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Abstract: As one of nature’s most destructive calamities, floods cause fatalities, property destruction,
and infrastructure damage, affecting millions of people worldwide. Due to its ability to accurately
anticipate and successfully mitigate the effects of floods, flood modeling is an important approach
in flood control. This study provides a thorough summary of flood modeling’s current condition,
problems, and probable future directions. The study of flood modeling includes models based on
hydrologic, hydraulic, numerical, rainfall–runoff, remote sensing and GIS, artificial intelligence
and machine learning, and multiple-criteria decision analysis. Additionally, it covers the heuristic
and metaheuristic techniques employed in flood control. The evaluation examines the advantages
and disadvantages of various models, and evaluates how well they are able to predict the course
and impacts of floods. The constraints of the data, the unpredictable nature of the model, and the
complexity of the model are some of the difficulties that flood modeling must overcome. In the
study’s conclusion, prospects for development and advancement in the field of flood modeling are
discussed, including the use of advanced technologies and integrated models. To improve flood
risk management and lessen the effects of floods on society, the report emphasizes the necessity for
ongoing research in flood modeling.

Keywords: flood modeling; rainfall–runoff; hydrologic; hydraulic; metaheuristic

1. Introduction

Flooding is a serious global issue that has an impact on several towns and countries.
It is caused by a combination of factors including hurricanes, storm surges, excessive
rainfall, and rapid snowmelt [1]. Floods can kill people and seriously harm buildings,
infrastructure, and crops [2]. Floods may have disastrous effects on the economy and
society, and rehabilitation and reconstruction can be expensive [3]. The consequences of sea
level rise and the increased frequency of extreme weather events make flooding worse in
some locations, such as low-lying coastal areas [4]. The frequency and intensity of flooding
in certain locations can significantly shift in response to even small changes in sea level. The
health and welfare of populations can potentially suffer long-term effects from floods [5].
Public health might be endangered by toxic chemicals and microbes found in floodwaters.
Increased poverty and social unrest may be caused by population displacement, as well as
the loss of houses, jobs, and other assets. Flooding can also have indirect impacts that might
be equally as damaging as the direct ones. For instance, it messes with supply chains and
transportation networks, which drives up the cost of goods and services and slows down
economic activity [6]. Additionally, it leads to soil erosion, which can reduce agricultural
productivity and lead to the loss of fertile land [7].
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Many communities and countries are unprepared to handle the hazards associated
with floods despite the catastrophic implications they can have [8]. This results from a
combination of factors, including a lack of funding for flood protection infrastructure
as well as ignorance of the underlying causes and effects of floods [9]. Because of this,
many communities are still at risk of flood damage and are unable to effectively lessen its
consequences. Communities and nations must create an all-encompassing and integrated
flood risk management plan to face the difficulties of flooding [10]. The development of
early warning systems, better land use planning and zoning, increased investment in flood
protection infrastructure, and the adoption of resilient construction standards are a few
examples of actions that could be included [11]. In order to increase our understanding of
flood causes and effects, as well as to develop better tools for anticipating and managing
this danger, communities and nations must invest in research and technology.

To comprehend and forecast flood behavior and effects, flood modeling is an important
tool [12]. To anticipate the geographical and temporal distribution of flood waters, as well
as the damage and hazards related to them, necessitates the development of mathematical
models that replicate the hydrologic and hydraulic processes that lead to floods [13]. Flood
forecasting [14], risk assessment [15], flood mitigation [16], and response planning and
management are just a few of the uses for flood models. For example, 1D hydraulic
models [17], 2D hydraulic models [18], and hydrologic models [19] are among the several
types of flood models. Based on hydraulic engineering principles, 1D hydraulic models
mimic water movement in rivers and canals. They are frequently used to simulate the
impacts of flood control devices like dams and levees, and to anticipate floods. The intricate
interactions between flood waters and the surrounding environment may not be sufficiently
captured by 1D hydraulic models, despite their relative simplicity and ease of use [20]. On
the other hand, 2D hydraulic models replicate both longitudinal and cross-sectional water
flow, and offer more thorough data on flood water distribution and the impacts of floods on
neighboring regions. In addition to showing the geography and land use of the region, these
models may also show how flood waters interact with their surroundings, such as the effects
of urbanization and vegetation [21]. Despite being more complex and computationally
intensive than 1D hydraulic models, 2D hydraulic models can provide more accurate
and realistic flood depictions. To calculate the quantity and timing of catchment runoff,
hydrologic models are used to simulate the precipitation–runoff processes that result in
floods. These models might be based on physically based methods [22], like the distributed
hydrologic model [23], or empirical techniques [24], such the rainfall–runoff relationship.
The volume and timing of catchment runoff may be estimated using hydrologic models,
which can also be used to help in the creation of flood predictions and warnings [25].

Flood modeling can use a number of approaches in addition to these fundamental
types of models. One of the most common techniques is the event-based approach, which
entails creating a flood model for a given event, and using the model to anticipate the
behavior and effects of that event [26]. This approach can offer thorough flood information,
but it takes a lot of time and might not be suitable for extensive or real-time applications.
Developing a model that can replicate flood behavior throughout time is another technique,
and it is known as the continuous simulation approach [27]. The possibility of various flood
situations is forecasted using this technique, which also helps with long-term planning
and decision-making. Regardless of the model or technique employed, the accuracy and
dependability of flood models depend on the caliber and accessibility of data, including
hydrologic, hydraulic, meteorological, and land use data [28]. For the purpose of creat-
ing realistic flood models, it is crucial that hydrologic data, such as data on precipitation
and stream flow, be available and reliable. The models themselves may also be intricate
and computationally demanding, requiring the deployment of substantial computer re-
sources [29]. Different techniques for data assimilation and model optimization have been
employed to solve these problems, including Bayesian inference [30], genetic algorithms,
and particle swarm optimization [31].
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Another crucial element in flood modeling is the estimation of uncertainty. Flood
models are prone to a great deal of uncertainty because of the complexity of the underlying
physical processes and the constraints of the data and models. To address these problems,
a number of methods for measuring uncertainty have been created, such as Bayesian
inference [30], Monte Carlo simulation [32], and probabilistic sensitivity analysis [33]. These
approaches can help with more effective flood risk management and decision-making by
estimating the probability of various flood conditions. Mathematical modeling, statistical
techniques, and hydrologic and hydraulic concepts are all included in the interdisciplinary
field of flood modeling. Despite its challenges, flood modeling has lately made substantial
advancements and is still essential for reducing flood risk and making judgments. To make
flood models more accurate and reliable is desirable, in order to better understand and
forecast flood behavior and consequences, and to support flood risk management and
mitigation techniques that are consequentially more effective.

This study conducts an in-depth assessment of flood models in order to assess the
current degree of understanding and expertise of these models [34]. The review aims to
synthesize the body of information available on several flood model types, and identify the
benefits, drawbacks, and challenges of each. At present, there are many systematic reviews
on traditional flood modeling [35]. State-of-the-art benchmarking reviews are also available
for many flood modeling packages. Significant amounts of literature are available on flood
mitigation and management strategies, such as structural flood protection, sustainable
urban drainage systems (SUDS), sponge cities, and blue-green infrastructure [36]. This
review article offers a distinct contribution by comprehensively addressing various methods
used in flood models, including hydrologic, hydraulic, numerical, rainfall–runoff, remote
sensing and GIS-based, artificial intelligence and machine learning-based, multiple-criteria
decision analysis-based models, as well as heuristic and metaheuristic approaches. While
existing reviews often focus on specific areas such as hydrology, hydraulics, or remote
sensing, or the use of artificial intelligence and machine learning-based approaches, this
review takes a broader perspective to encompass multiple modeling techniques employed
in flood studies. Rather than focusing on a specific aspect of flood modeling, this review
bridges the gap between different methodologies and provides readers with a holistic
overview. It allows readers to explore and grasp the benefits and challenges associated with
each model type. By consolidating this diverse information, the review supports a deeper
understanding of flood modeling practices, facilitating informed decision-making and the
development of effective flood management strategies. One of the notable advantages of
this review is its ability to present a comprehensive picture of flood modeling by considering
multiple methodologies in a single article. This allows readers to compare and contrast
different approaches, gaining insights into their respective strengths and weaknesses.
Such a broad perspective is particularly valuable for researchers and practitioners who
seek to explore a wide range of flood modeling techniques, or require a comprehensive
understanding of the field.

2. Research Methodology

Numerous techniques may be used for flood risk assessments and management.
Any method for estimating flood risk must begin by determining and assessing potential
dangers and vulnerabilities [37]. This comprises predicting the risk of flooding in a specific
region, figuring out the probable severity of a flood event, and assessing any potential
vulnerabilities or weaknesses in the neighborhood or community [38]. The next step
is to assess any potential consequences of a flood occurrence, including any potential
property damage, impacts on crucial infrastructure like roads and bridges, and any potential
fatalities [39]. After assessing the hazards and vulnerabilities and weighing the potential
consequences, the next step is to create a risk management plan [40]. This may include
building levees or flood walls, relocating critical infrastructure out of flood-prone areas [41],
or developing early warning systems to reduce the risk of flooding [42]. In the event of a
flood, the risk management plan should also include provisions for emergency response
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and recovery. Evacuating affected areas, providing emergency shelter and supplies, and
launching a recovery effort to restore critical infrastructure and services are all examples
of possible actions. Finally, provisions for ongoing monitoring and evaluation should
be included in the risk analysis methodology to ensure that the risk management plan
is effective and up to date [43]. This may include monitoring weather conditions and
river levels, assessing the effectiveness of flood control measures, and updating the risk
management plan as conditions change or new information becomes available. Figure 1
depicts a graphical representation of the research methodology as a flowchart diagram that
provides a high-level view of the research procedure, and clearly and comprehensively
presents the methodology’s essential components.
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The basic flowchart for a flood model is shown in Figure 2. The stages for developing
the flood model are as follows.

(a) Define the study area—Determine the geographical area that will be investigated for
flood risk;

(b) Data collection—Gather data about topography, hydrology, meteorology, land use,
and other pertinent variables;

(c) Hydrologic analysis—Analyze the data to identify the flow characteristics of the study
area’s rivers and streams;

(d) Hydraulic analysis—Use the hydrologic analysis findings to simulate water movement
during a flood occurrence;

(e) Floodplain mapping—Using the hydraulic analysis results, make maps that depict
the extent of potential floodplain inundation;

(f) Risk assessment—Take into account the potential consequences of a flood occurrence,
such as damage to buildings and infrastructure, casualties, and financial impact;

(g) Flood mitigation planning—Construct levees and floodwalls, non-structural measures
including zoning and land use regulations, and emergency preparation and response
to lessen the danger of flooding disasters;

(h) Implementation and monitoring—Put the mitigation strategies into action and moni-
tor how well they work over time.
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This is only a broad overview; depending on the approach and subject topic, the details
of each stage may vary. The secret is to approach flood risk management methodically and
exhaustively, taking into account all relevant aspects and a range of viable solutions.
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Figure 2. Flowchart for a comprehensive flood model.

3. Hydrologic and Hydraulic Modeling

Hydrologic modeling and hydraulic modeling are two crucial components of the
evaluation and management of flood risk [13]. Hydrologic modeling is the act of analyzing
the water flow in a river or stream system using mathematical and computer tools [44].
Gathering data on topographical elements like elevation and land usage, as well as ele-
ments like precipitation, evaporation, and soil moisture, is required. The data are then used
to simulate the flow rate, volume, and timing of water at different sites along the river or
stream system [45,46]. Hydrologic modeling produces data that are used in hydraulic mod-
eling, which simulates how water would behave during a flood event [47]. This involves
examining how water will flow through a river or stream system and surrounding terrain,
while taking factors like channel shape, roughness, and water velocity into consideration.
The depth and extent of flooding in each area, as well as the location and timing of peak
flows, may all be better understood using hydraulic modeling [48].

