Multiple fungal diseases resistance induction in Cucumis melo through co-	1
transformation of different pathogenesis related (PR) protein genes	2
	3
Mohammad Reza Raji ¹ , Mahmoud Lotfi ² , Masoud Tohidfar ³ , Hossein Ramshini ⁴ , Navazollah Sahebani ⁵ , Mostafa Alifar ² , Mahnaz Baratian ² , Francesco Mercati ⁶ , Roberto De Michele ⁶ , Francesco Carimi ⁶	4 5 6 7
¹ Department of Horticulture, College of Agriculture, Lorestan University, Khoram Abad,	8
44316-68151, Iran	9
² Department of Horticulture, Aburaihan Campus, University of Tehran, Pakdasht, Iran.	10
³ Department of Biology, Shahid Beheshti University, Tehran, Iran.	11
⁴ Department of Agronomy & Plant Breeding, Aburaihan Campus, University of Tehran,	12
Pakdasht, Iran.	13
⁵ Department of Entomology & Plant Diseases, Aburaihan Campus, University of Tehran,	14
Pakdasht, Iran.	15
⁶ National Research Council of Italy (CNR), Institute of Biosciences and BioResources (IBBR),	16
Corso Calatafimi 414, 90129, Palermo, Italy	17
	18

Abstract

Achieving multiple resistance to fungal diseases, major threat in cucurbits production, is 20 challenging due to the quick rate of variation of fungi species and races, the lack in the 21 knowledge of resistance genes or their complexity, and dragging undesired genesin traditional 22 breeding. Here, we generate polygenic resistance to fusarium and powdery mildew by 23 introducing a transgene cassette of three antifungal pathogenesis related (PR) protein genes 24 (chitinase, glucanase and PR1) into melon (Cucumis melo L.) as a single locus. The presence 25 of three PRs was confirmed by PCR in eight transgenic plantlets among 130 regenerants grown 26 27 in selective medium. Southern blot hybridization confirmed integration of the transgene cassette in the genome of three lines . Enzyme activity assay demonstrated that chitinase and 28 29 b-1,3-glucanase activity were higher in transgenic lines than in wild type plants. In-vitro and in-vivo bioassay tests showed that transgenic lines were also more resistant to fungal diseases. 30 Finally, to evaluate the stability and heritability of the acquired resistance, selected transgenic 31 lines were self-pollinated and T1 generation was further evaluated for disease resistance. After 32 artificial inoculation by Fusarium oxysporum f. sp. melonis (FOM), more than 80% of wild 33 types seedlings were infected. By contrast, on avarage 87% of T₁ transgenic seedlings did not 34

show disease signs. Moreover, powdery mildew infection was strongly delayed in transgenic	35
plants.	36
	37
Key words: Agrobacterium tumefaciens, pathogenesis related (PR) protein genes, Melon,	38
Fungal resistance, Genetic transformation, Molecular analysis	39
	40
	41

INTRODUCTION

Melon (Cucumis melo L.; Cucurbitaceae; 2n=2x=24), is a popular crop cultivated worldwide, 43 especially in hot and dry climatic zones. China, Turkey and Iran are the main producers of 44 melons (FAO 2019). Iran is considered as a secondary diversity center of melon (Luan et al., 45 2008), where several local landraces and hybrids are extensively cultivated for their unique 46 flavor and shape. Susceptibility to fungal diseases is a strong limit, causing large yield loss 47 (Etebarian, 2002). Fusarium solani, Macrophomina phaseoli, Fusarium oxysporum, 48 Phytophthora capsici, and Monosporascus cannonballus are the most widespread pathogenic 49 50 fungi in the Varamin area in Iran, one of the main centers of melon production (Shahi-Bajestani 51 and Dolatabadi, 2016). Although there is a high diversity rate in the melon genetic background (Pavan et al., 2017), with a considerable variability in the Iranian germplasm (Danesh et al., 52 2015; Maleki et al., 2018) and several resistance genes are known in this species (Brotman et 53 al., 2002; Frantz and Jahn, 2004; Mascarell-Creus et al., 2009; Dogimont, 2011; Gao et al., 54 2015; Li et al., 2017; Howlader et al., 2020), the lack of highly resistant germplasm, the 55 reproductive barriers for interspecific crosses, and the time-consuming work for traditional 56 57 breeding, hinder the development of genotypes with multiple fungal diseases resistance.

42

Conversely, new methods such as genetic engineering can be quick and effective way to 58 transfer genes of interest to plants (Vahdati et al., 2002; Garcia Almodovar et al., 2017). So far, 59 there is only one report for the transfer of resistance gene to fungal diseases (chitinase) in melon 60 (Bezirganoglu et al., 2013). However, a single gene is often not sufficient to create a stable full 61 resistance. In the plant-pathogen interaction, new races of pathogens evolve overcoming single 62 resistance genes (McGrath et al., 2001). For example, in 2008, a new race of powdery mildew 63 was controlled in Georgia by using resistant melon genotypes, however the resistance to this 64 disease decreased within the following two years (McGrath et al., 2001). Therefore, plant 65 breeders need to transmit several genes with different mechanisms of resistance by horizontal 66 resistance to susceptible genotypes to create a long-lasting resistance in melons (Wang et al., 67 2020). To our knowledge, no study has ever been conducted on pyramiding resistance genes 68 in melon using the transformation system. 69

Defense response is activated by interaction of pathogen effectors with receptors on the surface 70 of the plant cell, products of the R genes (Shirley et al., 2020). Subsequently, a signaling 71 cascade (ROIs, SA, NO, ethylene) transmits the message received by the receptors to the cell 72 nucleus (Ruan et al., 2019; Noman et al., 2020; Imran and Yun, 2020). There, transcription 73 factors (e.g. NPR1: non-expresser of PR genes) are activated, increasing the expression of 74

resistance genes (Clinckemaillie, 2017). The genes products eventually interfere with the 75 development of resistance to disease (Andersen et al., 2018). Pathogenesis-related (PR) genes 76 are considered the most important plant resistance genes to fungal diseases (Jain and Khurana, 77 2018). PR proteins are relatively small and have a significant amount of cysteine residues, 78 forming disulfide bonds and stabilizing three dimensional structures (Prasannath, 2017). PRs 79 are divided into seventeen groups (PR1-17), each of them having a specific mechanism to 80 defend against the fungal diseases, affecting directly pathogen integrity, and/or inducing plant 81 defense related pathways (Boccardo et al., 2019). The product of each group's genes are 82 different to make a range of resistance in diverse hosts (Iqbal et al., 2019). 83

Among 17 known PR groups, the most important ones belong to groups 3, 4, 8 and 11, which 84 code for chitinase proteins (Chi) and cause chitin degradation of fungi cell wall (Seidl et al., 85 2005). Additionally, PR-2 genes produce glucanases that break down the cell wall glucans of 86 fungi, while PR-1 genes are involved in the pathogen plasma membrane damage (Boccardo et 87 al., 2019). Interestingly, different mechanisms of synthesis for each group of PR are known, 88 therefore the production and subsequent accumulation of specific PRs can increase at the same 89 time the resistance level to different pathogens in the hosts (Saboki et al., 2011; Akbudak et 90 al., 2020). 91

The main goal of the present research was to regenerate resistant plants of melon by 92 simultaneous transfer of chitinase (*Chi*), glucanase (*Glu*) and *PR1* via *Agrobacterium* 93 *tumefaciens* in two Iranian cultivars, 'Khatooni' and 'Samsoori', in order to confer them a 94 broad and multi long lasting resistance against fungal diseases and to prevent breakdown of 95 resistance acquired. 96

MATERIALS AND METHODS

Plant material

Two Iran local landraces of *C. melo* were used in this study, namely 'Khatooni' and 'Samsoori'100belonging to Inodorus and Cantalupensis groups, respectively. Uncoated seeds were sterilized101and cultured in MS medium (Murashige and Skoog, 1962) and cotyledons were dissected from102one-week-seedlings. To select the best regenerating plant growth regulator (PGR) combination,103cotyledon explants from the two genotypes were cultured on MS medium supplemented with104different concentrations of PGR, as described in previous study (Raji et al., 2021).105

