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Abstract. The maximum amount of information that can be stored,
on the average, in each storage element, according to an associa-
tive scheme, has been measured for the memory model proposed by
the author (Bottini, 1980). In this model, the items being stored
are coded by noise~-like keys and the memory traces formed in this
way are superimposed on the same storage elements. It will be
shown that the problem of measuring the information retrieved from
the memory in a single recall and the problem - concerning the
data-communication field - of measuring-the information transmitted
over a noisy channel are formally similar. In particular, the

Shannon noisy-channel coding theorem can find an application also

in our case of an associative memory.
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1 Introduction

There have been several independent approaches to the mathe-
matical modeling of associative memories (for a review see
Kohonen, 1977; Longuet-Higgins et al., 1970). The models produced
by these approaches are essentially of two types: the so-called
matrix models (see Steinbuch, 1961; Kohonen, 1972); and the convol-
ution-correlation models (see Gabor 1968a, b, 1969; Bottini, 1977,
1979, 1980), which ériginated from the optical hblographic models
of memory. Despite the independence of their origins, all these
models are based on a common principle. In every case, in fact,
the success in recalling stored information depends on the degree
of correlation betwegn the recall key and the key wused, on
storage, for coding that information.

These models memorize information in discrete storage el-
ements, each of which has a certain number of levels, i.e. possi-
ble states. There can be, for example, two variants of a same
memory system, one which requires two-level storage elements, and
the other with many-level storage elements. The choice of a
particular type of storage element is in strict relation to both the
type of item that can be stored and the"t"ypé ‘of key to be used for =
storage and recall. The properties of the model will, of course,
depend on the nature of the items, keys, and storage elements
chosen. This is particularly true for one of the most important
attributes of. an associative memory, i.e. its storage capacity,
which is defined as the maximum amount of information that can
be stored, on the average, in each of its storage elements.

In the present paper, the storage capacity of an associatiQe
memory endowed with many-level storage elements will be calcula-
ted. The model that will be studied .in detail is the convolution-cor-
relation model proposed. by the author. The results obtained

could however be easily transferred to the matrix models. For




the storage capacity of a memory system with binary storage
elements the reader is referred to the studies made by Palm (1980)
and by Willshaw et al. (1969).

To calculate. the storage capacity of the model we will, first,
measure the amount of information retrieved from the memory in a
single recall and then sum the contributes of all the memory
traces to obtain the total amount of information stored; finally, we
will evaluate the maximum value for this stored information.

The method used here to measure the amount of ihformation
retrieved in a single recall retraces the techniques introduced by
Shannon, into the  data-communication field to measure the infor—
mation transmission rate for a noisy channel.. As'will be shown, in
fact, the problems of measuring the relevant.amounts of informa-

tion in the two cases are formally similar.

2 Description of the Memory Model

The model (Bottini, 1980), which presents strong analogies
with biological associative memory, was developed fr‘om a two-step
mathematical transformation suggested by Gabor. Gabor noted that
if a given vector f is convolved with a noise-like vector ¥, then
the inverse opcration capable of (nearly) recovering the vector f
from the result of the convolution is the correlation with the same
noise-like vector ¥ (or part of 1it). A noise-like vector is a
sufficiently complex, =zero mean, not periodically behaved vector.
The relevance of these two operations to neural and theoretical’
information processing systems has also been studied by Borsellino
and Poggio (1972,1973).

The central point of the model is a distributed noise-like
’coding of the information. On storage, each of two associated items
codes the other by means of a noise-like key,uobtaincd from the
item itself through a randomizing preprocessing. All the memory

traces are superimposed on the same memory vector. The noise-like



key's property of correlating sharply with itself or with a
fragment of itself and, at the same time, not correlating at all
with a different key, makes selective retrieval of the information

stored possible.

In order to calculate exactly the performance of the model,
‘storage and recall noise keys coming from an ideal random process
will be assumed here. Moreover, although in the mvodel the recall
process was recycled in order to improve the storage capacity, the
restricted case of thé one-step-only recall will be studied. Let us

then first give the basic formalism of the model.