Understanding flood risk and creating efficient mitigation plans both require hydraulic
and hydrologic modeling [49]. By examining the water flow during a flood event, it is
feasible to pinpoint locations that are at a high risk of flooding, as well as the potential
effects of flooding, such as harm to buildings and infrastructure, and fatalities [15,50].
Using this information, structural and non-structural flood risk reduction strategies are
developed, and emergency response planning is also informed [51]. It is crucial to keep in
mind that the assumptions and constraints of the models employed, as well as the quality
and availability of the data, all affect how accurate hydrologic and hydraulic modeling
is [52–54]. As a result, before being employed as one of many instruments in the entire
process of flood risk assessment and management, the outcomes of these models must be
thoroughly examined and understood [55]. The steps to take while considering hydrologic
and hydraulic modeling are shown in Figure 3:

1. Describe the study area—Determine the research area’s borders, taking special note of
the river or watershed of interest;

2. Data collection—Compile details regarding the terrain, land use, soil composition,
and hydrologic parameters of the research area. For the construction and calibration
of models, these data are crucial [56];

3. Decide on a modeling strategy—Depending on the research issue, the information at
hand, and the modeling goals, select a model. Common modeling techniques include
hydraulic models [57], integrated hydrologic–hydraulic models [58], and hydrologic
models (rainfall–runoff models) [59];

4. Build the model—Build the hydrologic and/or hydraulic model using the data gath-
ered. The model should be calibrated to make sure that predictions of flow behavior
are accurate;
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5. Verify the model—By contrasting the predicted outcomes with the actual data, you can
determine how accurate the model is. This stage is essential to making sure the model
is acceptable for the research domain, and that it can be used in decision-making;

6. Run simulations—After calibrating and validating the model, run simulations to
predict water flow behavior under various conditions, such as land use changes or
climate scenarios;

7. Analyze the results to identify potential flood risks and assess flood mitigation mea-
sures [60]. This step is critical to ensuring that the modeling results are effectively
communicated to stakeholders and decision-makers;

8. Communicate results—Share the findings with stakeholders and decision-makers
in order to inform flood management strategies and decision-making. This step is
critical to ensuring that the modeling results are used to make informed flood risk
management decisions.
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Applications of hydrologic and hydraulic models in floods are described in [61–64].
Some of the limitations of these models that should be considered when choosing a model
include the following: The quality and availability of data, as hydrologic and hydraulic
models are complex and require specialized knowledge and skills to develop and inter-
pret [65]. This may limit non-specialists’ ability to use the models effectively. The models
are highly uncertain, which may result in incorrect results [66]. Real-world conditions are
typically simplified in hydrologic and hydraulic models to make them more manageable
and computationally feasible. This can result in incorrect results and a loss of detail in the
analysis [29]. Cea and Costabile [67], Cosco et al. [68] and Palla et al. [69] examined the
difficulties in calculating and controlling flood risk in urban areas, highlighting the effects
of climate change and the demand for adaptation measures. In order to comprehend urban
flood processes and modeling, encompassing flow dynamics, human–object stability, com-
putational advancements, and crowd-sourced data for validation, Mignot and Dewals [70],
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Martins et al. [71] and Rubinato et al. [72] offered a review of hydraulic modeling in inland
urban flooding.

4. Numerical Flood Modeling

Numerical flood models are computer-based models that use mathematical and com-
putational techniques to simulate the behavior of water during a flood event [73]. These
models typically employ numerical algorithms to solve equations that describe the flow of
water in a river or stream, while taking into consideration factors such as rainfall, runoff,
channel geometry, and riverbed roughness. Numerical flood models can be used to simu-
late the effects of various flood scenarios, as well as to assess the efficiency of the proposed
flood mitigation measures [74]. They are also used to simulate how flood behavior will
alter in response to changes in climate, land use, and other factors. Numerical flood models
can take several forms, such as one-dimensional models that mimic water flow in a river
channel [75] or two-dimensional models that simulate water flow over a floodplain [76].
The vertical distribution of water is also depicted in greater detail in three-dimensional
models of the floodplain [77]. The capacities to include more data and information, simulate
intricate hydrologic and hydraulic processes [78], and run large-scale simulations are only
a few of the benefits that numerical flood models offer over physical flood models [79].
However, they do have certain drawbacks, including the requirement for specific knowl-
edge and abilities to create and evaluate the models, as well as the potential for mistakes
and the unpredictability of the outcomes [80]. For numerical flood modeling, a number of
software packages are available, including:

(a) HEC-RAS—This software, created by the US Army Corps of Engineers, is used to
simulate the hydraulics of river systems in both one and two dimensions [81];

(b) MIKE FLOOD—This software, which was created by DHI, is utilized for the two- and
three-dimensional hydraulic modeling of floodplain and river systems [82];

(c) TUFLOW—This software is used for the two-dimensional and three-dimensional
hydraulic modeling of floodplain and river systems [83];

(d) Flood Estimation Handbook (FEH) models—Developed by the United Kingdom Envi-
ronment Agency, used for rainfall–runoff modeling and flood frequency analysis [84];

(e) Environmental Protection Agency’s Environmental Fluid Dynamics Code (EFDC)—
This software, developed by the United States Environmental Protection Agency, is
used for three-dimensional hydraulic and water quality modeling of surface
water systems [85].

Table 1 summarizes some of the advantages and disadvantages of these models. It is
important to note that the software chosen will be determined by the specific needs of the
flood study, as well as the availability of data and resources. Shustikova et al. [86], Schubert
et al. [87] and Chang et al. [88] compared two 2D numerical models (LISFLOOD-FP and
HEC-RAS) used for assessing floodplain flooding, and discovered that although coarser
grids perform comparably, higher-resolution grids produce superior outcomes. However,
in other places, the geographical distribution of flood characteristics may differ. David and
Schmalz [89] and Garcia-Alen et al. [90] contrasted the traditional “decoupled” technique
with an “integrated” strategy for assessing flood hazards in small, rural catchments, high-
lighting the benefits, drawbacks, and restrictions of each approach. Costabile et al. [91] and
Fernandez-Pato et al. [92] offered a benchmarking analysis of the HEC-RAS 2D (HR2D)
program for Rain-on-Grid (RoG) simulations, assessing their appropriateness and limits
for storm hazard assessment in various situations. Zeiger and Hubbart [93] and Cea and
Blade [94] evaluated the efficacy of an integrated modeling strategy for estimating environ-
mental fluxes using SWAT and HEC-RAS. The results demonstrate realistic simulations
and potential uses of 2D Rain-on-Grid HEC-RAS simulations.
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Table 1. Advantages and disadvantages of (a) HEC-RAS, (b) MIKE FLOOD, (c) TUFLOW, (d)
FloodMOD, (e) Flood Estimation Handbook (FEH) models, (f) FloodSense and (g) EFDC etc.

Model Advantages Disadvantages Application in Floods

HEC-RAS

1. A user-friendly graphical
interface for creating and

visualizing models.
2. Widely used and recognized

throughout the engineering
community.

3. Capability to simulate both
steady-state and unsteady flows.

1. Its ability to depict complex
geometries and boundary

constraints is limited.
2. Large models or complicated

simulations can be
computationally intensive.

3. Its ability to manage
interactions between water and

the environment, such as
sediment transport, is limited.

1. Riverine floodplain modeling
and study are possible.

2. Used to assess the effects of
various floodplain management

methods.
3. It is used to assess the effects of

planned developments on
floodplain conditions.

MIKE FLOOD

1. A comprehensive and versatile
flood study and prediction tool.

2. Capable of dealing with a
broad range of hydraulic and

hydrological processes.
3. Integrates with other MIKE

software tools to provide a more
comprehensive solution.

1. Steep learning curve for
new users.

2. Can be computationally
intensive for large models or

complex simulations.
3. Requires a high level of

technical expertise to
use effectively.

1. Can be used for riverine and
coastal floodplain modeling

and analysis.
2. Can be used to evaluate the
impacts of different floodplain

management strategies.
3. Can be used to evaluate the

impacts of proposed
developments on floodplain

conditions.

TUFLOW

1. User-friendly interface with a
graphical interface for building

and visualizing models.
2. Ability to handle a wide range

of hydraulic and hydrological
processes.

3. Flexible and adaptable to
unique modeling requirements.

1. Limited in its ability to handle
large-scale models or complex

simulations.
2. Steep learning curve for

new users.
3. Requires a high level of

technical expertise to
use effectively.

1. Can be used for riverine and
coastal floodplain modeling

and analysis.
2. Can be used to evaluate the
impacts of different floodplain

management strategies.
3. Can be used to evaluate the

impacts of proposed
developments on floodplain

conditions.

Flood Estimation
Handbook (FEH)

1. Widely accepted and used in
the UK.

2. Provides a consistent and
standardized approach to flood

estimation.
3. Easy to use and set up.

1. Limited in its ability to handle
complex models or simulations.
2. May not be suitable for use in
other countries or regions with

different climatic and
hydrological conditions.

3. Can be limited in its ability to
account for changes in land use

and land cover over time.

1. Can be used for flood hazard
assessments and floodplain

mapping in the UK.
2. Can be used to support

floodplain management and
planning decisions in the UK.

EFDC

1. Comprehensive tool for
simulating a wide range of
environmental processes,

including floods.
2. Ability to handle complex

models and simulations.
3. User-friendly interface with a
graphical interface for building

and visualizing models.

1. Steep learning curve for
new users.

2. Can be computationally
intensive for large models or

complex simulations.
3. Requires a high level of
technical expertise to use

effectively.

1. Can be used for riverine and
coastal floodplain modeling

and analysis.
2. Can be used to evaluate the
impacts of different floodplain

management strategies.
3. Can be used to evaluate the

impacts of proposed
developments on

floodplain conditions.

5. Rainfall–Runoff Modeling Approaches

Rainfall–runoff models are hydrological models used to simulate the transformation of
rainfall into runoff in a catchment. These models are important for predicting the amount
and timing of runoff in a catchment, which is crucial for managing water resources and
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for flood forecasting [95]. Rainfall–runoff models can be classified into three categories:
empirical, conceptual, and physical process-based models [96]. Details on rainfall runoff
models, including their advantages and disadvantages, are shown in Table 2. Conceptual
models, which mimic runoff generation, are based on a simplification of the hydrological
cycle, and employ ideas such as the water balance equation and the soil water balance.
These models may be used to anticipate the behavior of catchments with a limited amount
of input data when a thorough understanding of the hydrological processes is desired.
Conceptual models include, but are not limited to, the Nash cascade model [97], Bayesian
networks (BNs) [98], and the HBV model [99].

A full knowledge of the physical processes involved in runoff production is the
foundation for physical process-based models of infiltration, evapotranspiration, and runoff
routing. Although these models need a lot of computation and precise input data, they
can accurately reproduce catchment behavior in a wide range of hydrological conditions,
and are useful for simulating complex hydrological processes [100]. The Soil and Water
Assessment Tool (SWAT) [101] is an illustration of a physical process-based model. It
simulates the hydrological processes in a watershed, including surface runoff, groundwater
recharge, and sediment transport [102,103]. The MIKE SHE model [104] simulates surface
water–groundwater interactions, considers land use, soil properties, and topography,
and evaluates climate and land use impacts. WATFLOOD [105] simulates catchment
hydrological processes including floods, runoff, infiltration, recharge, and routing. It
evaluates management strategies and assesses flood risk.

Empirical models are based on statistical relationships between rainfall inputs and
observed runoff outputs. These models do not necessarily reflect the underlying physical
processes, but they are simple to use and require minimal input data. Empirical models are
commonly used for flood forecasting, urban drainage design, and water resources planning.
Some examples of empirical models include data-driven methods such as regression
models [106], artificial neural networks [107], various machine learning algorithms, and
the Soil Conservation Service Curve Number (SCS-CN) method [108]. Teng et al. [109] and
Buttinger-Kreuzhuber et al. [110] provided an in-depth review of empirical, hydrodynamic,
and conceptual flood inundation models, highlighting their benefits, drawbacks, and
potential applications. Maranzoni et al. [111] compares several methodologies, factors at
risk, and applications when looking at quantitative methods for evaluating flood hazard.
This provides guidance on how to choose appropriate evaluation techniques.