Agrobacterium-mediated transformation

106 107

97

98

The A. tumefaciens LBA4404 strain, harboring the binary construct pBI121 with three PR 108 fungal resistance genes (Chi - M13968.1 -, Glu - AF515785.1 - and PRI - X06361.1 -, selected 109 from bean (Phaseolus vulgaris), tobacco (Nicotiana tabacum) and barley (Hordeum vulgare), 110 respectively) and a neomycin phosphotransferase II gene (*nptII*) as selective marker (Figure 1) 111 was utilized for inoculation. The three target genes were under the control of CaMV35S 112 promoter and Nopaline Synthase (NOS) Terminator with different directions, for selecting the 113 transformed plants by their resistance to kanamycin. The bacterial colonies were grown 114 overnight at 28°C in 5 ml of Luria Bertani Broth (LB) media, containing 50 mg l⁻¹ kanamycin 115 and 100 mg l⁻¹ rifampicin, on a shaker incubator at 220 rpm, to have an exponential growth 116 phase at an optimum density (OD600 = 0.5 to 1). The bacterial cells were collected by 117 centrifuging at 5000 rpm for 5 min and the pellet was re-suspended in MS medium. Explants 118 were incubated in Agrobacterium suspension with OD=0.6 for 2-3 min and dried on a sterile 119 Whatman filter paper and then transferred on MS hormone-free co-culture medium for 48 h. 120 Co-cultured explants (with bacteria) were then placed on MS medium supplemented with 121 kanamycin (50 mg l^{-1}) and cefotaxime (250 mg l^{-1}) along with 600 µg/l BAP and 25 µg/l NOA. 122 Regeneration of plants was carried out according to the method of Raji et al. (2021). The 123 inoculated explants were kept in a growth chamber (KK 1450 FIT P) with 40-Watt lumichrome 124 fluorescent bulbs (100 µmol m⁻² s⁻¹ light) under 16/8 h and 26°C/20°C day/night cycles. After 125 three weeks, elongated and live shoots were transferred to a PGR-free medium with the same 126 concentration of antibiotics for root formation. The rooted plants were transferred to the jiffy 127 pots and acclimatized in greenhouse (Raji et al., 2018). 128

Kanamycin Assay

To investigate the effect of antibiotic on survival and regeneration of explants, viability and 131 regeneration of non-inoculated cotyledon disks were evaluated using different concentrations 132 of kanamycin (0, 25, 50, 75 and 100 mg 1^{-1}) added in MS media (Table 2). The concentration 133 of kanamycin that completely prevented the growth of non-inoculated explants was chosen as 134 selective medium. 135

Molecular Analysis

PCR analysis

Young fresh leaves from kanamycin-resistant plants were collected and ground into a fine 139 powder in liquid nitrogen. Total DNA was extracted using the CTAB method (Doyle and 140 Doyle, 1987) and the Polymerase Chain Reaction (PCR) was performed using specific primers 141

130

136

137

138

to amplify the inserted PR transgenes. To test for Agrobacterium contamination, the 142 transformed plants were also analyzed by *virG* specific primers. PCR was performed in 25 μ l 143 reaction volume including 100 ng DNA as template, 10 pm of each primer and 1U Taq DNA 144 polymerase. PCR reaction was performed under the following cycle program: 5 min at 94 °C 145 (hot start), followed by 35 cycles at 94 °C for 45 sec (denaturation), then at annealing 146 temperature (depending on the primers used) for 1 min, and finally at 72 °C for 1 min 147 (extension), followed by a final extension step at 72 °C for 10 min. 148

149

157

Reverse Transcription-PCR (RT-PCR) analysis

Total RNA was isolated from PCR-positive melon plants with TRIzol® reagent (Invitrogen™150-Thermo Fisher Scientific, Wilmington, DE) according to the manufacturer's instruction. The151extracted RNAs were treated with DNase and utilized for cDNA synthesis using 2-steps RT-152PCR KiT (RTPL-12) (Sinaclon, Iran) by following the manufacturer's protocol. After153preparing the cDNA, PCR was performed with primers for PRs gene (Niazian et al, 2019). Gel154Red was added to the PCR products and runed in electrophoresis system (PowerPac, BIO-155RAD, USA) for 30 min on a 1% agarose gel and then observed under UV irradiation.156

Real time RT-PCR analysis

The Real-Time RT-PCR primers were designed with the assistance of primer 3 web software 158 (Whitehead Institute for Biomedical Research, MA, USA) and Gen runner software (version 159 3.05) and manufactured by MWG-Biotech (Germany). All Primers were blasted against 160 nucleotide sequences in National Center for Biotechnology Information (NCBI) database to 161 ensure that their sequences are specific to each gene (Table 1). The mRNA expression levels 162 were quantified by using a LightCycler 96 System (Roche, Basel, Switzerland). Quantitative 163 PCR was conducted in a total volume of 20 µl, with 2 µl of cDNA (50 ng), 1 µl (0.2 µM) of 164 each primer, 10 µl 2x Maxima SYBER Green/Flourescein qPCR Master Mix (Fermentas, 165 Germany) and 6 µl sterile distilled water, with the following conditions: initial denaturation at 166 95 °C for 5 min and then 40 cycles of 95 °C for 20 sec (denaturation), annealing at 58°C for 167 20 sec and finally 72 °C for 40 sec (extension). Each experiment was repeated three times 168 169 independently as biological replicates and two technical replicates were carried out for each biological replication. ADP ribosylation factor (ADP) gene was used as a reference gene (Kong 170 et al., 2014). The delta-delta Ct method was used to calculate the relative expression levels 171 (Livak and Schmittgen, 2001) 172 Southern blot analysis 173 Fifty μ g of DNA extracted from young leaves was completely digested with *Eco*RI at 37°C, 174 overnight .The digested DNAs were electrophoresed on 1% (W/V) agarose gels and then DNA 175 fragments blotted onto N⁺ Hybond membrane (GE Healthcare UK Ltd, Buckinghamshire, UK). 176 Coding sequence of the *Chi* gene (*Eco*RI fragment ~1200bp) was labeled with the DIG DNA 177 labeling kit (Roche) and used as a probe. Detection was carried out using the DIG detection kit 178 according to the manufacturer's instructions (Roche, Germany). 179

180

181

185

186

192

193

Collecting the T₁ seeds

Three confirmed transgenic lines (K44, K58 and S5) by PCR assay and Southern blot analysis182were successfully self-pollinated and the seeds of their T_1 progenies (100 seeds from each line)183were collected.184

Enzyme assays

To compare the enzymatic defense response of transgenic and wild-type plants, CHI and GLU187enzymes activity of seedlings was evaluated according to Tohidfar et al. (2005). Twenty188transgenic plants regenerated *in vitro* from each line were sampled 20 days after inoculation by189*F. oxysporum* f. sp. *melonis* (FOM). Statistical analysis was performed by SPSS software190(Niazian et al, 2017).191

Disease bioassays test

Bioassay was performed in three steps. In the first experiment, leaf extracts from transgenic 194 and control plants were utilized to assay the in vitro growth inhibition of FOM induced by PR 195 genes, according to Tohidfar et al. (2005). Briefly, young leaves from putative transgenic lines 196 as well as untransformed plants were flash frozen in liquid nitrogen and were ground to fine 197 powder. The soluble proteins were then extracted in 10 mM sodium acetate buffer (pH 5.0), as 198 leaf extracts. The assay for each sample was performed three times. The resistance of T₁ 199 200 transgenic progenies to FOM and powdery mildew (PM) were assessed in greenhouse condition in the second and the third experiment, respectively, following the procedure 201 202 described in Haegi et al. (2017). The fungal spores were gently removed from the PDA media with a scalpel and added to 5 ml of water. The resulting mixture was transferred to a falcon 203 tube and shaken with a shaker to mix the spores evenly with water. Ten microliters of the 204 suspension were poured onto a homocytometer slide and counted under a microscope at 40x 205 magnification to a concentration of $4*10^4$ spores per milliliter. The resulting suspension was 206 sprayed on the leaves of transgenic and control plants. Resistance to PM was measured 207 according to complete infection of the leaf surface by the fungus 20 days after inoculation. The208data were analyzed based on one-way ANOVAS, including the non-transgenic control plants209in the analyses and performing Dunnett's test for pairwise comparisons between each210transgenic line and the non-transgenic control.211

