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Analysis and synthesis of LinWWC-VSA, a variable stiffness

actuator for linear motion
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Abstract

This work presents the principle of operation of LinWWC-VSA, a Variable Stiffness Ac-
tuator (VSA) suitable to perform linear motions, conversely to the vast majority of VSAs
typically designed to perform rotational movements and often affected by limits in the ac-
tually exploitable range of motions. It features two antagonist nonlinear equivalent springs,
each of them made up of a cam wrapped by a wire and constrained by a torsion spring.
This work presents methods both for the analysis and the synthesis of the actuator. Two
synthesis methods, one numerical and one analytic, are described to design the cam profile
as function of the desired stiffness-displacement characteristic of each equivalent nonlinear
spring. The analytic method exploits the peculiar formulation of the logarithmic spiral. The
theoretical aspects of the actuator are accompanied by numerical simulations.

Keywords:
Variable Stiffness Actuator, Linear motion, Spiral cam, Logarithmic spiral

1. Introduction

1.1. Variable Stiffness Actuators

A Variable Impedance Actuator (VIA) is an actuator which deviates from its set equi-
librium position, depending on the external forces and the mechanical properties of the
actuator (i.e. inertia, stiffness and damping factors), oppositely to non-VIA (traditional
stiff actuator) characterized by excellent trajectory tracking with a high bandwidth and
high accuracy [1]. Inherent compliance actuators constitute a subgroup of VIAs, containing
passive or intrinsic compliant element in series to the (stiff) actuator. They can be sub-
divided into Series Elastic Actuators (SEA - Fig. 1a) [2], in which the compliant element
does not change its stiffness (fixed compliance), and Variable Stiffness Actuators (VSA -
Fig. 1b) [3], in which the stiffness is controlled by mechanical reconfiguration.
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(a) Series Elastic Actuator (SEA). (b) Variable Stiffness Actuator (VSA).

Figure 1: A Series Elastic Actuator as is made up of an actuator js and a compliant element ks configured
in series. A Variable Stiffness Actuator aa is characterized by an adjustable compliant element ka. An
external force fe applied to m causes a displacement um.

VSAs [1] allow the adjustment, in a controlled manner and at the same time, of both
the mechanical stiffness and the equilibrium configuration of the load. Peculiar features are
mechanical stiffness adjustment, adaptability and force accuracy in the interaction with the
operator facilitating a direct interaction with humans limiting forces in case of collision, and
robustness to external perturbations or model errors [4]. All of them are obtained without
necessarily requiring force-based control techniques, favoring mechanical backdrivability and
transparency.

For all these aspects, potentially positive in a number of applications, a number of
different VSAs have been conceived and realized in the last years [1, 5, 6]. Moreover, the
more and more growing interest in VSAs led Grioli et al. to present a VSA datasheet as
an interface language between designers and users and to discuss design procedures and
how VSA data may be organized to minimize the engineers effort in choosing the actuator
type and size [7]. In order to further support designers in developing new VSA solutions,
design guidelines for R&D engineers facing the challenge of designing new VSA systems and
implementing them in use-cases as shock absorbing, stiffness variation, cyclic motions and
explosive motions are proposed [6].

1.2. Use of VSA to realize linear motions

It is a matter of fact that the vast majority of the so-far developed VSAs perform
rotational motions. In order to realize linear motions using rotational actuators, it is common
the use of transmissions based on rack and pinion, pulley and belt, or drum and wire. These
solutions are all valid but, with the purpose of realizing linear actuators with (theoretically)
no stroke restrictions, the employed actuators require not to be affected by any rotational
limit or end stroke (i.e. they should be able to perform an unlimited number of turns).
While this is a characteristic taken for granted for common rotational motors, it is not for
VSA rotational actuators. In fact, only few rotational VSAs have so far being developed
featuring an infinite number of turns. Among them it is worth to mention the PVSA [8], the
actuator developed by Tonietti et al. [9] and the ComPact-VSA [10]. However, all of them
requires a great number of manufactured parts. The first two are moreover characterized
by the presence of a pin-slot joint which requires precise manufacturing and assembling
operations. It is worth moreover to mention the vsaUT-II [11] which guarantees a large
variation of stiffness but requires many manufactured components and mechanical joints as
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gears and pin-slot joints. It is moreover affected by a limited rotational range of motion.
The use of profiled surfaces can be promising in order to customize the stiffness-displacement