Figure 4 shows the rainfall–runoff model flow diagram. The models involve collecting
data about a river basin, determining model parameters, and calculating runoff based on
rainfall input. The model is then evaluated and adjusted if necessary, and used to predict
future water flow in the river or stream. This information is useful for managing water
resources and planning for floods [36]. The choice of rainfall–runoff model depends on
the specific objectives of the study, the available data, and the level of complexity required
to accurately simulate the hydrological processes involved [112]. The selection of model
structures and related factors affects how well distributed hydrological models function.
Model parameter uncertainty is a serious restriction, and computation time can be rather
long. However, with improvements in computer resources, autonomous optimization,
calibration-free models, and parallel methods can show enhanced performance [113]. For
probabilistic flood forecasting utilizing deterministic models, Bayesian systems provide a
theoretical foundation [114].
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Table 2. Information on the rainfall runoff models, including its advantages and disadvantages.

Model Type Description Strengths Weaknesses Related Research

Conceptual Models
Based on a simplified
representation of the

hydrological cycle

Easy to use, require only
a few input parameters,
useful for predicting the

behavior of small to
medium-sized

catchments where there
is a good understanding

of the hydrological
processes involved

May not accurately
represent the physical
processes involved in

runoff generation, limited
ability to simulate the

effects of land use change
and climate change

[115,116]

Physical
Process-Based

Models

Based on a detailed
understanding of the

physics of hydrological
processes

Accurately represent the
physical processes
involved in runoff

generation, useful for
predicting runoff from

large catchments and for
simulating complex

hydrological processes

Require a large amount of
detailed data and

computational resources,
can be complex and

time-consuming to set up
and run, may be sensitive

to errors in input data

[117,118]

Empirical Models

Based on statistical
relationships between

rainfall inputs and
observed runoff

outputs

Simple and efficient,
require only historical

data on rainfall and
runoff, useful for flood

forecasting, urban
drainage design, and

water resources planning

May not accurately
represent the physical
processes involved in

runoff generation, limited
ability to simulate the

effects of land use change
and climate change, may
not perform well outside

the range of historical data
used to develop the model

[119]

6. Remote Sensing and GIS-Based Flood Models

Flood models are developed using remote sensing and Geographic Information Sys-
tems (GIS) technologies to help in storm prediction and management [120]. Remote sensing
gathers data about the surface of the Earth from a distance using sensors such as satellites
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or aircraft. To handle, analyze, and visualize geographic data, the GIS software system is
used [121]. Using remotely sensed data and GIS, flood models can simulate how water
would behave during a flood event [122]. These models analyze and assess the topography,
hydrology, meteorology, and land use of the study region using data from a variety of
sources, including satellite images, aerial photography, and ground-based [123]. The mod-
els may be used to evaluate the effectiveness of recommended flood mitigation measures,
as well as to simulate the consequences of various flood scenarios [124,125]. For example,
satellite imagery is used to map flood extents and locate flood-prone areas [126]. Digital
elevation models (DEMs) generated from remote sensing data are used to create flood inun-
dation maps that forecast the areas that are likely to flood during a given flood event [127].
GIS is used to examine the spatial relationships between various variables that contribute
to flooding, such as land use, soil type, and topography [128]. It is also used to generate
flood hazard maps that represent the extent and depth of possible flood inundation, as well
as to aid in flood risk assessment and decision-making [129,130].

The following methodology is usually used in remote sensing and GIS-based flood
models, as shown in Figure 5.
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The models’ function by gathering data from various sources, including satellite im-
agery, aerial photography, and ground-based measurements. The data acquired include
digital elevation models, land use/land cover maps, soil data, and meteorological data [131].
Preprocessing is necessary for the acquired data to increase in accuracy and eliminate dis-
tortions, such as radiometric calibration, atmospheric correction, and geometric correction.
Similar processing operations for GIS data include geo-referencing, data conversion, and
data integration. Flood detection: The preprocessed data are applied to image analysis
methods such as thresholding and image segmentation to identify areas affected by floods.
Using the flood maps as raw data, flood models can simulate the flood process and forecast
flood levels and flows [132]. There are many different kinds of flood models that can be
used, including hydrological, hydraulic and coupled models. Hydrologic modeling is used
to simulate water movement in a watershed, such as infiltration, runoff, and evapotranspi-
ration [133]. Hydrologic models of various kinds, such as distributed [134], lumped [135],
and semi-distributed models [136], are used. The movement of water in river channels
and floodplains is simulated using hydraulic modeling [137]. The hydraulic models can be
one-dimensional (1D), two-dimensional (2D), or three-dimensional (3D) depending on the
complexity of the river channel and floodplain [138].

Flood mapping: Flood maps are created that depict the extent and severity of the flood.
The flood maps are then used to identify flood-prone areas and to create flood-mitigation
strategies, such as land use planning, infrastructure design, and emergency response
planning [139,140]. GIS-based flood models have several advantages over traditional flood
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models, including the ability to integrate various kinds of data and visualize the results
spatially. However, there are disadvantages to them, such as the difficulty of the modeling
process and the need for specialist software and knowledge [141].

The next technique that is widely employed in the validation of flood models is flood
calibration. A better match between forecasts and actual flood levels and flows can be
achieved by changing the model’s input parameters [142]. Flood map validation is a
vital step in locating flaws, correcting them, and raising the accuracy of flood maps. It is
necessary to use field observations or other unbiased data sources to confirm the accuracy
of the flood maps. This process is essential because it guarantees that flood models are
reliable and that they can be applied to develop effective mitigation methods [143]. Now, it
is possible to utilize flood models to predict future floods and provide vulnerable people
early warnings. Real-time information from far-off sensors and other sources can be used
for forecasting.

Remote sensing and GIS-based flood models have a number of benefits over other
types of flood models, including the ability to use a wide range of data and information,
the ability to combine different types of data into a single framework, and the ability
to support spatial analysis and visualization [144]. They do have certain disadvantages,
though, including the need for precise and high-quality data, the potential for errors and
ambiguity in the outcomes, and the need for specific knowledge and abilities to build
and comprehend the models [145]. Table 3 displays the characteristics of various remote
sensing data types and their uses in flood and water resources. Some of the applications of
remote sensing and GIS in floods include in the context of flash floods [146], flood-affected
urban areas [147], flood risk assessment [148], flood risk index [149], flood vulnerability
mapping [150], and flood hazards [151].

Table 3. Shows the features of remote sensing data types with their applications.

Remote Sensing Data Type Features Applications

Optical Imagery
Captures visible and near-infrared light Land cover classification, vegetation monitoring, urban

planning, flood mapping

High-resolution images Coastal management, flood risk assessment,
disaster response, flood damage assessment

Thermal Imagery
Captures heat radiation Flood detection and monitoring,

flood mapping

Provides information on temperature distribution Water resource monitoring, flood
extent mapping

Radar Imagery

Uses radar waves to detect and measure objects and
terrain

Mapping terrain, monitoring coastal erosion, detecting
oil spills, flood mapping

Provides information on elevation, surface roughness,
and moisture content

Agriculture, forestry, urban planning, flood risk
assessment, flood damage assessment

LiDAR

Uses laser pulses to measure distance and create 3D
models

Urban planning, floodplain mapping, flood extent
mapping

Provides information on topography, vegetation height,
and building structure

Flood risk assessment, flood
damage assessment

Hyperspectral Imagery

Captures data across a wide range
of wavelengths Environmental monitoring, flood mapping

Provides detailed information on material composition
and vegetation health

Flood risk assessment, water quality monitoring, flood
damage assessment

Infrared Imagery

Captures
thermal radiation

Fire detection and monitoring, crop health, water
resource monitoring, flood mapping

Provides information on temperature distribution Building inspection, energy efficiency, flood extent
mapping, flood damage assessment

Satellite Imagery

Captures remote sensing data using sensors on board
Earth-orbiting satellites

Monitoring weather, land use changes, natural
disasters, flood mapping

Provides global coverage and frequent revisits to areas
of interest

Climate monitoring, oceanography, flood risk
assessment
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Examples of flood models based on remote sensing and GIS include:

(1) SRTM Flood—This model simulates the behavior of water during a flood event by
using Shuttle Radar Topography Mission (SRTM) data to map the topography of a
study area [152];

(2) Inundation Mapping System (IMS)—The IMS is a flood risk management and emer-
gency response software tool. It was developed by the US Army Corps of Engineers
and is used to forecast the extent and depth of flooding in a specific region [153];

(3) ArcGIS Flood Analysis Tool—Part of the ESRI ArcGIS software suite, this tool is used
to map and evaluate flood risk, including the extent and depth of possible flood
inundation, as well as to support flood risk assessment and decision-making [154].

Future flood models built on remote sensing and GIS technology are very promising,
and have the ability to completely change the way we perceive and handle flood risk.
What follows are a few possible future developments. Increasing the integration of ML
and AI—by autonomously identifying patterns and trends in large amounts of data, ML
and AI algorithms can be used to improve the precision and reliability of remote sensing-
and GIS-based flood models. Real-time monitoring and prediction—flood events can be
monitored in real time, and early warnings and forecasts of their effects can be provided
using remote sensing and GIS-based flood models. This aids in lowering the possibility
of property and life loss and to support effective emergency response. Improved data
access and quality—data from remote sensing and GIS are becoming more and more
readily available, and their quality is also rising. This will enable the development of more
accurate and comprehensive flood models. Greater collaboration and data sharing can be
supported by remote sensing and GIS-based flood models, which will be used by a variety
of stakeholders, including government agencies, academic institutions, and the commercial
sector. Better understanding the effects of floods on communities and the environment will
aid in decision-making and risk management methods.

7. Flood Modeling Using Artificial Intelligence and Machine Learning

Flood modeling using artificial intelligence (AI) and machine learning (ML) is a
relatively new field that has the potential to revolutionize the way floods are predicted
and managed [155,156]. AI and ML algorithms are used to analyze large amounts of
data, including meteorological, hydrological, and topographical data, to improve the
accuracy and reliability of flood models. ML technology enables systems to improve
themselves through experience without the need for explicit programming [157,158]. ML
methodologies involve a learning process that seeks to accomplish a given task by learning
from past experiences [159]. To evaluate the performance of an ML model for a particular
task, a performance metric is utilized to enhance the learning experience [160,161]. There are
four categories of ML technology based on learning methods, namely, supervised learning,
unsupervised learning, semi-supervised learning, and reinforcement learning [162].

Figure 6 depicts the typical machine learning algorithms utilized in flood prediction
and forecasting frameworks.

The entire process involves three primary stages, which are data collection, the se-
lection of appropriate machine learning models, flood forecasting, prediction, and risk
mapping. Data of all kinds are gathered in the first step, including time series of water
levels, data from remote sensing, and tabular data. ML models are chosen in the second step
depending on the features of the data and the prediction issue. Regression techniques may
be used to estimate flood levels using historical data, such as linear regression [163] and
support vector regression [164]. The output variable and the input variables, such as the
weather and the soil moisture levels, are mathematically related by these algorithms [14].
Based on input characteristics including topography, soil type, and previous flood history,
classification algorithms, such as decision trees and random forests, can categorize loca-
tions into high, medium, or low risk of flooding [165]. It is possible to identify flood-prone
locations and prioritize them for flood prevention and mitigation activities by using clus-
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tering algorithms such as hierarchical clustering and k-means to group together areas with
comparable flood risk factors [166].
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Time series analysis techniques, such as Long Short-Term Memory (LSTM) [167]
and Autoregressive Integrated Moving Average (ARIMA) [168], are utilized to analyze
time-dependent data and make short-term flood forecasts. These techniques can capture
patterns and trends in the data to make more accurate predictions [169]. In the third
stage, the selected machine learning models are used to generate flood predictions and
forecasts, and risk maps are generated to help emergency response teams and policymakers
make informed decisions regarding flood preparedness and mitigation measures. The
use of machine learning methods in flood prediction and forecasting models can enhance
the accuracy and timeliness of flood forecasts, which is crucial in mitigating the impact
of flooding events and protecting lives and property. The main machine learning algo-
rithms used in flood prediction and forecasting include k-nearest neighbor [170], deep
convolutional neural network models [171], decision trees [172], support vector regression
models [173], random forest [174], clusters [175], and artificial neural networks (ANN) [176].
Bentivoglio et al. [177] published a paper on deep learning in flood control, emphasizing
its merits in flood mapping. The assessment highlights knowledge gaps and makes recom-
mendations for future research areas in real-time flood warning and probabilistic forecasts.
A study by Seleem et al. [178] evaluated the efficacy of CNN and RF models for predicting
flood water depth. In comparison to RF models, CNN models exhibit a larger potential for
generalization and enhanced performance using transfer learning approaches.

