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Abstract: In this study, we present a statistical forecasting framework and assess its efficacy using
a range of established machine learning algorithms for predicting Particulate Matter (PM) concen-
trations in the Arctic, specifically in Pallas (FI), Reykjavik (IS), and Tromso (NO). Our framework
leverages historical ground measurements and 24 h predictions from nine models by the Copernicus
Atmosphere Monitoring Service (CAMS) to provide PM10 predictions for the following 24 h. Fur-
thermore, we compare the performance of various memory cells based on artificial neural networks
(ANN), including recurrent neural networks (RNNs), gated recurrent units (GRUs), long short-term
memory networks (LSTMs), echo state networks (ESNs), and windowed multilayer perceptrons
(MLPs). Regardless of the type of memory cell chosen, our results consistently show that the proposed
framework outperforms the CAMS models in terms of mean squared error (MSE), with average
improvements ranging from 25% to 40%. Furthermore, we examine the impact of outliers on the
overall performance of the model.

Keywords: deep learning; PM10; environmental forecasting; chaotic time series; Arctic

1. Introduction

The Arctic is warming at a faster rate compared with other areas of the Earth [1].
Environmental changes due to warming promote economic activities which increase an-
thropogenic emissions, while population growth amplifies the exposure to pollution [1].
Rising temperatures in the Arctic augment the risk of wildfires [2], representing a major
natural source of atmospheric pollution. In the European Arctic, atmospheric pollution
levels and exposure are lower compared with highly populated urban areas at middle
latitudes [3]. Nevertheless, recent studies have raised concerns about the health effects
of atmospheric pollution on the local population, generating an issue for public health
and policymakers [1,4]. A limited number of atmospheric pollution monitoring stations
are available in the Arctic to record concentrations at an hourly frequency. One of the
most commonly measured parameters at these stations that has a significant impact on
human health is the concentration of particulate matter with a diameter equal to 10 µm or
less (PM10). Here, particulate matter (PM) is defined as a mixture of solid particles and
liquid droplets present in the air, emitted from anthropogenic and natural sources (US
Environmental Protection Agency [5]). In the Arctic region, PM10 can originate from local
sources, but it can also be transported from midlatitudes by winds [6]. Looking ahead,
the opening of new shipping routes, the expected rise in forest fire frequency, the intensified
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extraction of resources, and the subsequent expansion of infrastructure are likely to result
in increased PM10 emissions in the Arctic [1].

PM10 concentration behavior can be simulated via deterministic or statistical models
with varying degrees of reliability [7]. The Copernicus Atmospheric Monitoring Service
(https://atmosphere.copernicus.eu/, (accessed on 24 June 2023)) (CAMS) provides analy-
ses and forecasts of air pollution all over Europe, including the European Arctic, based on
an ensemble of deterministic numerical models. In the Arctic, CAMS 24 h PM10 forecasts
align less with in situ measurements (in the remainder of this paper, the terms measure-
ment and observation are used interchangeably to refer to the same entity) compared with
other European regions [8]. Forecast errors in deterministic models primarily stem from
uncertainties in emissions, meteorological forecasts, model parameters, and initial state
estimation [9].

Several studies demonstrate that statistical models based on Machine Learning algo-
rithms may improve the PM10 concentration forecasts for a specific geographic point [9–13].
In particular, artificial neural networks (ANNs) have proven to be quite efficient in dealing
with complex nonlinear interactions; generically speaking, ANNs can have various archi-
tectures, from simple multilayer perceptrons [14–16] to more sophisticated deep learning
structures [17,18], or even hybrid solutions [19–22]. Among the various macrofamilies
of neural networks, recurrent neural networks (RNNs) are particularly well-suited for
analyzing time series, such as atmospheric data. RNNs manage to outperform regression
models and feed-forward networks by carrying information about previous states and
using it to make predictions together with current inputs [13]. When dealing with long-term
dependencies, ANNs such as long short-term memory networks (LSTM) provide effective
time series forecasting: LSTMs arise as an enhanced version of recurrent neural networks
(RNNs) specifically designed to address the vanishing and exploding gradient problems
that can occur during training [23]. LSTMs incorporate additional processing units, known
as memory and forget blocks, which enable the network to selectively retain or discard
information over multiple time steps. Gated recurrent unit networks (GRUs) are another
variant of recurrent neural networks (RNNs) that offer a simplified structure compared
with LSTMs. GRUs aim to address some of the computational complexities of LSTMs while
still maintaining the ability to capture long-term dependencies in sequential data.