The information items dealt with by the model are No-dimen—

0
the number of the items to be stored) are, for the sake of simpli-

sional vectors, whose elements Ir(l) (1=1,...,N_; r=1,...,K, with K

city, binary, with wvalues 0 or 1. The model could, however,
process item elements whose possible values are more than two
(real-valued elements could also be permitted). Dimension NO will
be equal to or less than the number N of the storage elements.

The noise keys wused for coding the information items for
storage and for recalling them are N-dimensional vectors having as
elements, 'zfr(i), zero mean, statistically independent, two-value
random variables. These two values are opposite. (However, keys

with real-valued elements could also be used.)

The orthonormality condition for the noise keys is given by
E {0 G0} = 0 o, , )

with i,i* = 1,...,N, and r,r' = 1,...,K; where E denotes the
symbol of expectation, v and 1., are uncorrelated vectors if r #
r', and 0 is the Kronecker symbol which has the value of 1 for
an equal value of the two indices, otherwise it has the value of

0. If a key ;Tr is obtained from a given key v by setting (1-g)N



of its elements to zero randomly, with 0<g1l, and replacing the

cancelled elements with extraneous noise, then we have
E {Tr(i) v (i)} = g/N . (2)
r r _

The memory  trace corresponding to item Ir is an N-dimen-
sional vector built by the circulant convolution of Ir itself with

the associated key v
N

0
m_(j) = 2 v (3-1) 1_(1) , S (3)

where j = 1,...,N.
“The total memory vector M is obtained from the single K

traces through an element by element addition

K
MG) = Y m_(3) . (4

r=1
|

The values taken on by the elements of M, i.e. our storage

elements, are scattered around zero over a number of discrete
1/2 ‘

levels separated by 1/N / .

The recall by means of the noise key s given by the

circulant correlation of it with the memory M )
N .
Ro(h) = 27 To(i=h) M(i) : (5)
i=1
where h-: = 1,...,NO. 1f .;Q coincides exactly or partially,

according to weight g, with the noise key used in one of the

storages, then the expected value of the recall will be
= J } - |
E L}?Q(h) =g 1Q(h) ) (6)

i.e., apart from the attenuating factor g, the very item coded for



storage by that key. Otherwise, 1if the recall key is totally
uncorrelated with respect to all the storage keys, the expected
value of the recall will be identically zero.

Since recall 1is affected by wunwanted noise the retrieved
values will fluctuate (correspondingly) around 0 or g. A.threshold

detection operation working at a suitable value Th, with

is then required to restore the original values 0 or 1.

3 Storage Capacity of the Memory
3.1 Recall Error Probabilities

In order to answer the question '"How much information can
be stored 1in this memory system?" the probabilities of the two
types of error which can occur when recalling an .item, namely a O
retrieved as 1 or a 1 retrieved as 0, must first be known. These
probabilities can be determined starting from .the variance of
recall R. For this variance we have .

o2 = /N . (8)

with a good approximation in all cases of interest, i.e. JS>>1
and K not small; where # equals the sum of the square va.lues of
the elements of all the items stored, and N is the number of
storage elements. For our binary items, # simply coincides with
the total number of the 1's of the items stored (for the exact
calculation of the recall variance see Bottini and March, 1985).

2
The smaller the ¢, the higher the probability that the

threshold opera:tion can successfully separate the 1's from the ('s

for the item recalled. The distribution. of the system output



(recall) is assumed to be normal because of the large number of

terms contributing to it. We can thus determine

.@l = 1/2 = ¢(Th/o0) ) (9)

the probab.ility (< 0.5) that for any binary item stored one given

-0 can be wrongly retrieved as 1, and

Z, = 1/2 - d([g-Th]/0 ) . " (10)

the probability ( < 0.5) that one given 1 can become wrongly O,

with @ the error function defined as.

, X ) :
Dlx) = (2 m—l/zf expl-y2/2) dy ) (11)
0

3.2 The Information Retrieved in a Single Recall

By means of 9;" and .93 we can now measure the average
information Hm retrieved from the memory in a single recall, i.e.
- the amount of information tetrigved 'pe'r ‘elément of RQ on the
average.