Karim et al. [179] discusses the application of ML and deep learning algorithms
for flood inundation modeling. Deep learning models are more accurate, yet there are
problems due to a lack of expert knowledge and benchmark data. In order to anticipate
the effects of a fluvial flood in real-time, Bomers and Hulscher [180] compared conceptual
models with data-driven models, especially neural networks, pointing out both their
advantages and disadvantages. Table 4 summarizes different flood modeling techniques
as well as their associated AI/ML methods. Hydrological modeling has been achieved
using supervised learning algorithms such as Support Vector Machines (SVM) [181] and
ANN [182], whereas flood inundation mapping is modeled using deep learning (DL)
algorithms such as Convolutional Neural Networks (CNN) and other DL methods [179].
Decision trees (DT), Random Forest (RF), and other ML algorithms are used to evaluate
flood risk, early warning systems, and flood damage [183,184].
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Table 4. Various AI and ML techniques are applied in flood modeling.

Flood Modeling AI/ML Method

Hydrological Modeling
ANN, SVM, and other supervised learning

algorithms are used to simulate intricate
hydrological processes and forecast flooding events.

Flood Inundation Mapping

Using CNN and other deep learning algorithms,
locations that have been inundated by floods are

mapped using high-resolution remote sensing data,
such as satellite photography or aerial photographs.

Flood Risk Assessment

Using decision trees, Random Forest, and other
machine learning algorithms, flood risk is evaluated
in relation to a variety of criteria, including land use,

elevation, and rainfall.

Early Warning Systems

ANN and other machine learning algorithms are
used to create early warning systems that deliver

real-time alerts based on forecasts of flood
occurrences and their possible repercussions.

Flood Damage Assessment
The probable harm brought on by flood disasters has

been assessed using DT, RF, and other machine
learning techniques.

Some examples of how AI and ML can be used in flood modeling are described in
the following:

(a) Predictive modeling—AI and ML algorithms can be used to build predictive models
that can provide flood warnings and forecasts. These models can be developed using
historical data and updated in real time as new data become available [185];

(b) Data analysis—AI and ML algorithms can be used to analyze large amounts of data,
such as remote sensing and GIS data, to identify patterns and trends that can provide
insights into flood causes and effects [186];

(c) Risk assessment—AI and ML algorithms can be used to assess the potential conse-
quences of a flood event, such as damage to buildings and infrastructure, loss of life,
and economic impact. This knowledge can be used to support risk management and
decision-making [187];

(d) Mitigation planning—AI and ML algorithms can be used to create flood mitigation
strategies, such as levees and floodwalls, non-structural measures such as zoning and
land use laws, and emergency planning and response [188].

Incorporating AI and ML into flood modeling has the potential to increase the accuracy
and dependability of flood models, facilitate more efficient decision-making, and lower the
danger of property and human casualties during flood occurrences [189]. However, it is
essential to note that these technologies are still in their early stages of development, and
more studies are required to fully understand their potential and limitations. There are
several limitations, for example, flood models frequently require data from multiple sources,
including meteorological, hydrological, and topographical data. Integrating data from
various sources can be difficult, especially when the data formats and units are different.
Table 5 explains the advantages and disadvantages of each algorithm, enabling customers
to select the one that will best meet their particular needs. Table 6 shows a summary
of the different ML methods compared in terms of accuracy, speed of learning, speed of
classification, tolerance to missing data, dealing with discrete data, dealing with binary
data, tolerance to noise, over fitting, model parameter handling, and linear/nonlinear.



Hydrology 2023, 10, 141 16 of 32

Table 5. Different ML method advantages and disadvantages.

Method Advantages Disadvantages

Decision Trees
Simple to understand and analyze; handle categorical and

continuous variables; handle missing values; handle
variable interactions.

Prone to over fitting; sensitive to small variations in data;
produce biased trees if some classes prevail.

Random Forests
High accuracy; robust to over fitting; handle missing values and

multidimensional data; handle variable interactions; provides
feature significance measures.

The underlying decision process is difficult to analyze and
comprehend; longer training periods and more storage space

are required.

Support Vector Machines
High accuracy; capable of handling high-dimensional data;

capable of handling missing values; capable of handling
nonlinear connections; provides feature importance measures.

Sensitive to kernel function and parameter selection; large
datasets can be computationally intensive; direct handling of

categorical factors is not possible.

Naive Bayes
Quick and simple to use; capable of handling high-dimensional
data; missing values; categorical and continuous variables,; and

able to provide probabilities and interpretability

Assumes independence between variables; performs poorly if
independence assumption is violated; cannot capture complex

relationships between variables.

k-Nearest Neighbors Simple and intuitive; handle both categorical and continuous
variables; handle missing values; handle nonlinear relationships

Can be sensitive to the choice of k; computationally intensive for
large datasets; can be biased towards variables with

high variance

Neural Networks
High accuracy in complex tasks; handles high-dimensional data;

handles missing values; handles both categorical and
continuous variables; handles nonlinear relationships

Prone to over fitting; difficult to interpret and understand the
underlying decision process; Can require longer training times

and larger storage space; Can be sensitive to the choice of
architecture and hyper parameters

Deep Learning

State-of-the-art performance in many tasks; handles
high-dimensional data; handles missing values; handles both

categorical and continuous variables; handles
nonlinear relationships

Requires large amounts of data and computing resources; can be
prone to over fitting and require regularization; difficult to

interpret and understand the underlying decision process; can
be sensitive to the choice of architecture and hyper parameters

Table 6. Different ML methods comparison.

Method Accuracy
Speed of

Learn-
ing

Speed of
Classifi-
cation

Tolerance
to Missing

Data

Dealing
with

Discrete
Data

Dealing
with

Binary
Data

Tolerance
to Noise

Over
Fitting

Model
Parameter
Handling

Linear/Nonlinear

Decision
Trees

Moderate
to High Fast Fast

Can handle
missing

data

Can handle
discrete

data

Can handle
binary data

Sensitive to
noise

Prone to
over fitting

Easy to
handle Both

Random
Forests High Moderate Fast

Can handle
missing

data

Can handle
discrete

data

Can handle
binary data

Tolerant to
noise

Less prone
to over
fitting

Easy to
handle Both

Support
Vector

Machines
High Moderate Moderate

Can handle
missing

data

Cannot
handle
discrete

data
directly

Can handle
binary data

Sensitive to
noise

Prone to
over fitting

Model
complexity Non linear

Naive
Bayes

Moderate
to High Fast Fast

Can handle
missing

data

Can handle
discrete

data

Can handle
binary data

Sensitive to
noise

Less prone
to over
fitting

Easy to
handle Both

k-Nearest
Neighbors

Moderate
to High Slow Moderate

Cannot
handle
missing

data
directly

Can handle
discrete

data

Can handle
binary data

Tolerant to
noise

Prone to
over fitting

Model
complexity Non linear

Neural
Networks High Slow Moderate

to slow

Can handle
missing

data

Cannot
handle
discrete

data
directly

Can handle
binary data

Tolerant to
noise

Prone to
over fitting

Model
complexity Non linear

Deep
Learning High Slow Moderate

to slow

Can handle
missing

data

Cannot
handle
discrete

data
directly

Can handle
binary data

Tolerant to
noise

Prone to
over fitting

Model
complexity Non linear

It can be difficult to validate AI and ML algorithms, especially when there is a lack of
historical data. Because of this, judging these models’ accuracy and suitability for various
uses can be challenging. It is essential to remember that the decision regarding which
AI/ML method to use will rely on the particular needs and specifications of the flood
modeling project, and that various methods might be better suited for various kinds of
predictions and data. In order to ensure accuracy and reliability, AI/ML-based flood
modeling methods should also be validated and calibrated using accurate and reliable data
and their results should be interpreted cautiously.
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8. Multiple-Criteria Decision Analysis-Based Flood Management

Multiple-criteria decision analysis (MCDA) is a technique used to assist decision-
makers in making well-informed decisions when confronted with complex and conflicting
decisions, such as those involved in flood management [190]. As part of its multi-criteria
decision-making process, MCDA takes into account both quantitative and qualitative
factors [191]. In terms of flood management, MCDA is used to evaluate and compare
various flood management alternatives, including structural measures, non-structural
measures, and land use planning, based on a variety of criteria, such as to minimize the risk
of flood damage or to reduce the effects of a flood event [192]. The two broad categories of
MCDM techniques are MADM (multi-attribute decision-making) and MODM (multiple-
objective decision-making) [193]. There are various types of MADM methods that can
be used to evaluate and compare different options based on multiple criteria. MADM
is suitable for choosing a small number of alternatives and preference ranking. Figure 7
shows the different classifications of MCDM methods. Here are a few typical examples:

(a) Value/utility function methods—These techniques involve developing a function
that rates each option’s value or utility in accordance with how well it fulfills each
criterion. Multi-attribute value theory (MAVT) [194] and multi-attribute utility theory
(MAUT) [195] are two examples of value/utility function methods. It serves to assess
and compare various flood mitigation options based on a variety of criteria including
cost, effectiveness, environmental impact, and social acceptance;

(b) Pairwise comparison methods—In these approaches, the options are ranked by mak-
ing pairwise comparisons of the way each option compares to other in terms of the
way well it fulfills each criterion [196]. Analytic hierarchy process (AHP) [197] and
the analytic network process (ANP) [198] are two examples of pairwise comparison
techniques. These techniques are used to prioritize emergency response actions, such
as evacuation, rescue, and relief efforts, during a flood event [199]. They compare
the efficacy of various response actions based on factors such as speed of response,
responder safety, and affected population;

(c) Outranking techniques—These techniques evaluate each alternative to every other
option in terms of how well they fulfill each criterion in order to identify which
possibilities “outrank” others [200]. Outranking techniques include, for example, the
elimination and choice expressing reality (ELECTRE) approach and the preference
ranking organization method for enrichment evaluation (PROMETHEE) [201]. Based
on a range of criteria, such as accuracy, computational complexity, and data accessibil-
ity, these strategies are used to choose the optimal flood forecasting model [16,202];

(d) Distance-based methods—These methods involve calculating the distance between
each option and an ideal solution, and then ranking the options based on these
distances. The technique for order of preference by similarity to ideal solution (TOP-
SIS) [203] and the weighted aggregated sum product assessment (WASPAS) meth-
ods [204] are two examples of distance-based methods. The methods are used to
assess the risk of flooding in various areas and determine the best flood management
strategies [205];

(e) Fuzzy decision-making methods—These approaches involve incorporating uncertainty
or imprecision into decision-making [206]. To deal with uncertainty in criteria weights,
preference values, and rankings, fuzzy logic and fuzzy set theory can be used [207]. The
MADM method chosen will be determined by the nature of the decision problem, the
number and types of criteria, and the decision-makers’ preferences [208].
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Figure 8 depicts the steps taken to solve the problem. MCDA involves the following
steps: defining the problem and identifying objectives, identifying relevant criteria, as-
signing weights to criteria, identifying alternatives, evaluating alternatives against each
criterion, aggregating results, conducting sensitivity analysis, making a decision based on
objectives and preferences, and monitoring and evaluating the decision over time. Table 7
illustrates the various MCDM techniques and their applications in flood management. It is
essential to note that the MCDM method chosen will be determined by the specific needs
and requirements of the flood management project, and that various methods may be more
appropriate for different types of decisions and situations.
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Table 7. Different MCDM methods and their applications in flood management.

Method Application in Flood

Multi-attribute value theory (MAVT)
Used to compare various flood mitigation

strategies in terms of cost, effectiveness, and
impact on the environment.

Multi-attribute utility theory (MAUT)

Used to compare various flood mitigation
methods based on factors such as cost, efficacy,

and environmental impact, while keeping
decision-makers’ preferences in mind.

Analytic hierarchy process (AHP) and the
analytic network process (ANP)

Used to assess flood mitigation plans using a
variety of factors, including effects on the
environment, society, and the economy.

The elimination and choice expressing reality
(ELECTRE) method and the preference ranking

organization method for enrichment
evaluation (PROMETHEE)

It ranks various flood mitigation methods
according to the extent to which they work in

comparison to ideal and undesirable solutions.