In a GRU, the simplified structure is achieved by combining the update gate and the reset
gate into a single gate, called the “update gate”. This gate controls the flow of information
and helps determine how much of the previous hidden state should be updated with the
current input [18].

Several studies have been conducted using the aforementioned neural network al-
gorithms in the context of urban and metropolitan areas. In [13], for instance, a standard
recurrent neural network model is compared with a multiple linear regression and a feed-
forward network to predict concentrations of PM10, showing that the former algorithm
provides better performance. As another example, in [11], the authors compare the per-
formances of a multilayer perceptron with those of a long short-term memory network in
predicting concentrations of PM10 based on data acquired from five monitoring stations
in Lima. Results show that both methods are quite accurate in short-term prediction,
especially in average meteorological conditions. For more extreme values, on the other
hand, the LSTM model results in better forecasts. More evidence can also be found in [24]
and [12], where convolutional models for LSTM are considered, and in [25], where different
approaches to defining the best hyperparameters for an LSTM are analyzed. Similarly,
in [18], the authors develop architectures based on RNN, LSTM, and GRU, putting together
air quality indices from 1498 monitoring stations with meteorological data from the Global
Forecasting System to predict concentrations of PM10; results confirm that the examined
networks are effective in handling long-term dependencies. Specifically, the GRU model
outperforms both the RNN and LSTM networks. On the other hand, LSTM including
spatiotemporal correlations in applications with a dense urban network of measurement
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stations significantly improves forecast performance [23] and may be further exploited to
forecast air pollution maps [26].

Another neural methodology used in this study is Echo State Networks (ESNs). The ar-
chitecture of ESNs follows a recursive structure, where the hidden layer, known as the
dynamical reservoir, is composed of a large number of sparsely and recursively connected
units. The weights of these units are initialized randomly and remain constant throughout
the iterations. The weights for the input and output layers are the ones trained within
the learning process. In [27], an ESN predicts values of PM2.5 concentration based on the
correlation between average daily concentrations and night-time light images from the
National Geophysical Data Center. Hybrid models can also be considered to improve
the performance of an ESN model, as in [28], where an integration with particle swarm
optimization is performed, and in [29], where the authors manage to further optimize
computational speed.

In conclusion, neural networks appear to be a viable approach for obtaining reliable
forecasts of pollutant concentrations. However, the performance of the network often
depends on architectural features, as well as the quality of the acquired data. One of the
shortcomings in existing works that we have addressed is the reliance on traditional time
series forecasting methods that consider only historical measurements up to a specific
time point [12,30] or deterministic model forecasts [9,31]. In contrast, our new architecture
leverages the availability of observational and model data at different times, allowing for
a more comprehensive and dynamic analysis of the underlying patterns and trends, as
shown in Section 2.3. In our comparative study, we show that the proposed approach
allows us to more accurately capture the temporal dynamics of the data and improve the
performance of our forecasts.

Paper Plan

In the upcoming sections, we evaluate the performance of six distinct memory cells.
Our study utilizes two components as input time series: (i) measurements of PM10 concen-
tration recorded at 00:00 UTC from six stations situated in the Arctic polar region within
the AMAP area and (ii) PM10 forecasts generated by CAMS models at 00:00 UTC for the
next day.

In Section 2, we provide an overview of data acquisition and processing, describe the
structure underlying the architecture, including details of each ANN design, and outline
the technical aspects of implementation.

In Section 3, we present the results and compare the performance of the aforemen-
tioned architectures.

In Section 4, we present our discussion and draw our conclusions.

2. Materials and Methods
2.1. Station Data

In the framework of this study, we selected six air quality monitoring stations of
the European Environmental Agency (https://discomap.eea.europa.eu/map/fme/Air
QualityExport.htm, EEA, accessed on 24 June 2023) and Finnish Meteorological Institute
(https://en.ilmatieteenlaitos.fi/download-observations, FMI, accessed on 24 June 2023),
collecting hourly measurements of PM10 concentrations (µg/m3). The chosen stations
are located inside and close to the Arctic Monitoring and Assessment Program (AMAP)
area, which defines the physical, geographical, and political boundaries of the Arctic [32].
The AMAP area includes terrestrial and marine regions north of the Arctic Circle (66°32′N),
modified to cover the marine areas north of the Aleutian chain, Hudson Bay, and parts of
the North Atlantic Ocean, including the Labrador Sea.