curve. Both the VS-Joint mechanism [12] and the third VSA presented by Guo et al. in [13]
require a pin-slot joint and good mechanical tolerances. Interesting is AMASC [14] which
exploits coupled cams to obtain springs non-linearity.

In conclusion, few rotational VSAs can be effectively exploited to realize linear motions
without (theoretically) any stroke limit and they are typically characterized by a great
number of components and require strict-tolerance machining and assembling operations to
avoid backlashes or jammings.

1.3. The Linear Wire-Wrapped Cam VSA

This work aims at presenting and analyzing the operating mechanism of the Linear Wire-
Wrapped Cam VSA (LinWWC-VSA), an Agonist-Antagonist VSA (AAVSA) [3, 4] suitable
to realize linear axes with a theoretically infinite stroke. It is made up of two antagonistic
LinWWC-SEA, each of them featuring a cam wrapped by a wire and constrained by a tor-
sion spring, realizing an equivalent tension spring characterized by a customizable non-linear
stiffness characteristic. The use of a cam wrapped by a wire is considered promising in order
to minimize the number of mechanical components, as better described in next sections, sim-
plifying the design and assembly operations, and limiting concentrated mechanical stresses.
Examples of employment of this approach are the MACCEPA 2.0 [15], the pnrVSA [16], the
one proposed by Shin et al. [17] actuated by pneumatic artificial muscles and the NLSs pro-
posed by Schepelmann et al. [18]. However, all of them are configured to perform rotational
movements characterized by a limited rotational range of motion, not directly applicable to
realize linear motions without any inherent stroke limitation.

The intrinsic simplicity of LinWWC-VSA allows it to be realized assembling affordable
off-the-shelf components together with components manufacturable by low-cost techniques
as table-top entry-level 3d-printers. The few number of required components contributes to
realize an overall affordable solution.

The work is organized as follows. The list of used symbols is reported in Table 1. General
aspects about AAVSA exploited in subsequent sections are introduced in Section 2. The
LinWWC-SEA is analyzed in Section 3. The LinWWC-VSA is depicted in Section 4. Both
numerical and analytic methodologies to synthesize the shape of the cam are detailed in
Section 5. Simulations and related discussions are reported in Section 6. Conclusions and
future works are drawn in Section 7.

2. General aspects of Agonist-Antagonist VSAs

An Agonist-Antagonist VSA (AAVSA) mimics the principle at the basis of antagonist
muscles [19], for which the stronger the antagonistic forces are, the stiffer the articulation
becomes [5]. It is made up of two antagonist SEAs, kinematically in parallel with respect
to a mobile mass (Fig. 2). The non-linearity of the elastic element is required to allow the
adjustment of the VSA stiffness [4].
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Figure 2: Typical scheme of an antagonistic VSA: two antagonist non-linear SEAs ai control the position
and the stiffness of a mobile mass m.

Figure 3: Force characteristic of a VSA as function of the ground end-points u1, u2 of springs k1, k2 and of
the external force fe.