The technique for order of preference by
similarity to ideal solution (TOPSIS)

Ranks various flood mitigation methods
according to their proximity to an

ideal response.

Weighted aggregated sum product
assessment (WASPAS)

Used to assess flood mitigation based on
attributes such as cost, efficacy, and

environmental impact while taking into
account decision-makers’ weights.

Fuzzy decision-making methods
It is used when there is uncertainty or

imprecision in the available data or
decision-makers’ preferences.

MODM is preferred for continuous optimization problems with an infinite number
of alternatives [209]. Based on computational time and solution, MODM methods are
further classified as mathematical programming models and heuristic algorithms. Linear
programming (LP), non-linear programming (NLP), mixed integer linear programming
(MILP), goal programming (GP) and dynamic programming are all mathematical meth-
ods [210]. Genetic algorithm (GA), non-dominated sorting genetic algorithm (NSGA),
particle swarm optimization (PSO), etc., are all heuristic methods [211]. To ensure that
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stakeholders’ perspectives and concerns are considered, MCDM methods necessitate their
participation in the decision-making process. More details are given in Section 9.

9. Heuristic and Metaheuristic Methods Used in Flood Management

Optimization techniques can be used in flood management in a variety of ways, includ-
ing flood control, flood warning, flood forecasting/predication and flood risk management.
Optimization techniques can be used in flood control to identify the most effective flood
control measures to reduce flood damage [212]. To make sure they can resist flooding,
flood control facilities like levees and dams can be improved by design. Based on variables
including flood frequency, possible damage, and cost, optimization techniques may also be
used to choose the optimal locations for flood protection structures [213]. It is used in flood
warning to enhance the setup and functionality of flood warning systems. This entails
placing sensors and gauges optimally to deliver precise and fast flood warnings. The best
algorithms for predicting flood levels and sending flood alerts are also found using this
method [34]. In order to enhance flood risk assessments, which involve detecting flood-
prone locations and determining the most effective flood risk management procedures,
optimization techniques can be applied [208]. In order to ensure that resources are allocated
efficiently during a flood event, optimization is also used to improve emergency response
plans and evacuation strategies [214].

Traditional optimization methods include dynamic programming (DP), non-linear
programming (NLP), and linear programming (LP) [215]. In order to address complex
issues related to flood control, flood warning, and flood risk management, heuristic and
metaheuristic optimization techniques have been shown to be helpful in flood management.
These methods were created to address the drawbacks of earlier optimization methods
such as linear programming (LP) [216], nonlinear programming (NLP), and dynamic pro-
gramming (DP). When traditional approaches are too slow, problem-solving techniques
called heuristic methods are used to find a solution quickly. Metaheuristic techniques are
more advanced methods for choosing or creating heuristics that can effectively address
optimization problems [35,217]. These methods are divided into neighborhood-based and
population-based algorithms [218]. Population-based algorithms, such as swarm intelli-
gence and evolutionary algorithm, are adaptable and can easily offer a global solution.
Genetic algorithms (GA), differential evolution (DE), genetic programming (GP), evolution-
ary programming (EP), and evolutionary strategies (ES) are a few examples of evolutionary
algorithms. Ant colony optimization (ACO), harmony search (HS), particle swarm op-
timization (PSO), cuckoo search (CS), artificial bee colony (ABC), firefly algorithm (FA),
bat algorithm (BA), honey bee mating optimization (HBMO), and shuffled frog leaping
algorithm are examples of swarm intelligence-based algorithms (SFLA). Tabu search (TS)
and simulated annealing (SA) are two neighborhood-based algorithms [219].

These algorithms can be used to locate areas that are vulnerable to flooding, design
flood protection measures, and order flood response measures [220]. Overall, heuristic and
metaheuristic optimization techniques are useful tools for managing floods because they
offer a quicker and more adaptable method of locating the best answers to challenging
issues relating to flood control, flood warning, flood forecasting, flood predication and
flood risk management [221]. Figure 9 depicts the methodology for creating a hybrid flood
forecasting/predicting model. It involves collecting relevant data, such as rainfall and
water levels, choosing the most relevant features, selecting suitable models, combining
them into a hybrid model, training and validating the model, fine-tuning the model by
optimization, adjusting its parameters to improve its performance, deploying the model,
and continuously monitoring and evaluating its performance. This process assists in the
creation of a model that can make use of the strengths of several models and compensate
for their weaknesses, leading to accurate and reliable flood forecasting and prediction.
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10. Challenges and Way Forward

Flood modeling is the process of predicting and analyzing how floods will affect a
certain area using numerical models, data, and simulations. Understanding the physical
mechanisms that cause floods and forecasting their behavior and effects, such as water
levels, flow patterns, inundation extent, and damage assessment, are the main objectives
of flood modeling. The creation of mitigation and adaptation methods, as well as the
evaluation of flood risk, can all be aided by the data produced by flood models. However,
considering that flood modeling is a difficult and complex process, a number of factors
may have an impact on the accuracy and dependability of the models. The following are a
few difficulties encountered with flood modeling:

(1) The availability and quality of data provide one of the major difficulties in flood simu-
lation. Many data are required for flood models, including topographic information,
data on land use, hydrological information, and data on prior floods. The quality and
completeness of the data utilized determine the models’ accuracy and dependability.
The information utilized for flood modeling is obsolete, contradictory, or nonexistent.
For instance, topological information can be obsolete and not exactly reflect the local
environment right now. In places with poor monitoring networks, hydrological data,
such as precipitation and stream flow data, may also be erroneous. The quality of
the data used for flood modeling must be updated and improved in order to meet
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these requirements. By creating new monitoring networks, enhancing data gather-
ing and processing procedures, and utilizing satellite data and other remote sensing
technologies, this may be accomplished;

(2) Flood models can range in complexity from straightforward empirical models based
on a few factors to intricate hydraulic models that replicate the underlying physical
processes. The models’ complexity may have an impact on their precision, depend-
ability, and computational effectiveness. In order to construct and operate complex
models, more information, processing power, and skill are needed. Complex models
are more accurate in simulating the physical processes involved in floods. On the
other hand, simple models are simpler to create and maintain, but they cannot ade-
quately capture the intricate processes involved in floods. The availability of data and
computing resources must be balanced with the complexity of the models in order
to overcome this difficulty. To get the greatest results, a combination of basic and
complicated models may be utilized often;

(3) Validation and calibration of the models—The calibration and validation of the models
are essential procedures in flood modeling to make sure that the models appropriately
reflect the behavior of floods. While validation entails contrasting model outputs
with independent observations to judge the models’ correctness, calibration entails
changing model parameters to fit the observed data. However, because to the scarcity
of observed data, the difficulty in gathering precise flood data, and the complexity of
the physical processes involved in floods, calibrating and validating flood models may
be difficult. It is essential to calibrate and test the models using a range of observational
data, such as historical flood data, satellite data, and in-situ observations, in order to
solve these concerns. Additionally, it is crucial to combine data from many sources
and use statistical techniques such as sensitivity analysis to determine the degree of
uncertainty in the models;

(4) Model uncertainty—Another issue in flood modeling that may have an impact on
the models’ accuracy and dependability is model uncertainty. The unpredictability
of the data utilized, the complexity of the physical processes involved in floods, and
the constraints of the models themselves are only a few of the factors that contribute
to model uncertainty. Sensitivity analysis and other statistical techniques should be
used to assess and communicate model uncertainty using flood models in order to
overcome these difficulties. Sensitivity analysis is a popular statistical technique used
for understanding how model parameters affect the outcomes of flood simulation.
Sensitivity analysis seeks to comprehend the uncertainty of the models as a result
of the uncertainty in the parameter values by identifying the variables that have the
greatest impact on the model outputs. The sensitivity analysis techniques include
One-at-a-Time (OAT), Global, and Probabilistic Sensitivity Analysis (PSA). In contrast
to OAT sensitivity analysis, which includes altering one parameter at a time and ex-
amining its impact on the model outputs, global sensitivity analysis requires changing
a number of factors at once to record the interactions between them. PSA use prob-
ability distributions to compute parameter uncertainty and evaluate the likelihood
of various model outcomes. In addition to sensitivity analysis, Bayesian inference
and Monte Carlo simulation are other statistical methods that are crucial for flood
modeling. In order to update model parameters and determine model uncertainty,
Bayesian inference uses prior information and observational data. Monte Carlo simu-
lation creates a number of simulated model runs with different parameter settings
in order to compute the likelihood of various model outputs and assess the level of
model uncertainty.

11. Discussion and Future Direction

A key tool for understanding and predicting flood behavior as well as choosing the
best course of action for managing the risk of flooding is flood modeling. There are several
flood models available, each with their own benefits and drawbacks. When choosing a flood
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model, it is vital to consider factors including the simulation’s complexity, data accessibility,
and the user’s precise requirements and specifications. One of the most important aspects
of flood modeling is the choice of model inputs, such as data on precipitation, geography,
land use and land cover, and hydrological conditions. Because it could be challenging or
expensive to acquire high-quality data, the flood model’s accuracy and reliability may be
limited in many situations. Forecasting future flood conditions is typically fraught with
uncertainty, particularly in regions where climate change is expected to have an impact on
the frequency and intensity of catastrophic floods.

The choice of model, which may include hydrodynamic models, statistical models,
and physically based models, is a crucial component in flood modeling. While statistical
models utilize statistical approaches to evaluate flood risk based on historical data, hydro-
dynamic models mimic the movement of water in a river or floodplain. Hydrodynamic
and statistical methods are combined in physically based models, such as those that use the
Flood Estimation Handbook (FEH) technique, to produce more precise forecasts of flood
conditions. The choice of model output, such as forecasts of flood size, flood depths, and
flood velocity, is another crucial element of flood modeling. These results can be used to
guide flood risk management choices, such as creating evacuation plans, designing flood
protection systems, and putting floodplain zoning and land use regulations into practice.
Additionally, the effectiveness of various management techniques, such as the development
of levees and other flood protection structures, on flood risk and floodplain conditions may
be evaluated using flood models. It is crucial for both practitioners and decision-makers to
carefully assess the strengths and limits of various models and techniques when making
judgments on flood risk management since, in general, flood modeling is a complicated
and quickly-evolving area.

In order to enhance flood modeling in the future, several critical areas must be
addressed. The following are some methods that could be applied to flood studies in
the future:

(a) The incorporation of modern technology to increase the precision and effectiveness of
flood models—emerging technologies such as remote sensing, cloud computing, and
artificial intelligence will be essential;

(b) Data management and processing—improving flood modeling will require the effi-
cient administration and processing of huge and varied data sources;

(c) Development of user-friendly interfaces and visualization tools—these improvements
will make it simpler for practitioners and decision-makers to utilize flood models in
practical applications;

(d) Multidisciplinary collaboration—researchers, practitioners, and decision-makers from
a variety of disciplines must work together to advance flood modeling and enhance
flood risk management;

(e) Addressing uncertainty—improving the accuracy of probabilistic flood models and
addressing the difficulties of uncertainty quantification will be crucial for enhancing
the dependability of flood forecasts;

(f) Integrated models—for the accuracy of flood predictions to increase, it will be essential
to create more thorough and integrated models that take into account interactions
between various flood system components;

(g) Adaptation to climate change—as the climate changes, it will be crucial for flood
models to take these effects into account and to help decision-making in terms of
adaptation and resilience.