We selected the Arctic monitoring stations which measured PM10 concentrations at
hourly frequency during the January 2020–December 2022 period and produced time series
with only scarce and short temporal gaps (Table 1, Figure 1). The completeness of the
PM10 time series represents a fundamental condition for our prediction experiments, since

https://discomap.eea.europa.eu/map/fme/AirQualityExport.htm
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missing data could degrade the performance of the ANN [33]. Other stations are located in
the AMAP area, but the measured PM10 concentration records were not sufficiently long
and complete for the application of the ANN. From the time series produced by the chosen
monitoring stations, we extracted the concentrations measured at 00:00 UTC for each day.
This choice allowed to provide the ANN with PM10 measurements performed at the same
time as the CAMS models forecast at 00:00 UTC basetime. The six selected stations are
situated in areas with different environmental conditions and emission sources; for this
reason, they can be considered representatives of different Arctic contexts. Stations in
Grundartangi Gröf, Kópavogur Dalsmári (Iceland), Oulu (Finland), and Tromso (Norway)
are located in urban areas and close to the Atlantic Ocean coast, while the station in Muonio
(Finland) is positioned in a remote area far from the ocean, representative of background
pollution levels. Two stations in Oulu (Finland) located south of the border of the AMAP
area are chosen to additionally validate the methodology. The Oulu stations are located a
few kilometers away, and their measurements may be spatially and temporally correlated,
while other stations are distant from each other. Nevertheless, we assume that time series at
each station are independent and do not incorporate spatial correlations in the ANN design.

Figure 1. Geographical positions of the monitoring stations selected for hyperparameter tuning
(represented by stars) and for model training and testing (represented by dots) are located in proximity
to the AMAP area, indicated by a thick line. The shaded region represents the area covered by the
CAMS models.

Table 1. Air quality monitoring stations selected for this forecasting study with their geographical
positions and PM10 measurements techniques.

Station Country Latitude Longitude Measure Source Code

Muonio Sammaltunturi Finland 67.97 24.12 TEOM 1 FMI 101983
Kópavogur Dalsmári Iceland 64.10 −21.89 BAN 2 EEA 52109
Grundartangi Gröf Iceland 64.33 −21.83 BAN 2 EEA 52149
Pyykösjärvi (Oulu) Finland 65.04 25.50 TEOM 3 EEA 15557
Tromso Rambergan Norway 69.65 18.96 TEOM 1 EEA 62993

Oulun keskusta 2 (Oulu) Finland 65.01 25.47 TEOM 1 EEA 15609
1 Tapered Element Oscillating Microbalance. 2 Beta Attenuation and Nephelometry. 3 Beta Attenuation by a
two-beam compensation method.

2.2. Model Data

CAMS provides forecasts of the main atmospheric pollutant concentrations over
Europe, available at hourly frequency starting at 00:00 UTC on a daily basis [34]. They are
produced once a day by eleven state-of-the-art numerical air quality models employed at
different research institutions and weather services in Europe. In the framework of this
study, we use the CAMS model forecast at 24 h.
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Forecasts produced by different models are interpolated on the regular latitude–
longitude grid with a horizontal resolution of 0.1° × 0.1° and are available from the Coper-
nicus European Air Quality service (https://www.regional.atmosphere.copernicus.eu/,
accessed on 24 June 2023).

Only nine Copernicus models provide air quality forecasts between January 2020 and
December 2022 with only short temporal gaps. Models differ from each other by applying
distinct theoretical solutions for estimating the spreading of pollutants and chemical re-
actions in the atmosphere and have several horizontal and vertical resolutions. Analyses
by all models combine information from model forecasts and measurements, but they use
different observational datasets and techniques for data assimilation [35]. Table 2 lists the
major characteristics of the models used. Surface emissions of pollutants are estimated dif-
ferently by each model, and all of them use long-term estimates of anthropogenic emissions
that do not account for actual daily emission variability [35].

Table 2. Main characteristics of the air quality regional models used by CAMS [34,35].