Referring to Fig. 1 let us denote by a a generic compliant actuator made up of a rigid
joint j and a spring s with stiffness k, connected to a mass m. Let us conveniently denote
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Table 1: Table of symbols

Symbol Description

{k} Frame of reference
Ok Origin of {k}
xk, yk Axes of {k}
~f Vector

f Magnitude of vector ~f
←→
AB Infinite line containing point A and point B
AB Line segment from point A to point B
∠(AOB),∠(l1l2) Counterclockwise angle between points A and B

at point O (the vertex) or between lines l1 and l2
rkP , θ

k
P Polar coordinates of P wrt {k}

d(P,Q) Distance between point P and Q (i.e. ‖
−→
PQ‖)

d(P, l) Minimum distance between point P and line l
a ∝ b a proportional to b

by the subscripts s and a a SEA (Fig. 1a) and a VSA (Fig. 1b), respectively. Let us denote
by um the coordinate of m, by ue its coordinate if no external force applied (equilibrium
position) and by ∆um = um − ue the displacement of m from its equilibrium position. The
stiffness of the actuator and the exerted force are expressed by

k(u) =
dfa
du

fa =

∫
∆u

k(u) du. (1)

In static conditions or neglecting inertial effects of m, it is ~fa = −~fe, where ~fa denotes the
force exerted by the actuator and ~fe denotes the external force. Therefore, by knowing the
stiffness-displacement curve of k and the position of m, it is possible to estimate fe.

Let us now consider a generic AAVSA aa made up of two antagonist SEA ai with i = 1, 2
(Fig. 2). Each ai is made up of a rigid joint ji and a compliant element with stiffness ki.
The antagonistic actuators are connected to a mass m with position vm.

Referring to Fig. 3, the force applied to m by aa is

~fa = ~f2 + ~f1 = −~fe, fa = f2 − f1 = −fe. (2)

Similarly, being the two actuators kinematically in parallel, the stiffness of aa is

ka = k2 + k1. (3)

The force/displacement characteristic of a generic AAVSA given k1 = k2 is represented in
Fig. 3. The equilibrium position of m is determined by the value −fe along the curve fa
(neglecting inertial effects). If no external force is applied (i.e. fe = 0), the position of m is

ve = (v1 + v2)/2. (4)
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Let us conveniently denote

δ = (v2 − v1)/2 ξ = vm − ve (5)

used in the next sections as the two independent coordinates of a AAVSA. It is worth to un-
derline that, if δ and ξ are known, together with the spring stiffness k(u), it is straightforward
to deduce fe.

3. LinWWC-SEA

Referring to Fig. 4 and to symbols reported in Table 1, let us consider a cam defined
by the curve c defined by the polar coordinates (r, θ) wrt the reference frame {c}. Let us
conveniently consider a cam shaped as a spiral, with r monotonically increasing with respect
to θ. Let us denote by A(rA, θA) and B(rB, θB) the points of the cam with the minimum
and maximum values of r, respectively. It is rA ≤ r ≤ rB and θA ≤ θ ≤ θB. Considering a
point T ∈ c, let us denote by t the line passing through T and tangent to c, and by H the
point on t at minimum distance b from Oc.

As it is known in geometry, the curvilinear coordinate of T (rT , θT ) along the cam profile
is

sAT =

∫ θT

θA

ds =

∫ θT

θA

√
r2 +

(
dr

dθ

)2

dθ (6)

and the pitch angle β, complement of the angle between t and r, is equal to

β = ∠(HOcT ) = arctan

(
1

r

dr

dθ

)
. (7)

The minimum distance between t and Oc is

b = OcH = r cos β. (8)

Figure 4: Spiral cam profile.
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Figure 5: LinWWC-SEA: a non-linear spring obtained by a cam wrapped by an inextensible wire and
constrained by a torsion spring. The thicker line represents the wire w.

Referring to Fig. 5 let us consider the cam c wrapped by an inextensible wire w, with an
endpoint constrained to A and the other endpoint E free. Let us denote by T the point in
which w is tangent to c and split w in two parts: wc is wrapped on c between A and T , wf
is free between T and E. Hence, it is w = wc +wf , denoting by w both the whole wire and
its length for brevity.

Considering a fixed frame {o}, let us consider the cam hinged in Oo with Oc ≡ Oo. The
free rotation of the cam is restrained by a torsion spring with stiffness kt and exerting the
torque τt(γ):

kt =
dτt
dγ

τt(γ) =

∫
γ

kt dγ + τt,0, (9)

where τt,0 is the possible torque preload and γ = ∠(x0
cxc) is the rotation of the cam, denoting

by x0
c the axis xc if T ≡ B.