212

213

218

219

225

226

RESULTS

Kanamycin test

The bud formation from cotyledon explants of non-inoculated plants was completely inhibited214at kanamycin concentration $\geq 50 \text{ mg l}^{-1}$ and the plants died after three weeks. Since 50 mg l $^{-1}$ 215was the lowest selective kanamycin concentration for both *C. melo* landraces used in the216present work (Table 2), this condition was applied to select the transformants.217

Plant cell transformation and regeneration

The regeneration percentage of inoculated and co-cultured explants from the two melon 220 genotypes (Figure 2) were evaluated by their bud formation ability in the selective medium 221 (SM). In total, 58 kanamycin-resistant plantlets (51%) were obtained from 114 explants of the 222 two landraces, with 58% and 44% of 'Khatooni' and 'Samsoori' transformed plants showing 223 bud formation, respectively (Table 2). 224

Molecular and enzymatic evaluation

Molecular analysis confirmed co-transfer of the three PR genes inserted in 8 out of 58 227 kanamycin resistant plants selected. The PCR assay showed clear and specific bands with the 228 expected size for Chi (870 bp), Glu (680 bp) and PR-1 (588 bp) transgenes in 3 and 5 plants of 229 'Khatooni' and 'Samsoori', respectively) (Figure 3). As expected, no amplicons were obtained 230 in non-transformed plants and water, used as negative control. Expression of Chi, Glu and PR-231 1 in the eight transgenic lines selected was subsequently tested by RT-PCR. Qualitative PCR 232 analysis, using c-DNA as template, showed clear amplicons for all the insertedgenes, while as 233 expected no fragments were obtained in non-transformed plant used as negative control (Figure 234 4-A). However, southern blot analysis for the Chi gene only showed gene integration in three 235 out of the eight transgenic plants, two lines from 'Khatooni' (K44, K59) and one from 236 'Samsoori' (S5) landrace, respectively (Figure 4-B). 237

Real-time PCR (RT-qPCR) analysis was performed to evaluate the expression levels of the238three genes in the transformed lines (Figure 5). Untransformed control lines showed no239expression.Quantitative PCR underlined the expression of each gene transferred in the three240transgenic plants. Interestingly, the expression levels of *Chi*, *Glu* and *PR-1* were significantly241

between K44 and K59 cultivars.	243
The expression pattern was paralleled by the enzymatic activity of the gene products, with a	244
significantly higher activity of CHI and b-1,3- GLU in S5, K59 and K44 transgenic lines than	245
in wild type plants (Table 3).	246
The highest Chi (45.75 mg protein-1) and b-1,3- Glu (25.63 mg protein-1) activity was obtained	247
in K44 in comparison with other transgenic plants and control. The transgenic lines had Chi	248
and b-1,3- Glu activity levels more than 400 to 500-times higher than the control plants (Table	249
3).	250
Bioassay of lines with fungal causal agents	251
Leaf extracts from transgenic lines (S5, K44, and K59 lines) and wild type were used in the	252
bioassays to verify their effect on fungal hyphae growth. A clear effect of FOM inhibition	253
growth was observed for all concentration tested (25, 50, 75, and 100 μ g) of the extracts from	254
transgenic line while, as expected, no inhibitory effect was highlighted by the leaf extract of	255
non-transgenic lines (Table 4).	256
We finally tested the plant for resistance to two pathogenic fungi. All transgenic lines showed	257
a significant higher rate of survival (92%, 83% and 91% for T_0 and 84%, 79% and 83% for T_1	258
plants belonging to K44, K59 and S5 lines, respectively) than non-transgenic plants (18%),	259
after FOM inoculation (Figure 6-A). Plants showed increased resistance also to PM infection,	260
as measured as by hyphae extension. Leaves from non-transgenic plants were colonized within	261
a week (control), whereas the transgenic lines were completely infected only after 20 (S5) or	262
22 (K49, K55) days (Figure 6-B, Table 5). The growth rate of the fungus was higher on older	263
leaves than young leaves (not shown). Qualitative evaluation confirmed high resistance of	264
transgenic plants compared to non-transgenic lines, with a mean of 3.5 vs 9.1, respectively, in	265
the susceptibility scale.	266
	267
Discussion	268
	269
Pathogenesis-related (PR) genes are among the most important resistance genes to fungal	270
diseases. PR genes are sorted into 17 groups (Xu et al., 2016), each with a specific mechanism	271
for confronting the disease (Saboki Ebrahim et al., 2011) . PR proteins show a protective role	272
in plants through their accumulation both locally in the infected and also in remote uninfected	273
tissues. A general role of this family of proteins in response to biotic/abiotic stress has been	274
underlined in many plant species (Lawrence et al. 2000; Yamamoto et al. 2000; Anguelova-	275

higher in S5 than K44, and K59 lines. By contrast, no significant differences were showed

Merhar et al. 2001; Sharma 2013). They are also involved in hypersensitive response (HR) and 276 systemic acquired resistance (SAR) against infection (Jain and Khurana (2018). SAR is a 277 broad-spectrum long-lasting defense where the first signaling of a pathogen attack in a primary 278 site can generate a wide answer in other tissue against several kinds of pathogens. After the 279 pathogen infection, a inducible defense mechanism is activated that include the secondary 280 metabolites accumulation, callose deposition with cell wall lignification, ROS (Reactive 281 Oxygen Species) generation, and also the PR production, including chitinase, glucanase and 282 PR1genes (Yang et al. 1997; Sels et al. 2008; Bernardino et al. 2020). HR can induce SAR 283 reaction which consists in a broad spectrum systemic enhanced resistance to pathogenic 284 infection following a localized infection by a fungal pathogens (Balint-Kurti, 2019). It is 285 dependent on the phytohormone salicylate and associated with the accumulation of 286 pathogenesis-related (PR) proteins such as PR genes (Fu and Dong, 2013). It is assumed that 287 co-expression of Chi, Glu and PR1, genes with three different resistance mechanisms, could 288 enhance resistance to various plant fungal diseases in melon (Jain and Khurana, 2018). 289 290 Therefore, in the present study, we transformed melon with A. tumefaciens LBA4404 strain, harboring the binary construct pBI121 with three PR fungal resistance genes (Chi, Glu and 291 292 PRI). After co-cultivation with Agrobacterium, explants were transferred to selective medium supplemented with 50 mg l⁻¹ kanamycin in order to select transgenic explants. In our 293 experimental conditions this level of kanamycin completely inhibited the growth of non-294 transformed plant material. The same concentration had been used in melon previously 295 (Chovelon et al., 2011) but in some studies higher concentrations such as 75 mg l^{-1} (Fang and 296 Grumet, 1990; Zhang et al., 2014), 100 mg l⁻¹ (Valles and Lasa, 1994), 150 mg l⁻¹ (Nora et al., 297 2001) and 200 mg l⁻¹ (Papadopoulou et al., 2005) of kanamycin were utilized for selection of 298 299 transformed cultures. These differences in concentrations may be related to the different tolerance of cultivars to kanamycin (Hao et al., 2011). In the present study, 51% of the explants 300 were able to produce regenerants on the selective medium, a value higher than earlier published 301 reports (Vallés and Lasa, 1994; Nunez-Palenius et al., 2006), but lower than others (Fang and 302 Grumet, 1990; Chovelon et al., 2011). 303

Since survival of non-transgenic melons had been observed on selective medium by some 304 researchers (Ren et al., 2012), in order to identify the transgenic plants, the genomic DNA from 305 the in vitro regenerated shoots was subjected to PCR and Sothern blotting analysis. We 306 observed that eight plants were positive to PCR and three plants were positive to Southern blot, 307 with a transformation rate of 5.8%, similar to Choi et al. (2012) and Garcia-Almodóvar et al. 308 (2017), and higher than Bezirganoglu et al. (2014) and Hsin-Mei Ku et al. (2011). These 309

different results, can be related to transformation, regeneration conditions and regenerative310potential of different genotypes (Raji et al., 2018).311

RT-PCR or real-time PCR is usually utilized to evaluate mRNA expression in many312transformation reports (Hao et al., 2011; Ren et al., 2013; Zhang et al., 2014). We observed313that semi-quantitative RT-PCR detected transcripts of all the PR transgenes. The expression314levels of PR transgenes in S5 line were higher than the two other lines, possibly because of315cultivar, copy number and position of gene insertion.316