Let us first calculate the average information H required to
describe the process that produces output RQ from the corre-
sponding item IQ » through the storage ‘and recall steps. In this
process there are four ©possible events: i) a 0 1is correctly

retricved as 0; 1ii) a O 1is wrongly retrieved as 1; iii) a 1 is

correctly retrieved as 1; and iv) a 1 is wrongly retrieved as O.

Let @ be the density of the 1's - or the probability of having a
1 - for the item considered. The probabilities of occurrence for
these four events are then respectively: i) P, = (1 - 9”1)(1—#);

= (1- P)u: 4 = i
= (1 vé)p, and iv) P, Z, po H is

ii? P, =.9‘”1(1—- @); o iii) P,




obtained from these four probabilities by means of the Shannon

formula (with NO sufficiently large)

4
H= -2 p, log,p . . (12)
i1

We then measure the average information contained in the
item (}11) and the average information available at the output
(H)). H,  is obtained from the probabilities @ and 1- x4 ; and H

R 1
from Py = (1- Q’Z)M + 91(1-— #) and 1-p

R

R
Then

= - (H - H
H = H - R) o 13)
gives the average information, expressed in  bits per element of
RQ’ actually retrieved in a given recall. The accuracy of a given
recall can thus be evaluated by means of a parameter, the recall

efficiency ’I]R, which is defined as follows

This parameter equals the percentage of the item information which
is actually retrieved.

Equation (13) has an analog in the communications-system
theory. Indeed, as known from Shannon (1948), if ?i and 9’2 were
the probabilities with which an error can occur during the
transmissiori of the two symbol types of a message over a noisy
channel, and I- and W were the respective probabilities of
production of these two symbols by the source, then Hm in (13)
would correspond to the amount of information transmitted per
symbol on the average, H. being the information of the source

1

message and H-—HR the information lost because of noise.



3.3 The Total Information Stored in the Memory

H is an amount of information averaged over all the
m

elements of RQ . Thus, if IQ and (accordingly) RQ have NO < N
elements, with N the number of storage elements, then the average
information H: stored in the corresponding memory trace will be

given by
nr oo , ‘ (15)
m . m

where A= NO/N .

The total average information HTOT stored in the memory
vector M is then obtaine'd as :
K
Hoor = g () : (16)

which 1is expressed 1in bits per storage element, where K is the
total number of traces, and p«r is the density of the 1's for item

I .
r

Let K have the same value u for any r so that every item

has the same number of 1's. It is found then that converges

“TOT
to the [following limit as K (and accordingly N) approaches

infinity, or equivalently u approaches zero,

ne

Tor = /N log2[(1~%)/9?’1]+ %bgzlg’lg’z/[(l—gf)(l-—%’)”} .17

This value is the upper bound of Il for a given choice of the

TOT
ratio J/N ,and of g and Th.

Provided that the ratio #/N, and g, Th, and K remain the
sane, IITOT increases as A increases, while its limit value given
by (17) (i.e. when K is very large) does not depend on A.
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3.4 Maximum Values for the Information Stored

Finally, another limit wvalue for HTOT’ which 1is useful to
complete the description of the quantitative behaviour of the
model, 1is obtained by letting the ratio $/N approach infinity,
while keeping J28 fixéd (so that K must also approach infinity;.
For Th = 0.5g , with g (0 <g <1) the previously defined weight

describing the degree of completeness of the key, we have
®y = g2 [(logze)/n](l- w) . (18)

When w= 0.5, (18) states that no more than g20,23 bits per
storage element on the average can be stored. This limit value is
therefore the stora;ge capacity of the model when the-items have as
many 1l's as O's. Wﬁen @ approaches zero, (18) yield.s twice as
much as this value. However, in such a case, because ¥ <0.5, an
optimal choice of Th (> 0.5g) can be made to maximize HTOT and
thus improve its 1limit wvalue with respect to the value given by
(18) for Th = 0.5g. From (17), for a suitable choice of Th, we
find that this improvement 1is, at most, of the order of te;rx
percent. Thus, approximately g20.5 bit/element can, at most, be
stored in this memory system. This wvalue, achievable only when
the items have very few 1's, is the upper bound for the storage
capacity. For intermediate values of u, the storage capacity can
be obtained, with a very good approximation, by interpolating

linearly the two values found for the extreme cases just considered.
4 Number of Levels Required by Each Storage Element