The wire w is kept under tension by a force fe applied to E and parallel to x0. The
so-far described mechanism transforms the translation of E parallel to x0 into a rotation γ
of the cam.

As depicted in Fig. 6, increasing fe the length of wf increases, the cam rotates of an
increasing angle γ and T slides from B to A. Let us denote by ∆xE the displacement of
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Figure 6: Applying the force fe to E, the wire is more and more unwrapped from c and T ”slides” from B
to A.

E along x0, with respect to the reference configuration in which T ≡ B. ∆xE denotes
also the elongation of the virtual tension spring applied in E along wf , generated by the
LinWWC-SEA.

Referring to Fig. 7 and considering the wire inextensibility, the differential translation of
E (and T ) along fe, i.e. the variation of length wf wrt the cam rotation, is

dwf
dγ

= r cos β (10)

Similarly, its normal component, i.e. the differential of b wrt γ is

db

dγ
= r sin β (11)

Consequently, wf and b are functions of γ

wf =

∫
dwf
dγ

dγ + wf,0 (12)
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Figure 7: Differential displacement of T .

b =

∫
db

dγ
dγ + bB (13)

where wf,0 and bB denotes the values of wf and b, respectively, if T ≡ B.
The length of wc is given by (6).
Given the externally applied force fe, the system is in static equilibrium if

τt(γ) = feb(γ). (14)

where both τt and b are function of γ and can be obtained by (9) and (13), respectively.
The mechanism transforms the torsional stiffness kt to a virtual extension spring applied

to E whose stiffness is

kl =
kt
b2
. (15)

In conclusion, in order to realize a virtual tension spring with kl monotonically increas-
ingly wrt θ and considering a constant-stiffness (i.e. linear) torsion spring, it is required to
profile the cam as a spiral (as previously mentioned), with r, and more precisely b, mono-
tonically increasingly wrt θ.

However, the so-far considered configuration has a unnegligible drawback: referring to
Fig. 6 it is notable that varying the intensity of fe, E does not translate in parallel to fe
and xo because of the variation of b. In order to avoid this, it is convenient to refer to the
scheme depicted in Fig. 8, where w partially wraps c and, after detaching from it, is partially
wrapped on a circular profile (e.g. a pulley), namely p, with radius of curvature ρ. The wire
w can be ideally split into four parts

• wc is wrapped on c, between A and T ;

• wb is between T on c and U on p;
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Figure 8: The LinWWC-SEA coupled with a pulley.

• wp is wrapped on p, between U and V ;

• wf is between V on p and the free endpoint E.

resulting in w = wc + wb + wp + wf . The angle α denotes the inclination of wb wrt xo. The
line wb is tangent to c, tangent to p and passes through T .

Given r(θ), and therefore b(θ) from (7) and (8), the following geometrical conditions
must be respected (refer to Table 1 for symbols):

d(Oc,
←→
TU) = b

d(Op,
←→
TU) = ρ

T ∈ wb
(16)

Referring to {o}, given that the Cartesian coordinates of H(xH , yH) are H (b sinα,−b cosα),
the generic line passing through H is

m(x− xH)− (y − yH) = x tanα− y − b

cosα
= 0, (17)

denoting the slope m = tanα.

The condition d(Op,
←→
TU) = ρ of (16) can be applied recalling that, as it is well known,

the distance ρ between a line in the form c1x+ c2y + c3 = 0 and the point (xOp , yOp) is

ρ =
c1xOp + c2yOp + c3√

c2
1 + c2

2

, (18)

where c1 = tanα, c2 = −1 and c3 = −b/ cos(α) from (17).
Therefore, from the previous equation it is possible to obtain the value of α given θ,

recalling that θ is the angular coordinate of the cam profile (Fig. 4).
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The endpoints of wb are

T ≡ (xT , yT ) ≡ (r sin(α + β),−r cos(α + β)) (19)

U ≡ (xU , yU) ≡
(
−ρ sin(α) + xOp , ρ cos(α) + yOp

)
. (20)

Consequently it is

wb = TU (21)

wp = ρ∠(V OpU) = ρα (22)

given that V is the point on wf at distance ρ from Op, considering that wf is aligned to fe
and parallel to x0. The other parts of the wire are wc, given by (6), and wf , given by (12).