In bioassay analysis, the activities of two critical enzymes (CHI and GLU) in transformed lines 317 were higher than in wild type melon. This had been observed in other transgenic plants 318 including tomato (Wu and Bradford, 2003), potato (Chye et al., 2005; Khan et al., 2008), 319 cucumber (Moravcikova et al., 2007; Kishimoto et al., 2002), rice (Nishizawa et al., 2003; Kim 320 et al., 2003), soybean (Li et al., 2004) and tobacco (Rohini and Rao, 2001). Transgenic cotton 321 plants, harboring *Chi* gene, showed higher degree of CHI activity and resistance to verticillium 322 (Tohidfar et al., 2005). 323

The inhibition of FOM fungal growth by transgenic melons agrees with what observed by 324 325 Bezirganoglu et al. (2013) and in many other transgenic plants such as tobacco (Carstens et al., 2003), rice (Kumar et al., 2003; Coca et al., 2004, 2006), peanut (Chye et al., 2005), finger 326 millet (Latha et al., 2005), oilseed rape (Melander et al., 2006), pearl millet (Girgi et al., 2006), 327 Indian mustard (Mondal et al., 2007), citrus (Figueiredo et al., 2011), avocado (Chaparro-328 Pulido et al., 2014) and salvia (Figlan and Makunga, 2017). Similar to previous studies, it 329 seems that the degree of disease resistance directly correlated to the protein expression levels 330 of the transgenes and number of genes responding to the disease (Esfahani et al, 2010). FOM 331 is one the most important diseases in melon (Gonzalez et al., 2020) causing yield and quality 332 loss (Xue et al., 2020). Bezirganoglu et al. (2013) examined the resistance of melon transgenic 333 lines overexpressing *Chi* to FOM3, while in present study T_0 and T_1 transformed melon lines 334 with three PR genes were tested against race 1 and 2 of FOM. The results revealed that 335 differently from wild-type, transgenic plants survived effectively against both FOM races. 336 Moravcikova et al. (2004) showed that plants transformed with either Chi gene or a b-1,3-Glu 337 gene were more sensitive to FOM than plants expressing both genes. The expression of PR 338 339 genes in other transgenic plants, such as pearl millet (Girgi et al., 2006), wheat (Mackintosh et al., 2007), tobacco and peanut (Anuradha et al., 2008), Acacia (Gonzalez-Teuber et al., 2009), 340 Salvia (Figlan and Makunga, 2017), also enhanced resistance against FOM. 341 PM caused by Podosphaera xanthiiis often infects muskmelon, limiting its production (Zhu et 342 al., 2018). Some research (Ishak and Daryono, 2020; Cui et al., 2020) has identified PM 343 resistance genes in melons, but this resistance is apparently not complete. Some resistance 344 genes, such as barley chitinase II and ß-1,3-glucanaseII (Dohm et al., 2001) were transferred 345 to rose. Barley chitinase (Eissa et al., 2017) and wheat Pm3e (Koller et al., 2019) were 346 transferred to wheat to increase resistance against PM. Similar to previous studies (Dohm et 347 al., 2001; Eissa et al., 2017; Koller et al., 2019) we observed that resistance of transgenic melon 348 plants to PM was higher than control plants. In our study, after one week of inoculation, fungal 349 hyphae covered the leaf surface of the control plants, but fungus growth was inhibited up to six 350 weeks after inoculation in transgenic plants. On the other hand, older lower leaves were more 351 infected than young upper leaves. 352

Expression of PR genes and production of antifungal enzymes is one of the common SAR353reactions (Kamle et al., 2020). In our study, as the result of the expression of transformed genes354in melons, Chi, Glu and PR1 enzymes were produced and possibly mimicked a SAR reaction,355leading to resistance to the two diseases FOM and PM. On the other hand, we never observed356HR lesions in any transgenic melons.357

358ConclusionTransgenic expression of chitinase, glucanase and PRI enhanced resistance of two melon360cultivars to the two fungal pathogens FOM and PM. Resistance was maintained in the second361generation. The simple monogenic inheritance of this transgenic multigene locus greatly362simplifies its use in breeding programs.363Acknowledgement365

We would like to appreciate Professor Kourosh Vahdati for scientific editing of the paper and366also thank Iran National Science Foundation (INSF), National Research Council of Italy (CNR)367the University of Tehran and Lorestan University for their supports. We would like to express368our thanks to Dr. Mostafa Farajpour for his advice on statistical analysis.369

370

371372

373

374

Conflict of interest

The authors declare no competing interests.

References

Akbudak, M. A., Yildiz, S., & Filiz, E. (2020). Pathogenesis related protein-1 (PR-1) genes in tomato (*Solanum lycopersicum* L.): Bioinformatics analyses and expression profiles in response to drought stress. *Genomics*.
 375

Andersen, E. J., Ali, S., Byamukama, E., Yen, Y., & Nepal, M. P. (2018). Disease resistance mechanisms in plants. <i>Genes</i> , 9(7), 339.	378 379
Anuradha, T. S., Divya, K., Jami, S. K., & Kirti, P. B. (2008). Transgenic tobacco and peanut	380
plants expressing a mustard defensin show resistance to fungal pathogens. <i>Plant cell reports</i> ,	381
27(11), 1777-1786.Balint-Kurti, P. (2019). The plant hypersensitive response: concepts,	382
control and consequences. Molecular plant pathology, 20(8), 1163-1178.	383
Bezirganoglu, I., Hwang, S. Y., Fang, T. J., & Shaw, J. F. (2013). Transgenic lines of melon	384
(Cucumis melo L. var. makuwa cv. 'Silver Light') expressing antifungal protein and chitinase	385
genes exhibit enhanced resistance to fungal pathogens. <i>Plant Cell, Tissue and Organ Culture</i>	386
(<i>PCTOC</i>), 112(2), 227-237.	387
Bezirganoglu, I., Hwang, S. Y., Shaw, J. F., & Fang, T. J. (2014). Efficient production of	388
transgenic melon via Agrobacterium-mediated transformation. Genetics and Molecular Research, 13(2), 3218-3227.	389 390
Boccardo, N. A., Segretin, M. E., Hernandez, I., Mirkin, F. G., Chacón, O., Lopez, Y., & Bravo-	391
Almonacid, F. F. (2019). Expression of pathogenesis-related proteins in transplastomic tobacco	392
plants confers resistance to filamentous pathogens under field trials. Scientific reports, 9(1), 1-	393
13.	394
Brotman, Y., Silberstein, L., Kovalski, I., Perin, C., Dogimont, C., Pitrat, M., & Perl-Treves,	395
R. (2002). Resistance gene homologues in melon are linked to genetic loci conferring disease	396
and pest resistance. Theoretical and Applied Genetics, 104(6), 1055-1063.Carstens, M., Vivier,	397
M. A., & Pretorius, I. S. (2003). The Saccharomyces cerevisiae chitinase, encoded by the	398
CTS1-2 gene, confers antifungal activity against Botrytis cinerea to transgenic tobacco.	399
Transgenic research, 12(4), 497-508.	400
Chaparro-Pulido, C. A., Montiel, M. M., Palomo-Ríos, E., Mercado, J. A., & Pliego-Alfaro, F.	401
(2014). Development of an efficient transformation protocol for avocado (Persea	402
americana Mill.) embryogenic callus. In Vitro Cellular & Developmental Biology-Plant, 50(2),	403
292-298. Choi, J. Y., Shin J. S., Chung, Y. S., Hyung, N. I. (2012). An efficient selection and	404
regeneration protocol for Agrobacterium-mediated transformation of oriental melon (Cucumis	405
melo L. var. makuwa). Plant Cell Tiss Org Cult. 110(1):133-140.	406
Chovelon, V., Restier, V., Giovinazzo, N., Dogimont, C., Aarrouf, J. (2011). Histological study	407
of organogenesis in Cucumis melo L. after genetic transformation: why is it difficult to obtain	408
transgenic plants? <i>Plant Cell Rep, 30</i> (11):2001–2011. https://doi.org/10.1007/s00299-011-1108-9.	409 410
Chye, M. L., Zhao, K. J., He, Z. M., Ramalingam, S., & Fung, K. L. (2005). An agglutinating	411
chitinase with two chitin-binding domains confers fungal protection in transgenic potato.	412
<i>Planta</i> , <i>220</i> (5), 717-730.	413
Clinckemaillie, A. (2017). Effects and modes of action of COS-OGA based elicitors against late	414
and early blight on Solanaceae (Doctoral dissertation, UCL-Université Catholique de	415
Louvain).	416
Coca, M., Bortolotti, C., Rufat, M., Penas, G., Eritja, R., Tharreau, D., & San Segundo, B.	417
(2004). Transgenic rice plants expressing the antifungal AFP protein from Aspergillus	418
giganteus show enhanced resistance to the rice blast fungus Magnaporthe grisea. Plant	419
<i>Molecular Biology</i> , <i>54</i> (2), 245-259.	420