In general, the future of flood modeling entails a mix of technical developments,
collaboration, and addressing the problems of uncertainty and data management. In order
to undertake efficient flood risk management and decision-making, it is important to create
models that are more precise, trustworthy, and user-friendly.
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12. Conclusions

In conclusion, flood modeling has evolved into a crucial instrument in the management
of flood risk, assisting academics and professionals in comprehending and predicting the
behavior of floods, as well as making defensible choices to lessen their effects. Although
there has been a lot of work in creating new and better models, issues like uncertainty and
data constraints still need to be resolved. However, improvements in computing capability,
data accessibility, and fresh models provide hope for the future of flood modeling. This
thorough examination of flood models has produced a useful synthesis of the body of
knowledge, showing the advantages and disadvantages of various models and suggesting
areas for further research and development. The study also emphasizes the necessity of
continuing research in this area to guarantee that flood risk management measures continue
to be successful in the face of rising flood danger. The review can help decision-makers
reduce the danger of flooding by enhancing their understanding of flood models, which
will eventually improve community safety and well-being throughout the world. For the
purpose of creating more precise and trustworthy flood models and management plans,
this evaluation will serve as a reference for academics, professionals, and decision-makers.
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88. Chang, T.J.; Wang, C.H.; Chen, A.S.; Djordjević, S. The effect of inclusion of inlets in dual drainage modelling. J. Hydrol. 2018, 559,
541–555. [CrossRef]

89. David, A.; Schmalz, B. Flood hazard analysis in small catchments: Comparison of hydrological and hydrodynamic approaches by
the use of direct rainfall. J. Flood Risk Manag. 2020, 13, e12639. [CrossRef]

90. García-Alén, G.; González-Cao, J.; Fernández-Nóvoa, D.; Gómez-Gesteira, M.; Cea, L.; Puertas, J. Analysis of two sources of
variability of basin outflow hydrographs computed with the 2d shallow water model iber: Digital terrain model and unstructured
mesh size. J. Hydrol. 2022, 612, 128182. [CrossRef]

91. Costabile, P.; Costanzo, C.; Ferraro, D.; Barca, P. Is HEC-RAS 2D accurate enough for storm-event hazard assessment? Lessons
learnt from a benchmarking study based on rain-on-grid modelling. J. Hydrol. 2021, 603, 126962. [CrossRef]

92. Fernández-Pato, J.; Caviedes-Voullième, D.; García-Navarro, P. Rainfall/runoff simulation with 2D full shallow water equations:
Sensitivity analysis and calibration of infiltration parameters. J. Hydrol. 2016, 536, 496–513. [CrossRef]

93. Zeiger, S.J.; Hubbart, J.A. Measuring and modeling event-based environmental flows: An assessment of HEC-RAS 2D rain-on-grid
simulations. J. Environ. Manag. 2021, 285, 112125. [CrossRef]

94. Cea, L.; Bladé, E. A simple and efficient unstructured finite volume scheme for solving the shallow water equations in overland
flow applications. Water Resour. Res. 2015, 51, 5464–5486. [CrossRef]

https://doi.org/10.1080/1573062X.2020.1811881
https://doi.org/10.1111/jfr3.12246
https://doi.org/10.1016/j.jhydrol.2022.127763
https://doi.org/10.2166/hydro.2017.075
https://doi.org/10.1016/j.jhydrol.2017.06.024
https://doi.org/10.1016/j.jafrearsci.2016.10.001
https://doi.org/10.1016/j.jhydrol.2012.10.027
https://doi.org/10.1007/s11269-009-9474-6
https://doi.org/10.1080/00221686.2007.9521765
https://doi.org/10.1016/j.coastaleng.2016.01.012
https://doi.org/10.1016/j.envsoft.2017.03.029
https://doi.org/10.1016/j.envsoft.2022.105478
https://doi.org/10.1016/j.advwatres.2019.103422
https://doi.org/10.1007/s13369-015-1915-3
https://doi.org/10.1007/s12517-020-05891-w
https://doi.org/10.1007/s11269-020-02490-y
https://doi.org/10.1111/j.1747-6593.2005.tb00554.x
https://doi.org/10.1080/02626667.2019.1671982
https://doi.org/10.1029/2021WR031279
https://doi.org/10.1016/j.jhydrol.2018.01.066
https://doi.org/10.1111/jfr3.12639
https://doi.org/10.1016/j.jhydrol.2022.128182
https://doi.org/10.1016/j.jhydrol.2021.126962
https://doi.org/10.1016/j.jhydrol.2016.03.021
https://doi.org/10.1016/j.jenvman.2021.112125
https://doi.org/10.1002/2014WR016547


Hydrology 2023, 10, 141 28 of 32

95. Moradkhani, H.; Sorooshian, S. General Review of Rainfall–runoff Modeling: Model Calibration, Data Assimilation, and
Uncertainty Analysis. In Hydrological Modelling and the Water Cycle: Coupling the Atmospheric and Hydrological Models; Sorooshian,
S., Hsu, K.L., Coppola, E., Tomassetti, B., Verdecchia, M., Visconti, G., Eds.; Springer: Berlin/Heidelberg, Germany, 2008; pp. 1–24.
[CrossRef]

96. Peel, M.C.; McMahon, T.A. Historical development of rainfall-runoff modeling. WIREs Water 2020, 7, e1471. [CrossRef]
97. Sahoo, B.; Perumal, M.; Moramarco, T.; Barbetta, S.; Sahoo, S. A multilinear discrete Nash-cascade model for stage-hydrograph

routing in compound river channels. Hydrol. Sci. J. 2020, 65, 335–347. [CrossRef]
98. Chen, S.H.; Pollino, C.A. Good practice in Bayesian network modelling. Environ. Model. Softw. 2012, 37, 134–145. [CrossRef]
99. Hlavcova, K.; Kohnova, S.; Kubes, R.; Szolgay, J.; Zvolensky, M. An empirical method for estimating future flood risks for flood

warnings. Hydrol. Earth Syst. Sci. 2005, 9, 431–448. [CrossRef]
100. Fatichi, S.; Vivoni, E.R.; Ogden, F.L.; Ivanov, V.Y.; Mirus, B.; Gochis, D.; Downer, C.W.; Camporese, M.; Davison, J.H.;

Ebel, B.; et al. An overview of current applications, challenges, and future trends in distributed process-based models in hydrol-
ogy. J. Hydrol. 2016, 537, 45–60. [CrossRef]

101. Arnold, J.G.; Srinivasan, R.; Muttiah, R.S.; Williams, J.R. Large area hydrologic modeling and assessment Part I: Model develop-
ment. J. Am. Water Resour. Assoc. 1998, 34, 73–89. [CrossRef]

102. Ramkar, P.; Yadav, S.M. Identification of critical watershed using hydrological model and drought indices: A case study of upper
Girna, Maharashtra, India. ISH J. Hydraul. Eng. 2021, 27, 471–482. [CrossRef]

103. Barbero, G.; Costabile, P.; Costanzo, C.; Ferraro, D.; Petaccia, G. 2D hydrodynamic approach supporting evaluations of hydrologi-
cal response in small watersheds: Implications for lag time estimation. J. Hydrol. 2022, 610, 127870. [CrossRef]

104. Abbott, M.B.; Bathurst, J.C.; Cunge, J.A.; O’Connell, P.E.; Rasmussen, J. An introduction to the European Hydrological System—
Systeme Hydrologique Europeen, ‘SHE’, 1: History and philosophy of a physically-based, distributed modelling system. J. Hydrol.
1986, 87, 45–59. [CrossRef]

105. Kouwen, N. Watflood: A micro-computer based flood forecasting system based on real-time weather radar. Can. Water Resour. J.
1988, 13, 62–77. [CrossRef]

106. Liu, Y.; Pender, G. A flood inundation modelling using v-support vector machine regression model. Eng. Appl. Artif. Intell. 2015,
46, 223–231. [CrossRef]

107. Kumar, V.; Yadav, S.M. Real-Time Flood Analysis Using Artificial Neural Network. In Recent Trends in Civil Engineering; Pathak,
K.K., Bandara, J.M.S.J., Agrawal, R., Eds.; Springer: Singapore, 2021; pp. 973–986. [CrossRef]

108. Mishra, S.K.; Singh, V.P. Long-term hydrological simulation based on the Soil Conservation Service curve number. Hydrol. Process
2004, 18, 1291–1313. [CrossRef]

109. Teng, J.; Jakeman, A.J.; Vaze, J.; Croke, B.F.W.; Dutta, D.; Kim, S. Flood inundation modelling: A review of methods, recent
advances and uncertainty analysis. Environ. Model. Softw. 2017, 90, 201–216. [CrossRef]

110. Buttinger-Kreuzhuber, A.; Konev, A.; Horváth, Z.; Cornel, D.; Schwerdorf, I.; Blöschl, G.; Waser, J. An integrated GPU-accelerated
modeling framework for high-resolution simulations of rural and urban flash floods. Environ. Model. Softw. 2022, 156, 105480.
[CrossRef]

111. Maranzoni, A.; D’Oria, M.; Rizzo, C. Quantitative flood hazard assessment methods: A review. J. Flood Risk Manag. 2023, 16, e12855.
[CrossRef]

112. Papaioannou, G.; Vasiliades, L.; Loukas, A.; Aronica, G.T. Probabilistic flood inundation mapping at ungauged streams due to
roughness coefficient uncertainty in hydraulic modelling. Adv. Geosci. 2017, 44, 23–34. [CrossRef]

113. Li, J.; Chen, Y.; Wang, H.; Qin, J.; Li, J.; Chiao, S. Extending flood forecasting lead time in a large watershed by coupling WRF QPF
with a distributed hydrological model. Hydrol. Earth Syst. Sci. 2017, 21, 1279–1294. [CrossRef]

114. Han, S.; Coulibaly, P. Bayesian flood forecasting methods: A review. J. Hydrol. 2017, 551, 340–351. [CrossRef]
115. Bai, P.; Liu, X.; Liang, K.; Liu, C. Comparison of performance of twelve monthly water balance models in different climatic

catchments of China. J. Hydrol. 2015, 529, 1030–1040. [CrossRef]
116. McGrath, H.; Bourgon, J.F.; Proulx-Bourque, J.S.; Nastev, M.; Abo El Ezz, A. A comparison of simplified conceptual models for

rapid web-based flood inundation mapping. Nat. Hazards 2018, 93, 905–920. [CrossRef]
117. Bai, Y.; Zhang, Z.; Zhao, W. Assessing the Impact of Climate Change on Flood Events Using HEC-HMS and CMIP5. Water Air Soil

Pollut. 2019, 230, 119. [CrossRef]
118. Montanari, A.; Koutsoyiannis, D. A blueprint for process-based modeling of uncertain hydrological systems. Water Resour. Res.

2012, 48, 2011WR011412. [CrossRef]
119. Triguero, I.; García, S.; Herrera, F. Self-labeled techniques for semi-supervised learning: Taxonomy, software and empirical study.

Knowl. Inf. Syst. 2015, 42, 245–284. [CrossRef]
120. Sharma, K.V.; Kumar, V.; Singh, K.; Mehta, D.J. LANDSAT 8 LST Pan sharpening using novel principal component based

downscaling model. Remote Sens. Appl. Soc. Environ. 2023, 30, 100963. [CrossRef]
121. Kabenge, M.; Elaru, J.; Wang, H.; Li, F. Characterizing flood hazard risk in data-scarce areas, using a remote sensing and GIS-based

flood hazard index. Nat. Hazards 2017, 89, 1369–1387. [CrossRef]
122. Sharma, K.V.; Khandelwal, S.; Kaul, N. Principal component based fusion of land surface temperature (LST) and panchromatic

(PAN) images. Spat. Inf. Res. 2021, 29, 31–42. [CrossRef]

https://doi.org/10.1007/978-3-540-77843-1_1
https://doi.org/10.1002/wat2.1471
https://doi.org/10.1080/02626667.2019.1699243
https://doi.org/10.1016/j.envsoft.2012.03.012
https://doi.org/10.5194/hess-9-431-2005
https://doi.org/10.1016/j.jhydrol.2016.03.026
https://doi.org/10.1111/j.1752-1688.1998.tb05961.x
https://doi.org/10.1080/09715010.2019.1594416
https://doi.org/10.1016/j.jhydrol.2022.127870
https://doi.org/10.1016/0022-1694(86)90114-9
https://doi.org/10.4296/cwrj1301062
https://doi.org/10.1016/j.engappai.2015.09.014
https://doi.org/10.1007/978-981-15-5195-6_71
https://doi.org/10.1002/hyp.1344
https://doi.org/10.1016/j.envsoft.2017.01.006
https://doi.org/10.1016/j.envsoft.2022.105480
https://doi.org/10.1111/jfr3.12855
https://doi.org/10.5194/adgeo-44-23-2017
https://doi.org/10.5194/hess-21-1279-2017
https://doi.org/10.1016/j.jhydrol.2017.06.004
https://doi.org/10.1016/j.jhydrol.2015.09.015
https://doi.org/10.1007/s11069-018-3331-y
https://doi.org/10.1007/s11270-019-4159-0
https://doi.org/10.1029/2011WR011412
https://doi.org/10.1007/s10115-013-0706-y
https://doi.org/10.1016/j.rsase.2023.100963
https://doi.org/10.1007/s11069-017-3024-y
https://doi.org/10.1007/s41324-020-00333-x