4. LinWWC-VSA

According to the scheme reported in Fig. 2, it is possible to configure two antagonistic
LinWWC-SEA to realize a LinWWC-VSA, as depicted in Fig. 9.

In Fig. 10, the LinWWC-VSA is represented in three different configurations, with dif-
ferent values of δ and ξ. Similarly to (5), δ = (∆xE,1 + ∆xE,2)/2, denoting by ∆xE,i the
elongation of the virtual spring corresponding to the i-th RotWWC-SEA, and by ξ the
translation of m from the equilibrium configuration.

All the elements are embedded in the carriage and do not affect the overall stroke of the
linear carriage, not imposing any inherent limit to the stroke length.

Figure 9: Two antagonistic LinWWC-SEA make up the LinWWC-VSA.

5. Synthesis of the cam profile

In this section two different methods, one numerical and one analytic, to design the
profile of the cam are presented.

5.1. The logarithmic spiral

The logarithmic spiral is beneficial from the design point of view, since it allows the
analytic synthesis of the cam profile in an explicit way. As it is known, it is defined in polar
coordinates by

r = c1e
c2θ, (23)
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Figure 10: Effect of modifying wire pretensioning and mobile body position.

with e being the base of natural logarithms, and c1 and c2 being arbitrary positive real
constants. The logarithmic spiral has the property that the pitch angle β is constant.

Let us define the ratio between the maximum and the minimum stiffness of the virtual
tension spring applied in E by

Γkl = kl(A)/kl(B) (24)

where kl(A) and kl(B) denotes kl if T ≡ A and T ≡ B, respectively.
Considering a constant torsional stiffness kt, combining (8), (15) and (24), it is

Γkl =
kt

(rA cos β)2

(rB cos β)2

kt
=

(
rB
rA

)2

. (25)

leading to

Γkl =

(
c1e

c2θB

c1ec2θA

)2

=
(
ec2(θB−θA)

)2 ⇒ c2 =
ln(Γkl)

2∆θ
. (26)

where ∆θ = θB−θA. Given the maximum radius of the cam rB and given the total wrapping
angle ∆θ, it is

c1 =
rB
ec2∆θ

. (27)

Therefore, given Γkl, ∆θ and rB as design parameters and assuming to use a logarithmic
profile, the profile of the cam is completely defined and can be obtained analytically by (26)
and (27).
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Figure 11: Cam optimized to resemble a quadratic spring.

5.2. Numerical synthesis

Let us now focus on the synthesis of a cam given a desired stiffness-displacement char-
acteristic of the tension virtual spring acting in E, i.e. kl(∆xE).

To this aim the Levenberg-Marquardt algorithm (LMA) [20, 21], which uses the non-
linear least squares to fit a function to a set of target data, can be effectively applied. In
order to design the cam, the set of parameters to be optimized must define its shape.

Let us conveniently define the cam profile as

r(θ) =
n∑
i=0

aiθ
i, (28)

where ai are real constants and n is the degree of the polynomial.
Let us consider ∆̂XE and K̂l, sets of target data ∆xE and kl, respectively. As previously

described, both of them depend explicitly on θ. Therefore, the function optimized by LMA
evaluates ∆xE and kl as function of θ. It is worth to note that, since the LMA finds only a
local minimum, as many fitting algorithms, which is not necessarily the global minimum, it
is necessary to specify reasonable starting parameters.