Coca, M., Penas, G., Gómez, J., Campo, S., Bortolotti, C., Messeguer, J., & San Segundo, B.	421
(2006). Enhanced resistance to the rice blast fungus Magnaporthe grisea conferred by	422
expression of a cecropin A gene in transgenic rice. Planta, 223(3), 392-406.	423
Cui, H., Ding, Z., Fan, C., Zhu, Z., Zhang, H., Gao, P., & Luan, F. (2020). Genetic mapping and	424
nucleotide diversity of two powdery mildew-resistance loci in melon (Cucumis melo L.).	425
<i>Phytopathology</i> , <i>110</i> (12), 1970-1979.	426
Danesh, M., Lotfi, M. & Azizinia, S. (2015). Genetic diversity of Iranian melon cultigens revealed	427
by AFLP markers. International Journal of Horticultural Science and Technology, 2(1), 43-	428
53.	429
Dogimont, C. (2011). Gene list for melon. Cucurbit Genetics Cooperative Report 33-34, 104-133	430
Dohm, A., Ludwig, C., Schilling, D., & Debener, T. (2001). Transformation of roses with genes	431
for antifungal proteins to reduce their susceptibility to fungal diseases. In XX International	432
Eucarpia Symposium, Section Ornamentals, Strategies for New Ornamentals-Part II 572 (pp.	433
105-111).	434
Doyle, J. J., Doyle, J. L. (1987). A rapid DNA isolation procedure from small quantities of fresh	435
leaf tissue. Phytochem Bull, 19, 11–15	436
Saboki Ebrahim, K. U., & Singh, B. (2011). Pathogenesis related (PR) proteins in plant defense	437
mechanism. Science against microbial pathogens.	438
Eissa, H. F., Hassanien, S. E., Ramadan, A. M., El-Shamy, M. M., Saleh, O. M., Shokry, A. M.,	439
& Hassan, S. M. (2017). Developing transgenic wheat to encounter rusts and powdery	440
mildew by overexpressing barley chi26 gene for fungal resistance. Plant methods, 13(1), 41.	441
Esfahani, K. Motalebi, M., Zamani, M. R., HASHEMI, S. H., & Jourabchi, E. (2010).	442
Transformation of potato (Solanum tuberosum cv. Savalan) by chitinase and β -1, 3-glucanase	443
genes of mycoparasitic fungi towards improving resistance to Rhizoctonia solani AG-3. Iranian	444
Journal Biotechnology 8(2), 73-81.	445
Etebarian, H. R. (2002). Diseases of vegetable and summer crop and the methods of control.	446
Tehran University Publishing, Tehran.	447
Fang, G., & Grumet, R. (1990). Agrobacterium tumefaciens mediated transformation and	448
regeneration of muskmelon plants. Plant Cell Reports, 9(3), 160-164.	449
Figlan, S., & Makunga, N. P. (2017). Genetic transformation of the medicinal plant Salvia	450
runcinata L. f. using Agrobacterium rhizogenes. South African Journal of Botany, 112, 193-	451
202.	452
Figueiredo, J. F., Römer, P., Lahaye, T., Graham, J. H., White, F. F., & Jones, J. B. (2011).	453
Agrobacterium-mediated transient expression in citrus leaves: a rapid tool for gene expression	454
and functional gene assay. <i>Plant cell reports</i> , <i>30</i> (7), 1339-1345.	455
Frantz, J. D., Jahn, M. M. (2004). Five independent loci each control monogenic resistance to	456
gummy stem blight in melon (<i>Cucumis melo</i> L.). Theor Appl Genet, 108, 1033-1038.	457
https://doi.org/10.1007/s00122-003-1519-2.	458
Fu, Z. Q., & Dong, X. (2013). Systemic acquired resistance: turning local infection into global	459
defense. Annual review of plant biology, 64, 839-863.	460
Gao, P., Liu, S., Zhu, Q. L., & Luan, F. S. (2015). Marker-assisted selection of Fusarium wilt-	461
resistant and gynoecious melon (<i>Cucumis melo</i> L.). <i>Genetics and Molecular Research</i> , 14(4), 16255-16264.	462 463

Garcia-Almodóvar, R. C., Gosalvez, B., Aranda, M. A., Burgos, L. (2017). Production of	464
transgenic diploid Cucumis melo plants. Plant Cell, Tissue and Organ Culture, 130(2), 323-	465
333.	466
Girgi, M., Breese, W. A., Lörz, H., Oldach, K. H. (2006). Rust and downy mildew resistance in	467
pearl millet (<i>Pennisetum glaucum</i>) mediated by heterologous expression of the afp gene from <i>Aspergillus giganteus</i> . <i>Trans Res</i> , <i>15</i> , 313–324. doi: 10.1007/s11248-006-0001-8.	468 469
Gonzalez-Teuber, M., Eilmus, S., Muck, A., et al. (2009). Pathogenesis-related proteins protect	470
extrafloral nectar from microbial infestation. Plant J, 58, 464-473.	471
Gonzalez, V., Armijos, E., Garcés-Claver, A. (2020). Fungal endophytes as biocontrol agents	472
against the main soil-borne diseases of melon and watermelon in Spain. Agronomy, 10(6), 820.	473
Haegi, A., De Felice, S., Scotton, M., Luongo, L., & Belisario, A. (2017). Fusarium oxysporum f.	474
Sp. melonis-melon interaction: Effect of grafting combination on pathogen gene expression.	475
European Journal of Plant Pathology, 149(4), 787-796.	476
Hao J, Niu Y, Yang B, Gao F, Zhang L, Wang J, Hasi A. (2011). Transformation of a marker-	477
free and vector-free antisense ACC oxidase gene cassette into melon via the pollen-tube	478
pathway. Biotechnol Lett.;33:55-61.	479
He, X., Miyasaka, S. C., Fitch, M. M., Moore, P. H., & Zhu, Y. J. (2008). Agrobacterium	480
tumefaciens-mediated transformation of taro (Colocasia esculenta (L.) Schott) with a rice	481
chitinase gene for improved tolerance to a fungal pathogen Sclerotium rolfsii. Plant cell reports,	482
27(5), 903-909.	483
Howlader, J., Hong, Y., Natarajan, S., Sumi, K. R., Kim, H. T., Park, J. I., & Nou, I. S. (2020).	484
Development of powdery mildew race 5-specific SNP markers in Cucumis melo L. using	485
whole-genome resequencing. Horticulture, Environment, and Biotechnology, 61, 347-357.	486
Lin, C. Y., Ku, H. M., Tsai, W. S., Green, S. K., & Jan, F. J. (2011). Resistance to a DNA and a	487
RNA virus in transgenic plants by using a single chimeric transgene construct. Transgenic research, 20(2), 261-270.	488 489
Imran, Q. M., & Yun, B. W. (2020). Pathogen-induced Defense Strategies in Plants. Journal of	490
Crop Science and Biotechnology, 23(2), 97-105.	491
Livak, K.J. and Schmittgen, T.D., 2001. Analysis of relative gene expression data using real-time	492
quantitative PCR and the $2-\Delta\Delta CT$ method. methods, 25(4), pp.402-408	493
Iqbal, A., Khan, R. S., Shehryar, K., Imran, A., Ali, F., Attia, S., & Mii, M. (2019).	494
Antimicrobial peptides as effective tools for enhanced disease resistance in plants. <i>Plant Cell, Tissue and Organ Culture, 139</i> , 1-15.	495 496
Ishak, M. A., & Daryono, B. S. (2020). Detection of powdery mildew resistance gene in melon	497
cultivar Meloni based on SCAR markers. Biosaintifika: Journal of Biology & Biology	498
<i>Education</i> , <i>12</i> (1), 76-82.	499
Jain, D., & Khurana, J. P. (2018). Role of pathogenesis-related (PR) proteins in plant defense	500
mechanism. In Molecular aspects of plant-pathogen interaction (pp. 265-281). Springer,	501
Singapore.	502
Kamle, M., Borah, R., Bora, H., Jaiswal, A. K., Singh, R. K., & Kumar, P. (2020). Systemic	503
Acquired Resistance (SAR) and Induced Systemic Resistance (ISR): Role and Mechanism of	504
Action Against Phytopathogens. In Fungal Biotechnology and Bioengineering (pp. 457-470).	505
Springer, Cham.	506