Hydrology 2023, 10, 141 29 of 32

123. Costache, R.; Pham, Q.B.; Sharifi, E.; Linh, N.T.T.; Abba, S.I.; Vojtek, M.; Vojteková, J.; Nhi, P.T.T.; Khoi, D.N. VFlash-Flood
Susceptibility Assessment Using Multi-Criteria Decision Making and Machine Learning Supported by Remote Sensing and GIS
Techniques. Remote Sens. 2019, 12, 106. [CrossRef]

124. Thakur, P.K.; Aggarwal, S.; Aggarwal, S.P.; Jain, S.K. One-dimensional hydrodynamic modeling of GLOF and impact on
hydropower projects in Dhauliganga River using remote sensing and GIS applications. Nat. Hazards 2016, 83, 1057–1075.
[CrossRef]

125. Mehta, D.J.; Eslamian, S.; Prajapati, K. Flood modelling for a data-scare semi-arid region using 1-D hydrodynamic model: A case
study of Navsari Region. Model. Earth Syst. Environ. 2022, 8, 2675–2685. [CrossRef]

126. Skakun, S.; Kussul, N.; Shelestov, A.; Kussul, O. Flood Hazard and Flood Risk Assessment Using a Time Series of Satellite Images:
A Case Study in Namibia. Risk Anal. 2014, 34, 1521–1537. [CrossRef] [PubMed]

127. Coveney, S.; Roberts, K. Lightweight UAV digital elevation models and orthoimagery for environmental applications: Data
accuracy evaluation and potential for river flood risk modelling. Int. J. Remote Sens. 2017, 38, 3159–3180. [CrossRef]

128. Garcia-Ayllon, S.; Radke, J. Geostatistical Analysis of the Spatial Correlation between Territorial Anthropization and Flooding
Vulnerability: Application to the DANA Phenomenon in a Mediterranean Watershed. Appl. Sci. 2021, 11, 809. [CrossRef]

129. Saha, A.K.; Agrawal, S. Mapping and assessment of flood risk in Prayagraj district, India: A GIS and remote sensing study.
Nanotechnol. Environ. Eng. 2020, 5, 11. [CrossRef]

130. Mangukiya, N.K.; Mehta, D.J.; Jariwala, R. Flood frequency analysis and inundation mapping for lower Narmada basin, India.
Water Pract. Technol. 2022, 17, 612–622. [CrossRef]

131. Avand, M.; Moradi, H.; Lasboyee, M.R. Using machine learning models, remote sensing, and GIS to investigate the effects of
changing climates and land uses on flood probability. J. Hydrol. 2021, 595, 125663. [CrossRef]

132. Wang, X.; Xie, H. A Review on Applications of Remote Sensing and Geographic Information Systems (GIS) in Water Resources
and Flood Risk Management. Water 2018, 10, 608. [CrossRef]

133. Jyrkama, M.I.; Sykes, J.F. The impact of climate change on spatially varying groundwater recharge in the grand river watershed
(Ontario). J. Hydrol. 2007, 338, 237–250. [CrossRef]

134. Van Der Knijff, J.M.; Younis, J.; De Roo, A.P.J. LISFLOOD: A GIS-based distributed model for river basin scale water balance and
flood simulation. Int. J. Geogr. Inf. Sci. 2010, 24, 189–212. [CrossRef]

135. Ghavidelfar, S.; Alvankar, S.R.; Razmkhah, A. Comparison of the Lumped and Quasi-distributed Clark Runoff Models in
Simulating Flood Hydrographs on a Semi-arid Watershed. Water Resour. Manag. 2011, 25, 1775–1790. [CrossRef]

136. Alvarez-Garreton, C.; Ryu, D.; Western, A.W.; Su, C.-H.; Crow, W.T.; Robertson, D.E.; Leahy, C. Improving operational flood
ensemble prediction by the assimilation of satellite soil moisture: Comparison between lumped and semi-distributed schemes.
Hydrol. Earth Syst. Sci. 2015, 19, 1659–1676. [CrossRef]

137. Neal, J.; Schumann, G.; Bates, P. A subgrid channel model for simulating river hydraulics and floodplain inundation over large
and data sparse areas. Water Resour. Res. 2012, 48, W11506. [CrossRef]

138. Pinos, J.; Timbe, L. Performance assessment of two-dimensional hydraulic models for generation of flood inundation maps in
mountain river basins. Water Sci. Eng. 2019, 12, 11–18. [CrossRef]

139. Sanders, B.F.; Schubert, J.E.; Goodrich, K.A.; Houston, D.; Feldman, D.L.; Basolo, V.; Luke, A.; Boudreau, D.; Karlin, B.; Cheung, W.;
et al. Collaborative Modeling with Fine-Resolution Data Enhances Flood Awareness, Minimizes Differences in Flood Perception,
and Produces Actionable Flood Maps. Earth’s Future 2020, 7, e2019EF001391. [CrossRef]

140. Gangani, P.; Mangukiya, N.K.; Mehta, D.J.; Muttil, N.; Rathnayake, U. Evaluating the Efficacy of Different DEMs for Application
in Flood Frequency and Risk Mapping of the Indian Coastal River Basin. Climate 2023, 11, 114. [CrossRef]

141. Qi, H.; Qi, P.; Altinakar, M.S. GIS-Based Spatial Monte Carlo Analysis for Integrated Flood Management with Two Dimensional
Flood Simulation. Water Resour. Manag. 2013, 27, 3631–3645. [CrossRef]

142. Jahandideh-Tehrani, M.; Helfer, F.; Zhang, H.; Jenkins, G.; Yu, Y. Hydrodynamic modelling of a flood-prone tidal river using the
1D model MIKE HYDRO River: Calibration and sensitivity analysis. Environ. Monit. Assess. 2020, 192, 97. [CrossRef]

143. Molinari, D.; De Bruijn, K.M.; Castillo-Rodríguez, J.T.; Aronica, G.T.; Bouwer, L.M. Validation of flood risk models: Current
practice and possible improvements. Int. J. Disaster Risk Reduct. 2019, 33, 441–448. [CrossRef]

144. Muhadi, N.A.; Abdullah, A.F.; Bejo, S.K.; Mahadi, M.R.; Mijic, A. The Use of LiDAR-Derived DEM in Flood Applications:
A Review. Remote Sens. 2020, 12, 2308. [CrossRef]

145. Sharma, K.V.; Khandelwal, S.; Kaul, N. Comparative Assessment of Vegetation Indices in Downscaling of MODIS Satellite Land
Surface Temperature. Remote Sens. Earth Syst. Sci. 2020, 3, 156–167. [CrossRef]

146. Ding, L.; Ma, L.; Li, L.; Liu, C.; Li, N.; Yang, Z.; Yao, Y.; Lu, H. A Survey of Remote Sensing and Geographic Information System
Applications for Flash Floods. Remote Sens. 2021, 13, 1818. [CrossRef]

147. Hermas, E.; Gaber, A.; Bastawesy, M. ElApplication of remote sensing and GIS for assessing and proposing mitigation measures
in flood-affected urban areas, Egypt. Egypt. J. Remote Sens. Sp. Sci. 2021, 24, 119–130. [CrossRef]

148. Thanh Son, N.; Thi Thu Trang, N.; Bui, X.T.; Thi Da, C. Remote sensing and GIS for urbanization and flood risk assessment in
Phnom Penh, Cambodia. Geocarto Int. 2022, 37, 6625–6642. [CrossRef]

149. Ramkar, P.; Yadav, S.M. Flood risk index in data-scarce river basins using the AHP and GIS approach. Nat. Hazards 2021, 109,
1119–1140. [CrossRef]

https://doi.org/10.3390/rs12010106
https://doi.org/10.1007/s11069-016-2363-4
https://doi.org/10.1007/s40808-021-01259-5
https://doi.org/10.1111/risa.12156
https://www.ncbi.nlm.nih.gov/pubmed/24372226
https://doi.org/10.1080/01431161.2017.1292074
https://doi.org/10.3390/app11020809
https://doi.org/10.1007/s41204-020-00073-1
https://doi.org/10.2166/wpt.2022.009
https://doi.org/10.1016/j.jhydrol.2020.125663
https://doi.org/10.3390/w10050608
https://doi.org/10.1016/j.jhydrol.2007.02.036
https://doi.org/10.1080/13658810802549154
https://doi.org/10.1007/s11269-011-9774-5
https://doi.org/10.5194/hess-19-1659-2015
https://doi.org/10.1029/2012WR012514
https://doi.org/10.1016/j.wse.2019.03.001
https://doi.org/10.1029/2019EF001391
https://doi.org/10.3390/cli11050114
https://doi.org/10.1007/s11269-013-0370-8
https://doi.org/10.1007/s10661-019-8049-0
https://doi.org/10.1016/j.ijdrr.2018.10.022
https://doi.org/10.3390/rs12142308
https://doi.org/10.1007/s41976-020-00040-z
https://doi.org/10.3390/rs13091818
https://doi.org/10.1016/j.ejrs.2020.03.002
https://doi.org/10.1080/10106049.2021.1941307
https://doi.org/10.1007/s11069-021-04871-x


Hydrology 2023, 10, 141 30 of 32

150. Mohamed, S.A.; El-Raey, M.E. Vulnerability assessment for flash floods using GIS spatial modeling and remotely sensed data in
El-Arish City, North Sinai, Egypt. Nat. Hazards 2020, 102, 707–728. [CrossRef]

151. Hong, Y.; Abdelkareem, M. Integration of remote sensing and a GIS-based method for revealing prone areas to flood hazards and
predicting optimum areas of groundwater resources. Arab. J. Geosci. 2022, 15, 114. [CrossRef]

152. Joel, E.S.; Olasehinde, P.I.; Adagunodo, T.A.; Omeje, M.; Oha, I.; Akinyemi, M.L.; Olawole, O.C. Geo-investigation on groundwater
control in some parts of Ogun state using data from Shuttle Radar Topography Mission and vertical electrical soundings. Heliyon
2020, 6, e03327. [CrossRef]

153. Dasallas, L.; Kim, Y.; An, H. Case Study of HEC-RAS 1D–2D Coupling Simulation: 2002 Baeksan Flood Event in Korea. Water
2019, 11, 2048. [CrossRef]

154. Zhu, Z.; Zhang, Y. Flood disaster risk assessment based on random forest algorithm. Neural Comput. Appl. 2022, 34, 3443–3455.
[CrossRef]

155. Hou, J.; Zhou, N.; Chen, G.; Huang, M.; Bai, G. Rapid forecasting of urban flood inundation using multiple machine learning
models. Nat. Hazards 2021, 108, 2335–2356. [CrossRef]

156. Herath, M.; Jayathilaka, T.; Azamathulla, H.M.; Mandala, V.; Rathnayake, N.; Rathnayake, U. Sensitivity Analysis of Parameters
Affecting Wetland Water Levels: A Study of Flood Detention Basin, Colombo, Sri Lanka. Sensors 2023, 23, 3680. [CrossRef]
[PubMed]

157. Sarker, I.H.; Kayes, A.S.M.; Badsha, S.; Alqahtani, H.; Watters, P.; Ng, A. Cybersecurity data science: An overview from machine
learning perspective. J. Big Data 2020, 7, 41. [CrossRef]

158. Rahim, A.S.; Yonesi, H.A.; Rahimi, H.R.; Shahinejad, B.; Podeh, H.T.; Azamathulla, H.M. Effect of vegetation on flow hydraulics
in compound open channels with non-prismatic floodplains. AQUA Water Infrastruct. Ecosyst. Soc. 2023, 72, 781–797. [CrossRef]

159. Liakos, K.G.; Busato, P.; Moshou, D.; Pearson, S.; Bochtis, D. Machine learning in agriculture: A review. Sensors 2018, 18, 2674.
[CrossRef] [PubMed]