4.1 Maximum Number of‘Levels

Now that we have calculated the number of bits per element
that can be stored associatively in the memory vector M, it is of

interest to calculate how many bits are reqixired by each of these
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elements to allow the successive storages. As a consequence of the
use of the noise keys defined in Sect. 2, the storage of a single
item may cause modifications in the wvalues of all the storage
elements. This 1is, therefore, the~1east favourable condition to save
levels (or bits) in the storage elements.

It is easy to see that, if for each storage element we use a
number of levels (separated, as already mentioned, by 1/N1/2, i.e.
the absolute value of the noise key elemehts) given for example by
6 11/2, which is required to cover the interval [-—3( J‘/N)l/z,

+3( ﬂ/N)l/z], then H will be reduced negligibly. In fact, this

TOT

interval equals six times the standard deviation of the distribution
(with wvariance #/N) of the wvalues assumed b‘y the storage
elements, so that 1.:he saturation of a étorage element occurs only
for a negligible fraction of these elements, given by 2[1/2 - & (3)]
= 0.003, with. @ the error function. Saturation means that a
storage element is forced to retain its state because the level
being requested is outside the range of the levels permitted. It is
thus sufficient that each storage element has a number n of bits
given by the smallest integer satisfying

n > log, (6.5 /%) . ~ (19)

4.2 Saving Levels by Quantizing the Memory Traces

A smaller number of bits for each storage element can be
used if every trace is quantized into two levels - plus the zero
level if necessary - before storage.

Let us still consider items having the same number & (> >1)
of 1's so that the variance of every memory trace will have the
same value Utzr . Let us then transform each memory trace vector

A
m_ into a quantized vector m_ as follows
r

A } ‘
mr(i) = & sgn[mr(i)} , | {20)



where sgn is the function that takes the sign of the argument. The
value to be given to g s
' 1/2
~(m o
€= (mw/2) ir (21)
for the recall to be correctly normalized (Bottini and March, 1985).
The memory traces so obtained are then added together to give the

A _ A
memory vector M. The variance of the single memory trace m_ is

2 . .
&€ . Therefore, as the corresponding elements of the various memory

traces are statistically independent, the variance of I/v\i is K times

82, ‘with K the number of traces. The number {1\ of bits for each
'eleme_pt of 1\//; which suffices in this case, i.e. when the values of.
these elements are quantized into levels which are multipies of &,
is then given by the smallest integer satisfying

/2

A 1og2(6K1 ) , (22)

/2

with 6K1 the number of levels. ;\1 is thus related to the number K
of items stored, irrespective of the value of 2. Less levels than
before are needed because here the storage of a single item can,
at most, cause a storage element to change its state from a given
level to an adjacent one, while, without quantization, jumps
involving non adjacent levels are possible.

However, the advantage of providing each storage element
with a smaller number of bits is here paid for by a reduction in
the amount of information stored in the memory. As a matter of
fact, within the limits of approximation of (8), the recall variance
is now given by

/\2 : . .
0" =~ (m/2) F/N s {23)

The increase in the variance value by the factor /2 with respect"

<




to the value before quantization implies higher wvalues for the

A A
recall error probabilities 9’1 and 9’2, thus a smaller amount of

information can be stored. The right values for information stored
are still obtained from (16) and (17), provided that these two new
values for the error probabilities are wused. In particular, the

limit value given by (18) must be here multiplied by 2/ .