Khan, R. S., Sjahril, R., Nakamura, I., & Mii, M. (2008). Production of transgenic potato exhibiting enhanced resistance to fungal infections and herbicide applications. <i>Plant Biotechnology Reports</i> , 2(1), 13-20.	507 508 509
Kim, J. K., Jang, I. C., Wu, R., Zuo, W. N., Boston, R. S., Lee, Y. H., & Nahm, B. H. (2003).	510
Co-expression of a modified maize ribosome-inactivating protein and a rice basic chitinase	511
gene in transgenic rice plants confers enhanced resistance to sheath blight. <i>Transgenic</i>	512
Research, 12(4), 475-484.	513
Kishimoto, K., Nishizawa, Y., Tabei, Y., Hibi, T., Nakajima, M., & Akutsu, K. (2002). Detailed	514
analysis of rice chitinase gene expression in transgenic cucumber plants showing different	515
levels of disease resistance to gray mold (<i>Botrytis cinerea</i>). <i>Plant Science</i> , 162(5), 655-662.	516
Koller, T., Brunner, S., Herren, G., Sanchez-Martin, J., Hurni, S., & Keller, B. (2019). Field grown	517
transgenic Pm3e wheat lines show powdery mildew resistance and no fitness costs associated	518
with high transgene expression. <i>Transgenic research</i> , 28(1), 9-20.	519
Kong, Q., Yuan, J., Niu, P., Xie, J., Jiang, W., Huang, Y. and Bie, Z., 2014. Screening suitable	520
reference genes for normalization in reverse transcription quantitative real-time PCR analysis	521
in melon. <i>PloS one</i> , 9(1), p.e87197.	522
Kumar, K. K., Poovannan, K., Nandakumar, R., Thamilarasi, K., Geetha, C., Jayashree, N., &	523
Balasubramanian, P. (2003). A high throughput functional expression assay system for a	524
defence gene conferring transgenic resistance on rice against the sheath blight pathogen,	525
Rhizoctonia solani. Plant Science, 165(5), 969-976.	526
Latha, A. M., Rao, K. V., & Reddy, V. D. (2005). Production of transgenic plants resistant to leaf	527
blast disease in finger millet (<i>Eleusine coracana</i> (L.) Gaertn.). <i>Plant Science</i> , 169(4), 657-667.	528
Li, B., Zhao, Y., Zhu, Q., Zhang, Z., Fan, C., Amanullah, S., & Luan, F. (2017). Mapping of	529
powdery mildew resistance genes in melon (Cucumis melo L.) by bulked segregant analysis.	530
Scientia Horticulturae, 220, 160-167.	531
Li, H. Y., Zhu, Y. M., Chen, Q., Conner, R. L., Ding, X. D., Li, J., & Zhang, B. B. (2004).	532
Production of transgenic soybean plants with two anti-fungal protein genes via Agrobacterium	533
and particle bombardment. Biologia Plantarum, 48(3), 367-374.	534
Luan, F., Delannay, I. & Staub, J. E. (2008). Chinese melon (Cucumis melo L.) diversity analyses	535
provide strategies for germplasm curation, genetic improvement, and evidentiary support of	536
domestication patterns. Euphytica, 164, 445-461.	537
Mackintosh, C. A., Lewis, J., Radmer, L. E., Shin, S., Heinen, S. J., Smith, L. A., & Baldridge,	538
G. D. (2007). Overexpression of defense response genes in transgenic wheat enhances	539
resistance to Fusarium head blight. Plant Cell Reports, 26(4), 479-488.	540
Mascarell-Creus, A., Cañizares, J., Vilarrasa-Blasi, J., Mora-García, S., Blanca, J., Gonzalez-	541
Ibeas, D., & Caño-Delgado, A. I. (2009). An oligo-based microarray offers novel	542
transcriptomic approaches for the analysis of pathogen resistance and fruit quality traits in	543
melon (Cucumis melo L.). BMC Genomics, 10(1), 1-15. https://doi.org/10.1186/1471-2164-10-	544
467.	545
Melander, M., Kamnert, I., Happstadius, I., Liljeroth, E., & Bryngelsson, T. (2006). Stability of	546
transgene integration and expression in subsequent generations of doubled haploid oilseed rape	547
transformed with chitinase and β -1, 3-glucanase genes in a double-gene construct. <i>Plant Cell</i>	548
Reports, 25(9), 942-952.	549

Maleki, M., Abdolali, S., Sajad, R. M. (2018). Population structure, morphological and genetic diversity within and among melon (<i>Cucumis melo</i> L.) landraces. <i>Iran, Journal of Genetic Engineering and Biotechnology</i> , 16(2), 599-606.	550 551 552
McGrath, M.T. 2001. Distribution of cucurbit powdery mildew races 1 and 2 on watermelon and	553
muskmelon. Phytopathology 91:197 (Abstr.). doi:10.1094/PHYTO.2001.91.2.197.	555
Mondal, K. K., Bhattacharya, R. C., Koundal, K. R., & Chatterjee, S. C. (2007). Transgenic Indian	555
mustard (Brassica juncea) expressing tomato glucanase leads to arrested growth of Alternaria	556
	557
brassicae. Plant Cell Reports, 26(2), 247-252.	558
Moravcikova, J., Matušíková, I., Libantova, J., Bauer, M., & Mlynárová, L. U. (2004). Expression	
of a cucumber class III chitinase and <i>Nicotiana plumbaginifolia</i> class I glucanase genes in transgenic potato plants. <i>Plant Cell, Tissue and Organ Culture</i> , 79(2), 161-168.	559 560
Moravcikova, J., Libantová, J., Heldák, J., Salaj, J., Bauer, M., Matušíková, I., & Mlynárová,	561
L. (2007). Stress-induced expression of cucumber chitinase and <i>Nicotiana plumbaginifoliaβ</i> -	562
1, 3-glucanase genes in transgenic potato plants. <i>Acta Physiologiae Plantarum</i> , 29(2), 133-141.	563
Murashige, T., Skoog, F. (1962). A revised medium for rapid growth and bioassays with tobacco	564
tissue cultures. <i>Physiol Plant</i> , 15(3), 473–497. <u>https://doi.org/10.1111/j.1399-</u>	565
3054.1962.tb08052.x	566
Nishizawa, Y., Saruta, M., Nakazono, K., Nishio, Z., Soma, M., Yoshida, T., & Hibi, T. (2003).	567
Characterization of transgenic rice plants over-expressing the stress-inducible β -glucanase	568
gene Gns1. Plant Molecular Biology, 51(1), 143-152. Niazian, M., Noori, S. S., Galuszka, P.,	569
& Mortazavian, S. M. M. (2017). Tissue culture-based Agrobacterium-mediated and in planta	570
transformation methods. Soil and Water Research, 53(4), 133-143.	571
Niazian, M., Sadat-Noori, S. A., Tohidfar, M., Galuszka, P., & Mortazavian, S. M. M. (2019).	572
Agrobacterium-mediated genetic transformation of ajowan (Trachyspermum ammi (L.)	573
Sprague): an important industrial medicinal plant. Industrial Crops and Products, 132, 29-40.	574
Noman, A., Aqeel, M., Qari, S. H., Al Surhanee, A. A., Yasin, G., Hashem, M., & Al-Saadi, A.	575
(2020). Plant hypersensitive response vs pathogen ingression: Death of few gives life to others.	576
Microbial Pathogenesis, 145, 104224.	577
Nora, F. R., Peters, J., Lucchetta, L., Schuch, M., Marini, L., SIlva, J., & Rombaldi, C. (2001).	578
Melon Regeneration and Transformation Using an Apple ACC Oxidase Antisense Gene. Rev	579
<i>Bras Agrociencia</i> , 7(3), 201-204.	580
Nunez-Palenius, H. G., Cantliffe, D. J., Huber, D. J., Ciardi, J., Klee, H. J. (2006). Transformation	581
of a muskmelon 'Galia' hybrid parental line (Cucumis melo L. var. reticulatus Ser.) with an	582
antisense ACC oxidase gene. Plant Cell Rep, 25(3):198-205. https://doi.org/10.1007/s00299-	583
005-0042-0	584
Papadopoulou, E., Little, H. A., Hammar, S. A., & Grumet, R. (2005). Effect of modified	585
endogenous ethylene production on sex expression, bisexual flower development and fruit	586
production in melon (Cucumis melo L.). Sexual Plant Reproduction, 18(3), 131-142.	587
Pavan, S., Marcotrigiano, A. R., Ciani, E. et al. (2017). Genotyping-by-sequencing of a melon	588
(Cucumis melo L.) germplasm collection from a secondary center of diversity highlights	589
patterns of genetic variation and genomic features of different gene pools. BMC Genomics, 18,	590
59. https://doi.org/10.1186/s12864-016-3429-0	591
Prasannath, K. (2017). Plant defense-related enzymes against pathogens: a review. AGRIEAST J	592
<i>Agric Sci</i> , 11, 38-48.	593