160. Janiesch, C.; Zschech, P.; Heinrich, K. Machine learning and deep learning. Electron. Mark. 2021, 31, 685–695. [CrossRef]
161. Chabokpour, J.; Chaplot, B.; Dasineh, M.; Ghaderi, A.; Azamathulla, H.M. Functioning of the multilinear lag-cascade flood

routing model as a means of transporting pollutants in the river. Water Supply 2020, 20, 2845–2857. [CrossRef]
162. Mohammed, M.; Khan, M.B.; Bashier, E.B.M. Machine Learning. Algorithms and Applications; CRC Press: Dordrecht, The Nether-

lands, 2016. [CrossRef]
163. Rasouli, K.; Hsieh, W.W.; Cannon, A.J. Daily streamflow forecasting by machine learning methods with weather and climate

inputs. J. Hydrol. 2012, 414–415, 284–293. [CrossRef]
164. Panahi, M.; Dodangeh, E.; Rezaie, F.; Khosravi, K.; Van Le, H.; Lee, M.-J.; Lee, S.; Pham, B.T. Flood spatial prediction modeling

using a hybrid of meta-optimization and support vector regression modeling. Catena 2021, 199, 105114. [CrossRef]
165. Yariyan, P.; Avand, M.; Abbaspour, R.A.; Torabi Haghighi, A.; Costache, R.; Ghorbanzadeh, O.; Janizadeh, S.; Blaschke, T. Flood

susceptibility mapping using an improved analytic network process with statistical models. Geomat. Nat. Hazards Risk 2020, 11,
2282–2314. [CrossRef]

166. Landuyt, L.; Verhoest, N.E.C.; Van Coillie, F.M.B. Flood mapping in vegetated areas using an unsupervised clustering approach
on sentinel-1 and-2 imagery. Remote Sens. 2020, 12, 3611. [CrossRef]

167. Johny, K.; Pai, M.L.; Adarsh, S. A multivariate EMD-LSTM model aided with Time Dependent Intrinsic Cross-Correlation for
monthly rainfall prediction. Appl. Soft Comput. 2022, 123, 108941. [CrossRef]

168. Zamani Sabzi, H.; King, J.P.; Abudu, S. Developing an intelligent expert system for streamflow prediction, integrated in a dynamic
decision support system for managing multiple reservoirs: A case study. Expert Syst. Appl. 2017, 83, 145–163. [CrossRef]

169. Li, W.; Kiaghadi, A.; Dawson, C. Exploring the best sequence LSTM modeling architecture for flood prediction. Neural Comput.
Appl. 2021, 33, 5571–5580. [CrossRef]

170. Liu, K.; Li, Z.; Yao, C.; Chen, J.; Zhang, K.; Saifullah, M. Coupling the k-nearest neighbor procedure with the Kalman filter for
real-time updating of the hydraulic model in flood forecasting. Int. J. Sediment Res. 2016, 31, 149–158. [CrossRef]

171. Kabir, S.; Patidar, S.; Xia, X.; Liang, Q.; Neal, J.; Pender, G. A deep convolutional neural network model for rapid prediction of
fluvial flood inundation. J. Hydrol. 2020, 590, 125481. [CrossRef]

172. Costache, R.; Arabameri, A.; Blaschke, T.; Pham, Q.B.; Pham, B.T.; Pandey, M.; Arora, A.; Linh, N.T.T.; Costache, I. Flash-flood
potential mapping using deep learning, alternating decision trees and data provided by remote sensing sensors. Sensors 2021, 21, 280.
[CrossRef]

173. Dazzi, S.; Vacondio, R.; Mignosa, P. Flood Stage Forecasting Using Machine-Learning Methods: A Case Study on the Parma River
(Italy). Water 2021, 13, 1612. [CrossRef]

174. Chen, W.; Li, Y.; Xue, W.; Shahabi, H.; Li, S.; Hong, H.; Wang, X.; Bian, H.; Zhang, S.; Pradhan, B.; et al. Modeling flood
susceptibility using data-driven approaches of naïve Bayes tree, alternating decision tree, and random forest methods. Sci. Total
Environ. 2020, 701, 134979. [CrossRef]

175. Parizi, E.; Bagheri-Gavkosh, M.; Hosseini, S.M.; Geravand, F. Linkage of geographically weighted regression with spatial cluster
analyses for regionalization of flood peak discharges drivers: Case studies across Iran. J. Clean. Prod. 2021, 310, 127526. [CrossRef]

176. Tsakiri, K.; Marsellos, A.; Kapetanakis, S. Artificial neural network and multiple linear regression for flood prediction in Mohawk
River, New York. Water 2018, 10, 1158. [CrossRef]

https://doi.org/10.1007/s11069-019-03571-x
https://doi.org/10.1007/s12517-021-09422-z
https://doi.org/10.1016/j.heliyon.2020.e03327
https://doi.org/10.3390/w11102048
https://doi.org/10.1007/s00521-021-05757-6
https://doi.org/10.1007/s11069-021-04782-x
https://doi.org/10.3390/s23073680
https://www.ncbi.nlm.nih.gov/pubmed/37050741
https://doi.org/10.1186/s40537-020-00318-5
https://doi.org/10.2166/aqua.2023.043
https://doi.org/10.3390/s18082674
https://www.ncbi.nlm.nih.gov/pubmed/30110960
https://doi.org/10.1007/s12525-021-00475-2
https://doi.org/10.2166/ws.2020.181
https://doi.org/10.1201/9781315371658
https://doi.org/10.1016/j.jhydrol.2011.10.039
https://doi.org/10.1016/j.catena.2020.105114
https://doi.org/10.1080/19475705.2020.1836036
https://doi.org/10.3390/rs12213611
https://doi.org/10.1016/j.asoc.2022.108941
https://doi.org/10.1016/j.eswa.2017.04.039
https://doi.org/10.1007/s00521-020-05334-3
https://doi.org/10.1016/j.ijsrc.2016.02.002
https://doi.org/10.1016/j.jhydrol.2020.125481
https://doi.org/10.3390/s21010280
https://doi.org/10.3390/w13121612
https://doi.org/10.1016/j.scitotenv.2019.134979
https://doi.org/10.1016/j.jclepro.2021.127526
https://doi.org/10.3390/w10091158


Hydrology 2023, 10, 141 31 of 32

177. Bentivoglio, R.; Isufi, E.; Jonkman, S.N.; Taormina, R. Deep learning methods for flood mapping: A review of existing applications
and future research directions. Hydrol. Earth Syst. Sci. 2022, 26, 4345–4378. [CrossRef]

178. Seleem, O.; Ayzel, G.; Bronstert, A.; Heistermann, M. Transferability of data-driven models to predict urban pluvial flood water
depth in Berlin, Germany. Nat. Hazards Earth Syst. Sci. 2023, 23, 809–822. [CrossRef]

179. Karim, F.; Armin, M.A.; Ahmedt-aristizabal, D.; Tychsen-smith, L.; Petersson, L. A Review of Hydrodynamic and Machine
Learning Approaches for Flood Inundation Modeling. Water 2023, 15, 566. [CrossRef]

180. Bomers, A.; Hulscher, S.J.M.H. Neural networks for fast fluvial flood predictions: Too good to be true? River Res. Appl. 2023, 1–7.
[CrossRef]

181. Singh, K.; Singh, B.; Sihag, P.; Kumar, V.; Sharma, K.V. Development and application of modeling techniques to estimate the
unsaturated hydraulic conductivity. Model. Earth Syst. Environ. 2023, 1–15. [CrossRef]

182. Wang, J.; Shi, P.; Jiang, P.; Hu, J.; Qu, S.; Chen, X.; Chen, Y.; Dai, Y.; Xiao, Z. Application of BP neural network algorithm in
traditional hydrological model for flood forecasting. Water 2017, 9, 48. [CrossRef]

183. Pham, B.T.; Jaafari, A.; Van Phong, T.; Yen, H.P.H.; Tuyen, T.T.; Van Luong, V.; Nguyen, H.D.; Van Le, H.; Foong, L.K. Improved
flood susceptibility mapping using a best first decision tree integrated with ensemble learning techniques. Geosci. Front. 2021, 12,
101105. [CrossRef]

184. Wang, Z.; Lai, C.; Chen, X.; Yang, B.; Zhao, S.; Bai, X. Flood hazard risk assessment model based on random forest. J. Hydrol. 2015,
527, 1130–1141. [CrossRef]

185. Shamseldin, A.Y. Artificial neural network model for river flow forecasting in a developing country. J. Hydroinformat. 2010, 12,
22–35. [CrossRef]

186. Motta, M.; de Castro Neto, M.; Sarmento, P. A mixed approach for urban flood prediction using Machine Learning and GIS. Int. J.
Disaster Risk Reduct. 2021, 56, 102154. [CrossRef]

187. Abdellatif, M.; Atherton, W.; Alkhaddar, R.; Osman, Y. Flood risk assessment for urban water system in a changing climate using
artificial neural network. Nat. Hazards 2015, 79, 1059–1077. [CrossRef]

188. Patel, D.P.; Srivastava, P.K. Flood Hazards Mitigation Analysis Using Remote Sensing and GIS: Correspondence with Town
Planning Scheme. Water Resour. Manag. 2013, 27, 2353–2368. [CrossRef]

189. Yan, J.; Jin, J.; Chen, F.; Yu, G.; Yin, H.; Wang, W. Urban flash flood forecast using support vector machine and numerical
simulation. J. Hydroinform. 2018, 20, 232–245. [CrossRef]

190. Evers, M.; Almoradie, A.; de Brito, M.M. Enhancing Flood Resilience Through Collaborative Modelling and Multi-criteria
Decision Analysis (MCDA). In Urban Disaster Resilience and Security. The Urban Book Series; Fekete, A., Fiedrich, F., Eds.; Springer:
Cham, Switzerland, 2018; pp. 221–236. [CrossRef]

191. Ganji, K.; Gharechelou, S.; Ahmadi, A.; Johnson, B.A. Riverine flood vulnerability assessment and zoning using geospatial data
and MCDA method in Aq’Qala. Int. J. Disaster Risk Reduct. 2022, 82, 103345. [CrossRef]

192. de Brito, M.M.; Almoradie, A.; Evers, M. Spatially-explicit sensitivity and uncertainty analysis in a MCDA-based flood vulnera-
bility model. Int. J. Geogr. Inf. Sci. 2019, 33, 1788–1806. [CrossRef]

193. Gebre, S.L.; Cattrysse, D.; Van Orshoven, J. Multi-Criteria Decision-Making Methods to Address Water Allocation Problems: A
Systematic Review. Water 2021, 13, 125. [CrossRef]

194. Hostmann, M.; Bernauer, T.; Mosler, H.J.; Reichert, P.; Truffer, B. Multi-attribute value theory as a framework for conflict resolution
in river rehabilitation. J. Multi-Criteria Decis. Anal. 2005, 13, 91–102. [CrossRef]

195. Gumasta, K.; Kumar Gupta, S.; Benyoucef, L.; Tiwari, M.K. Developing a reconfigurability index using multi-attribute utility
theory. Int. J. Prod. Res. 2011, 49, 1669–1683. [CrossRef]

196. Kou, G.; Ergu, D.; Chen, Y.; Lin, C. Pairwise Comparison Matrix in Multiple Criteria Decision Making. Technol. Econ. Dev. Econ.
2016, 22, 738–765. [CrossRef]

197. Stefanidis, S.; Stathis, D. Assessment of flood hazard based on natural and anthropogenic factors using analytic hierarchy process
(AHP). Nat. Hazards 2013, 68, 569–585. [CrossRef]

198. Dahri, N.; Yousfi, R.; Bouamrane, A.; Abida, H.; Pham, Q.B.; Derdous, O. Comparison of analytic network process and artificial
neural network models for flash flood susceptibility assessment. J. Afr. Earth Sci. 2022, 193, 104576. [CrossRef]

199. Yariyan, P.; Janizadeh, S.; Van Phong, T.; Nguyen, H.D.; Costache, R.; Van Le, H.; Pham, B.T.; Pradhan, B.; Tiefenbacher, J.P.
Improvement of Best First Decision Trees Using Bagging and Dagging Ensembles for Flood Probability Mapping. Water Resour.
Manag. 2020, 34, 3037–3053. [CrossRef]

200. Akram, M.; Zahid, K.; Alcantud, J.C.R. A new outranking method for multicriteria decision making with complex Pythagorean
fuzzy information. Neural Comput. Appl. 2022, 34, 8069–8102. [CrossRef]
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