By way of example, the routine has been used to design a LinWWC-SEA with a quadratic
force-displacement characteristic, i.e. a linear stiffness-displacement characteristic. It is
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worth to note that quadratic springs are often looked for in VSAs since they allow to decouple
position and stiffness control [4]. Hereafter the routine is applied to find the ai parameters
of (28), comparing results for different degrees of the polynomial with 0 ≤ n ≤ 3. The target
set of values is

∆xE = {1, 1.5, 2, 2.5, 3}m, kl = ∆xEN m−2, fe ∝ (∆xE)2 (29)

considering a torsional spring kt = 1 N m rad−1 and considering a LinWWC-SEA without
any pulley p.

The resultant polynomial expressions are reported in Table 2 as function of n. The
graphic representations of the optimized cams are reported in Fig. 11. The actual stiffness-
displacement curves of the cams are reported in Fig. 12, together with target values.

Table 2: Parameters of the optimized cam.

n r(θ)

0 0.707
1 0.031θ + 0.554
2 0.039θ2 − 0.162θ + 0.747
3 0.010θ3 − 0.071θ2 + 0.224θ + 0.315
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Figure 12: Stiffness-displacement curve of the optimized cam, as function of the order of the polynomial to
be optimized. On the right a detailed view of the target characteristic.

6. Analysis of the LinWWC-VSA and discussion

Let us now consider an example to analyze the behavior of a LinWWC-VSA applying the
presented equations. The considered LinWWC-VSA is made up of two antagonist LinWWC-
SEA configured with the parameters reported in Table 3 with a cam shaped as a logarithmic
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Table 3: Parameters of a LinWWC-SEA with a logarithmic spiral.

Parameter Description Value Unit

Γkl Ratio between maximum and minimum stiffness 10 –
rB Maximum radius of the cam 1 m
∆θ Angular extension of the cam 2π rad
c1 Constant of the logarithmic spiral 0.316227 m
c2 Constant of the logarithmic spiral 0.183236 rad−1

ρ Radius of pulley p 0.1 m
[xOp, xOp] Position of pulley p [1.1,−0.1] m
kt Stiffness of the torsion spring 1 N m rad−1

spiral. The apparently questionable unit values of rB = 1 m and kt = 1 N m rad−1, which
represent a relatively big cam and compliant torsion spring if compared to typical geometric
and stiffness data characterizing mechatronic solutions, have been adopted as normalized
values. In fact, the numerical results illustrated hereafter can be straightforwardly applied
for other values of rB and kt taking into account that

∆xE, ξ, δ ∝ rB; τ ∝ kt; f, fa ∝
1

r2
B

; kl, ka ∝
kt
r2
B

. (30)

The effects of including or not including the deflecting pulley p depicted in Fig. 8 are
highlighted. Parameters c1 and c2 have been evaluated applying (26) and (27), given Γkl,
rB and ∆θ.

A simulation of the LinWWC-SEA as function of different values of θT is represented in
Fig. 13. As T moves from B to A along the cam, the length of the free wire wf and the
rotation γ increase. It is notable the effect of the pulley p which keeps constant the vertical
coordinate of E but which influences the inclination α.

Numerical results reported hereafter refer both to the configuration with and without
the pulley p (Fig. 14) which, as better detailed later, affects the total exploitable rotation
angle γ.

The kinematic relationship between ∆xE, i.e. the elongation of the tension virtual spring,
and the rotation of the cam γ is represented in Fig. 15. It is notable how the pulley p affects
the overall exploitable displacement of E, keeping constant the shape of the cam. This
results in a virtual spring with a shorter maximum elongation.

In Fig. 16 the two stiffnesses of the mechanism are represented. The torsional stiffness
kt is the same reported in Table 3 and is independent on ∆xE, as expected. The non-linear
stiffness kl of the virtual tension spring applied in E is determined by the actual shape of the
cam and is also influenced by the presence of the pulley p. The ratio between the maximum
and the minimum stiffness Γkl is due to the cam profile and is obtained applying (26) and
(27), independently from the presence of the pulley since kl depends only on kt and b (see
(15)). On the other side, its presence influences the slope of the curve because of the shorter
overall displacement of E, as previously said about Fig. 15.
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Figure 13: Kinematic simulation of wire-unwrapping in LinWWC-SEA, from a) to f).