Model Institution Horizontal Resolution Vertical Resolution Assimilated Measurements

CHIMERE INERIS 1 0.1º × 0.1º 8 levels, top at 500 hPa O3 and PM10 from surface stations

EMEP MET Norway 2 0.25º × 0.125º 20 levels, top at 100 hPa NO2 columns from OMI/Aura remote
sensing and NO2 from surface stations

EURAD-IM RIU UK 3 15 km, Lambert
conformal projection 23 levels, top at 100 hPa

O3, NO, NO2, SO2, CO, PM10, PM2.5 from
surface stations, NO2 from remote sensing

column retrievals, CO profiles
LOTOS-EUROS KNMI 4 0.25º × 0.125º 34 levels, top at 3.5 km O3 from surface stations

MATCH SMHI 5 0.2º × 0.2º 52 levels top at 300 hPa O3, NO2, CO, PM10, PM2.5 from
surface stations

MOCHAGE Météo France 0.2º × 0.2º 47 levels, top at 5 hPa O3 from surface stations
SILAM FMI 6 0.15º × 0.15º 8 levels, top at 6.7 km O3, NO2 and SO2 from surface stations

GEMA-Q IEP-NRI 7 0.1º × 0.1º 28 levels, top at 10 hPa O3, NO2, CO, SO2, PM10, PM2.5 from
surface stations

DEHM AARHUS UNIVERSITY
Denmark

18 km, polar
streographic projection 29 layers, top at 100 hPa O3 and NO2 from surface stations, PM10

and PM2.5 from global CAMS forecast

1 Institut National de l’Environnement Industriel et des Risques. 2 Meteorologisk institutt, Norway. 3 Rheinisches
Institut Für Umweltforschung an der Universität zu Köln E. V., Germany. 4 Koninklijk Nederlands Meteorologisch
Instituut, the Netherlands. 5 Sveriges Meteorologiska och Hydrologiska Institut, Sweden. 6 Ilmatieteen Laitos,
Finland. 7 Institute of Environmental Protection, Poland.

2.3. Definition of Input State for the ANN

Here, we apply a novel approach that consists in providing the ANN with the input
state, including both the in situ observation and nine 24 h CAMS model forecasts. The in-
put state consists of a temporal sequence of vectors representing daily forecasts of PM10
concentrations. Each of these vectors contains ten elements with nine 24 h forecasts by each
CAMS model (referred as time t = 1 in Figure 2) and the present observation (referred as
time t = 0 in Figure 2). This choice differs from previous studies in which the input states of
machine learning algorithms used to predict PM10 levels were derived either only from
previous observations at monitoring stations [12,30] or only from models forecasts [9,31].
Here, we show that the combination of the last available observation and the ensemble of
CAMS model forecasts improves the ANN forecast performance. For instance, in cases
where the CAMS models fail to detect a sudden change in emissions near the monitoring
site, incorporating the latest observation can assist the ANN model in adapting its forecast
(see Section 3.1).

2.4. Data Preprocessing

To address the technical difficulties resulting in the data gaps mentioned earlier,
preprocessing of the input data is necessary to ensure temporal continuity. If the data
gaps span multiple time points, the dataset is adjusted by cropping it to avoid such large
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gaps. In cases where only a single time point is missing, the missing data are interpolated
using linear interpolation based on the previous and subsequent data points. Furthermore,
prior to being fed into the classification pipeline, the input data are normalized, and after
processing, they are denormalized. This normalization step helps ensure consistent scaling
across the features. To confirm the stationarity of all measurement series, an augmented
Dickey–Fuller test is conducted. This test is performed to assess the presence of trends or
unit roots that may affect the analysis and modeling process (Stationarity is an essential
assumption for forecasting algorithms such as SARIMAX. However, it also can be beneficial
with other forecasting methods, including machine learning approaches [36,37]).

2.5. General Architecture

In this study, we propose a design that comprises an input layer, a memory layer,
a dense layer, and an output layer (see Figure 2). The input consists of nine sets of values
provided by the CAMS, and with one set of measurements. To enhance the accuracy of the
predictions, we incorporate 24 h CAMS (referred as time t = 1 in Figure 2). As stated in
the earlier sections, this architectural decision yields improved results in terms of mean
squared error (MSE) (In Appendix C, we provide a specific case that demonstrates that
using mean absolute error (MAE) instead of mean squared error (MSE) does not impact the
cross-comparison evaluations).

Figure 2. General architecture. ’CAMS #n’ indicates the nth CAM model.