4.3 A Two-level Read-only Memory

On the other hand, instead of quantizing singly every
memory trace before storing it, we can quantize the total memory
into two levels, -in just one step, after the memory has been
formed as normal. The values to be assigned to these two levels
are the positive or the negative of the square root of the wvalue
given by (23). We have neglected the level zero because it never
occurs if # is even, while, if £ is odd, it occurs only for a very
small fractien of the storage elements. In this last case, weAcan
assign one of the two levels, at random, to the zero elements thus
causing a negligible increase in the recall variance. After this
quantization, if only these two levels are permitted,.the memory
can only be read. Indeed, no more single memory traces can now
be added to the total memory. o

The average information stored is the same as in the case
considered in Sect. 4.2. When the storage .elements are made
binary, the upper bound for the storage capacity is then approxi-
mately g20.3 bit/element. For such a memory system, with one-bit
storage elements, g20.3 is also the upper bound for the storage
efficiency, 1i.e. this number equals the ratio of the maximum

amount of information sterable to the capacity theoretically avail-

able.

4.4 The Best Strategy to Reduce the Request for Levels

However, if we are interested in drastically reducing the



number of bits required by each storage element, but nevertheless
preserving the memory system's property of always allowing the
storage of new items, then it is necessary to resort to noise keys
which are different from those defined in Sect. 2, which have no
zero elements. Thu;, the use of noise keys which have only a
small fraction of their N elements with a non zero value implies
that, for each st'orage process, the storage elements undergo less
modification in terms of jumps of levels, hence a smaller number
of levels can be sufficient. This case will be discussed in detail

in a successive paper.

5 Some Examples

.

'In Table 1 the values of the quantities so far defined to
describe the behaviour of the model are reported for a number of
cases. For each of lthree possible choices of the value of #/N,
four sub-cases are given. The memory model is studied when the
stored memory traces are 103 and also 106, and, for each of these
two cases, when threshold Th is set equal to 0.5 and 0.7. The
items are chosen so as to have the same number N of elements as
the memory vector, and the recall keys are assumed to be com-—
plete, i.e. coinciding with the coding keys' used on storage. We
then see how the storage capacity of the model changes when the
items have less elements than the memory vector or when the keys

are incomplete.

The numbers reported in Table 1 confirm the general trend of
the model performances. For fixed values of K and Th, an
increasing value of #/N causes HTOT to increase, and the recall’
efficiency - Mp to decrease. The larger the #/N, the larger the
amount of information stored per memory element, but‘the greater
the number of érrors in the recall. “Hbrﬁéver, for J/N‘ equal to

0.25, the greatest value considered, the average information stored

is very close to the maximum value, so that it will not increase
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appreciably for greater values of J#/N. For fixed J4/N and Th,

an increase in the number K of the memory traces causes H’I‘OT to
. jee] .
ecome  increasingly close to its upper bound HTOT' while 7;R
decreases. Finally, for our J/N and K, taking Th = 0.7
improves both “TOT and 77R . This is because, if u<0.5, i.e. an

item has more O0's than 1's, raising the threshold to a suitable
value above 0.5, i.e. furthe;‘ from zero, reduces the number of
errors in the recall.

The last four columns of Table 1 concern both the case in
which the memory traces are singly quantized before storage, as
described in Sect. 4.2, and the case in which thfa total memory is

quantized into two levels only after all the items have been stored

. . ) A
(see Sect. 4.3). After quantization, the new error probabilities 9’1
A .
and :?2 are greater than the old 9‘"1 and % , and, as a
A A
o] 1 ®
consequence, HTOT and HTOT are smaller f\han HTOT and HTOT’
respectively. The current recall efficiency 7)R {not reported here)
N
will accordingly be redAuced by the factor HTOT/HTOT 1If the

total memory 1is quantized at the end, then the numbers reported
in the last two columns also coincide with the storage efficiency of

this read-only memory system, which has binary storage elements.

When the items have a dimension NO smaller than dimension N
of the memory, while u, now equal to ( f/NO)/KOV , takes on the
same values as above, Table 1 must be read considering the
reported data as referred to the case with KO = K/A (A= NO/N)
traces, instead of K. Of course, the limit values remain the same.

If the memory is read by recall keys which are incomplete
according to 1-g , then, for decreasing values of g ( <1), an
increasingly small amount of information can be stored. For the
values of J/N given in Table 1 and for Th equal to 0.5g or
0.7g instead of 0.5 or 0.7 (so that the recall error probabilities
increase), we have, 1in fact, 'that the - current value for the

various H's is of the same order of magnitude as - but always




greater than - the corresponding value in Table 1 multiplied by
gz. For example, for Th = 0.5g, HTOT is bounded, as we have

seen, by the value given by (18).