(a) Cam with pulley. (b) Cam without pulley.

Figure 14: Cam with and without pulley p.

The torque and force exerted by the torsion spring and by the virtual tension spring are
represented in Fig. 17. It is worth to underline that the maximum tension force exerted
by the wire is reduced by the presence of the pulley, because of the reduced maximum
displacement of E.

Let us now refer to LinWWC-VSA, i.e. the coupled effect of two antagonistic LinWWC-
SEA. The surfaces representing the force applied to and the stiffness of the mobile body m,
as function of δ and ξ are represented in Fig. 18. Both fa and ka grow with the growth
of δ, keeping ξ constant. The maximum value of fa is achieved with the highest value of
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Figure 15: Rotation of the cam γ as function of the extension ∆xE of the virtual spring applied in E.
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(b) Tensional stiffness of the wire in E.

Figure 16: Stiffnesses as function of the extension ∆xE . (a) As reported in Table 3, kt is constant and
independent of ∆xE . (b) The stiffness non-linearity of the virtual spring kl applied in E, required to realize
a VSA and obtainable by the cam-based transmission mechanism, is notable.

ξ, with δ = ξ. The maximum value of ka is achieved with the highest value of δ with
ξ = 0. The maximum theoretical stiffness cannot therefore be exploited moving m from its
equilibrium position. Zero values of fa and ka refer to not allowed configurations. In fact,
it is notable the main drawback of this type of actuator: the actually exploitable range of
motion of m depends on δ. The limits of ξ are due to the fact that the two LinWWC-SEA
reach their endstrokes (i.e. T ≡ A or T ≡ B) independently and according to their actual
values of ∆xE. The maximum and the minimum stiffness of LinWWC-VSA are therefore
not exploitable configurations, in the sense that no displacement of m is allowed.
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Figure 17: Force and torque as function of the extension ∆xE of the virtual spring applied in E.
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Figure 18: Force and stiffness of the mobile body m as function of δ and ξ.

7. Conclusions

The LinWWC-VSA is an agonist-antagonist variable stiffness actuation scheme specifi-
cally conceived for linear motions. It is characterized by a relatively simple set of compo-
nents and does not require strict manufacturing tolerances. The cam profile can be designed
according to the required specifications of the applications, with both numerical and ana-
lytical methods. The compliant actuation scheme can be embedded in pre-existing linear
carriages. Two concept designs of mobile carriages embedding the LinWWC-VSA are de-
picted in Fig. 19. The coaxial configuration (Fig. 19b) is embedded as actuation scheme of
a variable stiffness device for upper-limb rehabilitation (Fig. 20), improved version of the
previously developed device described in [22]. In order to reduce the overall dimensions of
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the cams, it is possible to profile them as multiple-turns spiral cams (Fig. 21). As depicted
in Fig. 22, two LinWWC-VSA can be configured orthogonally to realize a 2-DOF planar
mobile element guaranteeing planar tension forces.

(a) Coplanar configuration. (b) Coaxial configuration.

Figure 19: Two concept designs of linear carriages embedding the LinWWC-VSA. (a) Coplanar configuration
with wires lying on the same plane. (b) Coaxial configuration with cams pivoting around the same shaft.
The latter has the advantage of being more compact; on the other side, it generates a torque on the carriage
due to the offset between the planes of the two wires.

Figure 20: LINarm2: a variable stiffness device for upper-limb rehabilitation embedding the LinWWC-VSA
architecture with the coaxial configuration (Fig. 19b).
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Figure 21: A multiple-turns spiral cam can increase the exploitable wire stroke reducing the overall dimen-
sions of the cam.

Figure 22: Two LinWWC-VSA can be configured orthogonally to realize a 2-DOF planar mobile element.
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