The memory cell in our architecture is implemented using various specifications,
i.e., echo state networks (ESNs), long short-term memory networks (LSTMs), gated recur-
rent units (GRUs), standard recurrent neural networks (RNNs), and windowed multiper-
ceptron (with time window sizes of 4 and 1 time steps). We briefly provide some details
on these different specifications below. In addition to the approach described in Figure 2,
we also explored alternative designs: SARIMAX, multiple memory layers and multiple
memory cells per layer, feeding our algorithm with multiple time steps in input and output
while training. All these attempts did not yield any performance benefits in terms of MSE
or provide additional insights. In particular, for SARIMAX, we report results in Appendix B
comparing the MSE and graph with the LSTM case. In the following, we provide a concise
summary of our design. For a more comprehensive description, including the relevant
mathematical details, please refer to Appendix D.

2.5.1. Memory Layer

The memory layer plays a crucial role in storing the temporal information present in
the input sequence. In our study, we explored six popular solutions.
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Echo State Networks

The ESN approach (Figure 3a) [38] sets the weights of the recurrent layer, called “reser-
voir”, in such a way that the recurrent hidden units effectively capture the history of past
inputs, while only the weights of the output layer are trained. The key question in this case
is how to choose the weights of the recurrent layer. First, connections among the recurring
units should be sparse, resulting in a sparse square weight matrix. Additionally, the spectral
radius of the matrix should be kept low, ideally less than 1 (as in our implementation),
to contribute to the echo state property, as described in [39] (in [40], it is stated that a
spectral radius of less than 1 is neither sufficient nor necessary for the echo state property).
However, in combination with carefully chosen activation functions such as tanh(), it can
be allowed to exceed 1. This mechanism enables the propagation of information through
time. Proper tuning of hyperparameters is essential for generating echoes that accurately
reflect the input content, and tools provided in [39,41] can aid in this process. We train our
ESN using gradient descent similarly to the algorithms presented in [42].

(a)

(b)

(c)

(d)

Figure 3. Various alternatives for the memory layer: (a) ESN. (b) GRU. (c) LSTM. (d) RNN.

Long Short-Term Memory

Standard RNN cells (see Section “Recurrent Neural Networks”) suffer from well-
known limitations, including vanishing and exploding gradients during training with
backpropagation. To address these issues, long short-term memory (LSTM) cells were
developed, offering a more sophisticated approach to managing the hidden state. Figure 3c
illustrates its structure. The rectangular boxes represent activation functions applied prior
to matrix multiplications (not depicted in the figure). The circular spots indicate element-
wise operations. The variables xt, ht, and ct denote the input, hidden state, and cell
activation vector, respectively. The function σ represents the sigmoid activation function.
The cell output is computed by applying a sigmoid activation function to a weighted sum
of xt, ht−1, and a bias term. Figure 3c also highlights the internal architecture of LSTM,
which incorporates Input, Forget, and Output Gates. Confluences in the figure represent
concatenations, while bifurcations denote element-wise copying. Taking into account these
details and referring to the illustrated diagram (Figure 3c), it is possible to derive the
corresponding equations.



Remote Sens. 2023, 15, 3348 8 of 26

Gated Recurrent Units

GRU cells are a simplified version of LSTM, offering comparable performance for
modeling tasks. They are particularly advantageous with small datasets, since they have a
smaller parameter count. Figure 3b depicts the overall structure of a GRU cell, emphasizing
the presence of the Reset and Update Gates.

Recurrent Neural Networks

The standard RNN is based on the original recurrent approach (see Figure 3d). It
operates by combining an input x(t) with the previous hidden state h(t−1), which is then
passed through an element-wise tanh() cell (depicted as the rounded block labeled with t).
The resulting output is stored as the next hidden state h(t) and also serves as the output
o(t). In the figure, bifurcations represent component-wise copies before being multiplied by
weight matrices and added with biases. Operations such as addition (+) are applied prior to
multiplying with weight matrices and adding biases. This recurrent scheme was historically
the first proposal capable of storing variable-length information from a time series.

Multilayer Perceptron

In this study, a multilayer perceptron (MLP) with a configuration of 5 units in the
hidden layer and 1 unit in the output layer is employed. Two different implementations of
the MLP are considered: one utilizes four time steps from the input data sequence, while
the other utilizes only one time step.

2.5.2. Implementation Details

Our implementation utilizes Keras for the RNN, LSTM, GRU, WMP, and WMP4
models and TensorFlow for the ESN model. To ensure a fair comparison among these
six methods, we carefully selected the hyperparameters, which are outlined in Tables 3–5.
These hyperparameters were determined solely based on the stations listed in Table 6; each
dataset was divided into training and test sets to allow for the selection of optimal values
through an iterative procedure. Finally, these stations were subsequently excluded from
the validation process to prevent data peeking and potential overfitting.