6. Concluding Comments

The main properties of the‘ mathematical model of an associa-
tive memory based on convolution and correlation, which' was
proposed by the author (Bottiﬁi, 1980), have been quantitatively
investigated. In the case studied, the storage ‘of a single item
may produce a change in the state of every stora;ge element. The
items are binary with digits O or 1. The number of levels
permitted for each storage element is large enough to make the
supez:imposition of  all the memory traces possible v}ithout causing
the saturation of the storage elements, except as a rare event.

We have found that the storage capacity of the model, i.e.
the maximum amount of information that can be stored, on the
average, in each storage element, depends on the density wu of the
1's in the items. The dependence of the storage capacity on the
degree of completeness of the recall key, mixed - in the missing
part - with extraneous noise, has also been determined. In the
most favourable case, in which the recall keys are complete, the
storage capac‘ity ranges from approximateiy 0.5 bit/elefnent, when
@ is very close to zero, to about one half of this value when wu-=
0.5.

The values assumed by the storage elements are as often
positive as negative. 1f, after the items have been stored, we
quantize the storage elements into two levels according to their
sign, the upper bound for the storage capacity (that is for w very
close to zero) will be approximately 0.3 bit/element, when the
recall keys are complete. The amount of informa‘tionw retained in
the sign of the values of the storage elements is therefore still

large. After guantization we have a read-only memory system



whose storage elements are endowed with one bit. In this case,
then, at most thirty percent of the theoretical capacity of a
storage element can actually be used to store information.

We have pointed out that there 1is an analogy between
measuring the amount of information retrieved in a single recall
and measuring the information transmitted over a noisy channel.
One could then question whether the Shannon noisy-channel coding
theorem might also find an immediate application to our case. This
theorem asserts tﬁat a message can be suitably coded for transmis-
sion with probabilities of error arbitrarily close té zero, despite
the disturbing action of the channel, at a rate arbitrarily close to
the channel capacity (Shannon, 1948). For items ‘having as many
1's as 0's, i.e. u = 0.5, the answer is affirmative in the sense
that the Shannon theorem allows us to state that the information
could be stored, after a suitable pre-coding, in our associative
memory, within the limit given by the storage capacity for u=
0.5, so as to be retrieved, item by item, with a recall efficiency
arbitrarily close to unity. This is because such a pre-coding of
the item would produce a vector which still has t‘he same w. The
cases with values of u less than 0.5 would make further study
necessary. However, the above statement has only a theoretical
importance. Indeed, as known, the application of the Shannon
theorem would require that an ideal condition, namely an infinite
length for the items, were met, if an absolute reliability in the
recall is desidered.

On the other hand, as is well known, several error-correct—
ing codes have been proposed for practical applications, to im-
prove the reliability of information trangmission. If we are interest-
ed in investigating the use of such codes in our case, essentially
to improve the recall efficiency, we must however realize that the
1's required by any of these coding procedures for the items being

stored, while on the one side permitting the correction of a certain

~



number of errors in the recall, on the other, as they contribute in
increasing the recall variance, also increase the probabilities of
these errors. A favourable balance of these opposite tendencies
should therefore be sought.

Finally, it 1is to be noted that the restriction to the
consideration of -only binary items can be remov‘ed. For items
whose elements can take on many values, our procedure for
calculating the storage capacity can, in fact, be readily genera-
lized. The necessary number of thresholds to discriminate the
values retrieved have to be first introduced, and then, all the
ways in which these retrieved values can have been altered by
noise} have to be taken into account in order to determine the
corresponding error probabilities from which the information re-

trieved can be measured.




Caption

Table 1. Quantitative description of the performance of the model
for some sets of values of the ratio /N, and of Th, and K. In
all cases, the density of the 1's in the binary items is small. The
columns whose heading includes the symbol "w', used as apex,
concern the case when K approaches infinity. The symbol "/"
denotes both the case in which the memory traces are singly
quantized before storage and that. in which the total memory is

quantized into two’ levels, in just one step, at the end.
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