Raji, M. R., Lotfi, M., Tohidfar, M., Zahedi, B., Carra, A., Abbate, L., & Carimi, F. (2018).	594
Somatic embryogenesis of muskmelon (Cucumis melo L.) and genetic stability assessment of	595
regenerants using flow cytometry and ISSR markers. Protoplasma, 255(3), 873-883.	596
Raji, M. R., & Farajpour, M. (2021). Genetic fidelity of regenerated plants via shoot regeneration	597
of muskmelon by inter simple sequence repeat and flow cytometry. Journal of the Saudi Society	598
of Agricultural Sciences, 20(2), 88-93.	599
Ren, Y., Bang, H., Curtis, I. S., Gould, J., Patil, B. S., Crosby, K. M. (2012). Agrobacterium-	600
mediated transformation and shoot regeneration in elite breeding lines of western shipper	601
cantaloupe and honeydew melons (Cucumis melo L.). Plant Cell Tissue Organ Cult, 108, 147-	602
158.	603
Rohini, V. K., & Rao, K. S. (2001). Transformation of peanut (Arachis hypogaea L.) with tobacco	604
chitinase gene: variable response of transformants to leaf spot disease. Plant Science, 160(5),	605
889-898.	606
Ruan, J., Zhou, Y., Zhou, M., Yan, J., Khurshid, M., Weng, W., & Zhang, K. (2019). Jasmonic	607
acid signaling pathway in plants. International Journal of Molecular Sciences, 20(10), 2479.	608
Saboki, E., Usha, K., Singh, B. (2011). Pathogenesis related (PR) proteins in plant defense	609
mechanism age-related pathogen resistance. Curr Res Technol Adv, 2: 1043-1054	610
Salguero-Linares, J., & Coll, N. S. (2019). Plant proteases in the control of the hypersensitive	611
response. Journal of experimental botany, 70(7), 2087-2095.	612
Seidl, V., Huemer, B., Seiboth, B., & Kubicek, C. P. (2005). A complete survey of Trichoderma	613
chitinases reveals three distinct subgroups of family 18 chitinases. The FEBS journal, 272(22),	614
5923-5939.	615
Shahi-Bajestani, M., & Dolatabadi, K. (2016). Searching about Resistance of Common Cultivated	616
Varieties in Varamin to Separated Fungal Phytophthora drechsleri from the Same Place.	617
Journal of Agricultural Science, 8(12).	618
Tohidfar, M., Mohammadi, M., & Ghareyazie, B. (2005). Agrobacterium-mediated	619
transformation of cotton (Gossypium hirsutum) using a heterologous bean chitinase gene. Plant	620
Cell Tissue Organ Culture, 83(1), 83-96.	621
Vahdati, K., McKenna, J. R., Dandekar, A. M., Leslie, C. A., Uratsu, S. L., Hackett, W. P., &	622
McGranahan, G. H. (2002). Rooting and other characteristics of a transgenic walnut hybrid	623
(Juglans hindsii × J. regia) rootstock expressing rolABC. Journal of the American Society for	624
Horticultural Science, 127(5), 724-728.	625
Wang, H., Sun, S., Ge, W., Zhao, L., Hou, B., Wang, K., & Li, M. (2020). Horizontal gene	626
transfer of Fhb7 from fungus underlies Fusarium head blight resistance in wheat. Science, 368,	627
6493.	628
Wu, C. T., & Bradford, K. J. (2003). Class I chitinase and [beta]-1, 3-glucanase are differentially	629
regulated by wounding, methyl jasmonate, ethylene, and gibberellin tomato seeds and leaves1.	630
<i>Plant Physiology</i> , <i>133</i> (1), 263.	631
Xu, J., Xu, X., Tian, L., Wang, G., Zhang, X., Wang, X., & Guo, W. (2016). Discovery and	632
identification of candidate genes from the chitinase gene family for Verticillium dahliae	633
resistance in cotton. Sci Rep, 6, 29022.	634
Xue, H., Sun, Y., Li, L., Bi, Y., & Pu, L. (2020). Acetylsalicylic acid (ASA) induced fusarium	635
rot resistance and suppressed neosolaniol production by elevation of ROS metabolism in	636
muskmelon fruit. Scientia Horticulturae, 265, 109264.	637

Zhang, H. J., Gao, P., Wang, X. Z., & Luan, F. S. (2014). An efficient regeneration protocol for	638
Agrobacterium-mediated transformation of melon (Cucumis melo L.). Genetics Molecular	639
<i>Research</i> , <i>13</i> (1), 54-63.	640
Zhu, Q., Gao, P., Wan, Y., Cui, H., Fan, C., Liu, S., & Luan, F. (2018). Comparative transcriptome	641
profiling of genes and pathways related to resistance against powdery mildew in two	642
contrasting melon genotypes. Scientia Horticulturae, 227, 169-180.	643
	644

Tables and Figures

 Table 1. Primer sequence for real-time PCR

Primers names	Sequence	Amplified siz (bp)	
Glucanase	F-5'CGTAGGAACAGCAGCGAAT-3'	97	
	R-5'CACCAGATACTCCGTGTGTG-3'		
Kitinase	F-5'TTGCCATAACCGACTCCAAG-3'	111	
	R-5'GAACATCATCAAGGGAGGCC-3'		
PRP-1	F-5'CCGTGCCCAAAATTCTCAAC-3'	182	
	R-5'CAGCTAGGTTTTCGCCGTAT-3'		
ADP	F-5' ATATTGCCAACAAGGCGTAGA -3'	132	
	R-5' TGCCCGTAAACAAGGGATAAA -3'		

Table 2. Survival explants (%) of different melon genotypes after two weeks of culture on MSmedium containing five kanamycin concentrations and data of plants transformed incubated onKanamycin.

	0 mg/l kanamycin	25 mg/l kanamycin	50 mg/l kanamycin	75 mg/l kanamycin	100 mg/l kanamycin	Inoculated explants in MS with 50 mg/l kanamycin	Resistant explants (%)in MS with 50 mg/l kanamycin	Regenerated plants in MS with 50 mg/l kanamycin
'Khatooni'	96	72	0	0	0	60	58	35
'Samsoori'	78	22	0	0	0	54	44	24
Explant color	green	green	yellow	yellow	yellow			656
								657
								658
								659
								660
								661
								662
								663
								664
								665
								666
								667
								668
								669
								670
								671
								672
								673
								674
								675
								676
								677
								678
								679

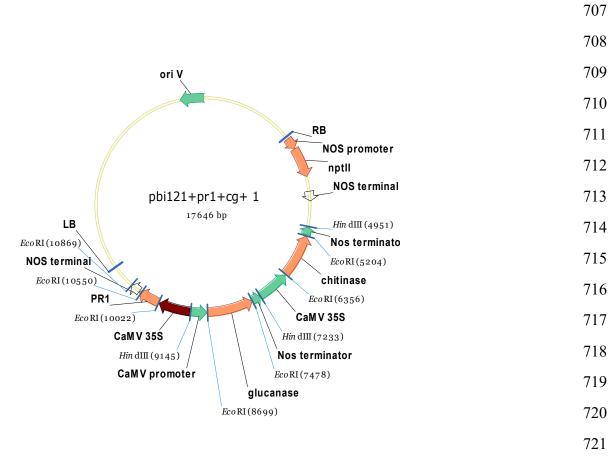
Table 3. Chitinase and glucanase specific activity in leaf tissues of transgenic melon lines (T0) and	680
untransformed control plant.	681
	682

Transgenic line (T0)	Specific activity of Chitinase (mg protein ⁾⁻¹) ^a	Specific activity of Glucanase (mg protein)-1) ^a
K44	45.75*	25.63*
K59	36.66*	23.38*
S5	33.45*	23.12*
Control	0.08	0.05

Stars above the columns indicate significant difference between each transgenic line and the control analyzed by Dunnett's test.