Validation was performed on the stations listed in Table 1 utilizing the determined
hyperparameters. The dataset for these stations covers the time interval from January 2020
to December 2022. However, due to missing observations resulting in significant data
gaps, we cropped the datasets according to Table 7. For model validation, we used the last
365 steps, reserving the remaining data for training.

Table 3. RNN Hyperparameters.

Hyperparameter Specification Description

activation (dense layer) linear activation function in the dense layer

act. func. (recurrent output) tanh() activation function in the recurrent layer output

units 1 dimensionality of the output space

dropout no fraction of the units to drop for the linear transformation
of the inputs and the recurrent states

bias yes layer bias

kernel initializer glorot
uniform

weights matrix, used for the linear transformation of the
inputs

recurrent initializer orthogonal weights matrix, used for the linear transformation of the
recurrent state

bias initializer 0 initializer for the bias vector
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Table 4. LSTM and GRU Hyperparameters.

Hyperparameter Specification Description

act. func. (dense layer) linear activation function in the dense layer

act. func. (rec. output) tanh() activation function in the recurrent layer output

act. func. (recurrent) hard sigmoid activation function in the recurrent layer

units 1 dimensionality of the output space

dropout no
fraction of the units to drop for the linear

transformation of the inputs and the recurrent
states

bias yes layer bias

kernel initializer glorot uniform weights matrix, used for the linear
transformation of the inputs

recurrent initializer orthogonal weights matrix, used for the linear
transformation of the recurrent state

bias initializer 0 initializer for the bias vector

Table 5. ESN Hyperparameters.

Hyperparameter Specification Description

act. func. (dense layer) linear activation function in the dense layer

act. func. (resevoir) tanh() activation function in the resevoir

units 30 dimensionality of the resevoir

dropout no
fraction of the units to drop for the linear

transformation of the inputs and the recurrent
states

connectivity 0.1 connection probability between two reservoir
units

leaky 1 Leaking rate of the reservoir; "1" means no leaky
integration

spectral radius 0.9 desired spectral radius of recurrent
weight matrix

bias yes layer bias

kernel initializer glorot uniform weights matrix, used for the linear
transformation of the inputs

recurrent initializer glorot uniform weights matrix, used for the linear
transformation of the recurrent state

bias initializer 0 initializer for the bias vector

Table 6. Air quality monitoring stations selected for this study with their geographical positions and
PM10 measurements techniques.

Station Country Latitude Longitude Measure Source Code

Reykjavik Husdyragardurinn Iceland 64.14 −21.87 BA2BC 2 EEA 45497
Tromso Hansjordnesbukta Norway 69.66 18.96 TEOM 1 EEA 28816

1 Tapered Element Oscillating Microbalance. 2 Beta Attenuation by a two-beam compensation method.

Table 7. Starting time step for each station, depending on contiguous missing data.

Station Code Starting Time Step

101983 469
52109 0
52149 0
15557 0
62993 308
15609 432
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For all cases, we employed the minimum absolute error as the loss function and Adam
as the optimizer.

3. Results

In this section, we present the results obtained using measurements and CAMS forecast
data from January 2020 to December 2022. The data are divided into training (730 steps)
and test (365 steps). In the case of potential single data gaps, linear interpolation was
utilized to fill in the missing values. However, if the missing data resulted in larger gaps,
the training dataset was cropped to exclude these gaps. The initial time step for each station
is provided in Table 7.

3.1. Impact of Temporal Data

In this subsection, we investigate the impact of different choices regarding CAMS and
observations on the forecasting performance. We compare the following alternatives:

• CAMS forecast at 24 h; observation at 0 h (our choice);
• CAMS forecast at 24 h; no observation;
• CAMS forecast at 0 h; observation at 0 h;
• No CAMS; observation at 0 h.

Figure 4 illustrates the results, demonstrating that incorporating in situ observations
and CAMS forecast at 24 h yields the best performance in terms of MSE. It should be noted
that the presented results are specifically for station Pyykösjärvi (Oulu) (15557), but similar
experiments were conducted for all stations, with consistent findings.

