. Available: https://www.scopus.com/inward/record.uri?eid=2-
s2.0-85152333644&doi=10.3390%2fs23073595&partnerID=40&md5=
69c6d921110a1e5b643b116b8476cdf4
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