Leaf extract (µg)			Transgenic line (T0)					
	Extraction buffer	Non-transgenic leaf extract	K59	K44	S5			
Blank	15.5	iour extruct						
100		15.6	11.4^{*}	12.2*	12*			
75			11.4^{*}	12.2*	12.1^{*}			
50			12.1*	12.2*	12.2^{*}			
20			12.4*	13.2*	12.7^{*}			

Table 4. Bioassay of leaf extract inhibition effect on FOM hyphae growth. 100 μg of non-transgenic686leaf extract, extraction buffer, and several concentrations (25, 50, 75 and 100 μg) of transgenic plant687leaf extract (S5, K44, and K59) were tested.688


Stars above the rows indicate significant difference between each transgenic line and the control analyzed by Dunnett's test.

Fungal growth rate in millimeters. Smaller numbers indicate more inhibitory material in the wells. As the amount of transgenic plant extract in the well increased, it further reduced hyphae growth and increased fungal growth inhibition.

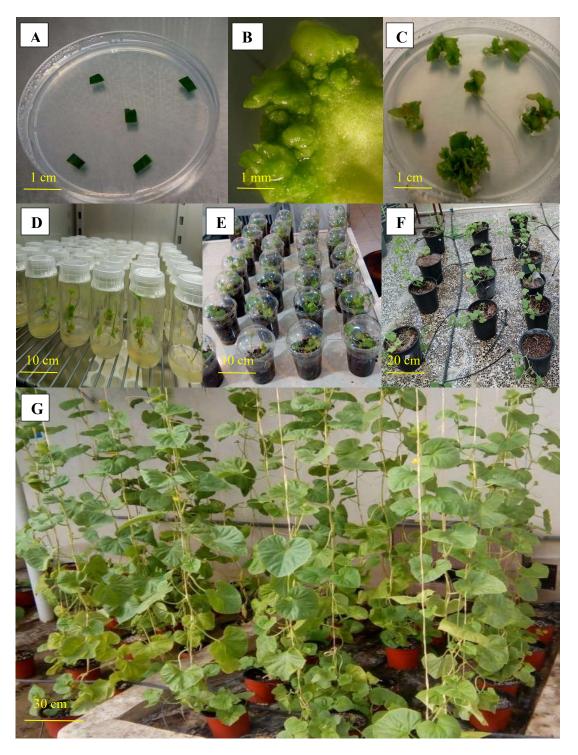

Evaluated parameters	K44	K59	S5	Control
Days for a PM complete infection of leaf surface	22*	22*	20*	6
Fungal growth (mm) at two weeks after PM inoculation	6.7*	5.4*	6.1*	10 (Completely covered)
Qualitative evaluation of fungal growth on leaf surface ^a	3.25*	3.5*	3.75*	9.6

Table 5. Resistance evaluation of T0 transgenic melon lines to powdery mildew (PM) fungus.

Stars above the rows indicate significant difference between each transgenic line and the control analyzed by Dunnett's test. ^a A scale from 1 (resistant) to 10 (susceptible) were defined.

Figure 1. The schematic presentation of binary vector pBI121 harboring PRs gene and <i>nptII</i> selective	722
marker in T-DNA region.	723

Figure 2. Stages of preparation of explants from 4-day cotyledons, regeneration, rooting and transfer of730regenerated melons to jars. A: Cultivation of inoculated explants in regenerative medium, B:731Regeneration, C: Shoot formation, D: Transfer of regenerated plants to jars to form roots and complete732plants, E: Transfer of tissue culture plants to closed glass containing perlite cocopeat (1: 1), F: Transfer733ofthe plants to the greenhouse, G: Adult plants.734

L P 1	W P0 0 bp		T0-K36	T0-S5	Ţ0-S6	T0-K44 a T0-K4 a	Т0-К7 Т0-S23					T0-K59
L	р	w	PO	T0-K36	T0-S5	T0-S6	T0-K4	T0-K44	T0-S23	T0-K7	T0-K59	L
	588 bp	•		Sectored (WE	• b	40000 0 -	Sector		Sector	Normal	
	680 bp				•	•	-	•	•		•	
						c						

Figure 3. PCR analysis of validated transgenic plants. A) Chitinase (expected size 870 bp); B) PR-1736gene (expected size 588 bp); C) Glucanase (expected size 680 bp). L: DNA marker (1100 bp); T0-K 4,7377, 36, 44, 59 and T0- S5, 6, 23: transformed plants; W: water; P: plasmid (positive control); P0: non-738transformed plant (negative control).739

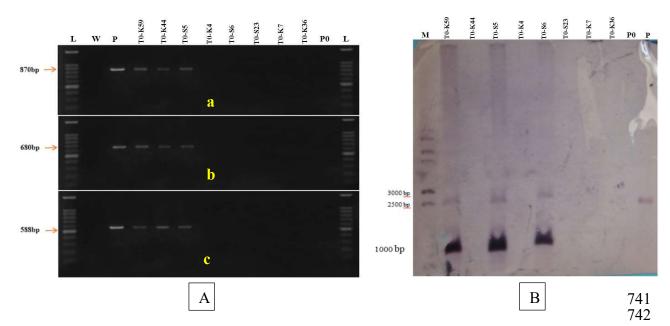


Figure 4. A: RT-PCR analysis of 8 transgenic plant selected. a) Chitinase (expected size 870 bp); b)744Glucanase (expected size 680 bp); c) PR-1 gene (expected size 588 bp). L: DNA marker (1100 bp745marked); T0-K4, K7, K36, K44, K59 and T0- S5, S6, S23: PCR putative transgenic lines; W: water; P:746plasmid (positive control); P0: non-transformed plant (negative control). B: Southern blotting analysis747of DNA isolated from leaves of transformed melon lines. M, 1.0 kb plus DNA ladder (Gibco BRL); lane7482 to 9, *Eco*RI digested DNA from PCR putative transgenic lines: T0-K59, K44, S5, K4, S6, S23, K7,749K36. lane N, *Eco*RI digested DNA from untransformed plant, lane P, *Eco*RI digested DNA from plasmid.750

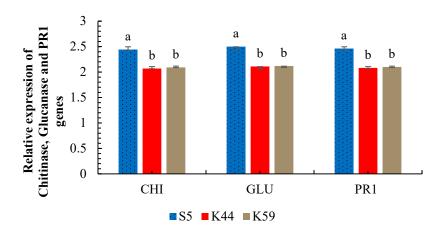
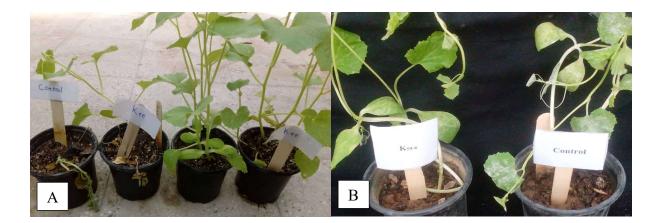



Figure 5. Relative expression of CHI, GLU and PR1 genes.

Figure 6. bioassay test. A: Resistance evaluation of transgenic T0 and T1 melon lines (K44) and non-transgenic (control) lines to FOM. B: Resistance evaluation of T1 transgenic melon line (K59-6) to powdery mildew fungus.