Figure 4. The mean squared error (MSE) results of the adopted algorithms average (details provided
in the subsequent sections) are presented for four cases: exploiting both observation and CAMS
prediction at 24 h (our architecture, shown first on the left), exploiting CAMS prediction at 24 h
without observation (second), exploiting observation and CAMS prediction at the present time 0
(third), exploiting only observation (fourth) for the station 15557. Similar outcomes were observed
for the other stations.

3.2. Original Data

In the following subsections, we present our results. Measurements and CAMS forecasts
are used as input of our architecture without any additional preprocessing steps applied.

3.2.1. MSE Results

The convexity of the MSE function and the application of Jensen’s inequality guarantee
that the MSE of the average of the models is always lower than or equal to the average MSE
of the individual models. Hence, in addition to presenting the results of each model, we
also provide the MSE of their average. This average can be viewed as an ensemble forecast
and can be utilized in practical applications. Our MSE results are reported in Figure 5.

Figure 5 demonstrates that there is no large difference among the memory cells. All the
implemented solutions show that the model MSE is less or equal the best available CAMS
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forecast. Notably, in three instances (e.g., Figure 5b,c,f), the model produces significantly
more accurate results compared with the CAMS forecasts.

(a)

(b)

(c)

(d)

(e)

(f)

Figure 5. Simulation Results (MSE, from left to right): CAMS 1 to 9; Pers: persistence; models:
ESN, LSTM, GRU, RNN, WMP4, and WMP; AVE: average of the models. See Table 1 for station
code reference: (a) 101983. (b) 15557. (c) 15609. (d) 52109. (e) 52149. (f) 62993.

3.2.2. Forecast Results

In Figure 6, we present the forecasting results. To ensure clarity, we depict the graph
of the memory cell that achieved the best performance in terms of MSE, along with the
corresponding measurement data. The time interval considered in the plot spans the entire
year of 2022.

To further evaluate the performance of the algorithms, we provide a closer examination
of the forecasting results for the time interval from the 200th to the 260th day of the year
2022. Figure 7 displays the results obtained from all the memory cells. The shaded area
in Figure 7 represents the standard deviation of the forecasted values from the different
memory cells relative to their average, indicating variations in the predictions among the
different models.
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(a)

(b)

(c)

(d)

(e)

(f)

Figure 6. Simulation results (forecasting). Only the best performing memory cell is graphed. See
Table 1 for code reference: (a) 101983. (b) 15557. (c) 15609. (d) 52109. (e) 52149. (f) 62993.

Finally, in Figure 8, we present a comparison between the CAMS forecast, our model,
and the measurement data for the station with code 15609. The last row of the graph
represents our model’s forecast, while the rows above display the CAMS forecasts.
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(a)

(b)

(c)

(d)

(e)

(f)

Figure 7. Simulation results (forecasting detail). Only the most performing memory cell is graphed,
along with the average of all the models. See Table 1 for code reference: (a) 101983. (b) 15557.
(c) 15609. (d) 52109. (e) 52149. (f) 62993.



Remote Sens. 2023, 15, 3348 14 of 26

Figure 8. CAMS (rows from one to ten, green/dark color) and our model (eleventh row, blue/dark
color) are compared with measurements (orange/light color). The x axis shows the time steps.

3.3. Filtering the Input Data

While Figure 5 illustrates that our model either matches (Figure 5a,d,e) or clearly
outperforms (Figure 5b,c,f) the best CAMS, Figure 7 reveals variations in the performance
of our architecture depending on the specific station under consideration. Notably, there is a
stark contrast in forecast quality between Figure 7b,d, with the latter displaying significant
differences (shaded area) among the utilized memory cells (also apparent in Figure 5d).

In the literature [43–46], it is common practice to utilize a log-normal distribution for
interpolating PM10 data histograms. In our study, we adopt this assumption to handle
outliers in our dataset by replacing them with the temporally nearest data points. The algo-
rithm used for this purpose is provided in Appendix A.1. In Figure 9, the data points to
be removed are indicated by the region on the right-hand side of the vertical dashed line
(colored dark/red). Appendix A.2 displays the histograms and the cutting thresholds of all
the stations listed in Table 1.

Figure 9. Histogram (light/cyan shade), log-normal distribution (solid line), and threshold (dashed
vertical line). The data on the right hand side of the vertical dashed line are removed from the dataset
and linearly interpolated.
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3.4. Filtered Data

In the following subsections, we present our results using outlier-filtered input data,
evaluating both the mean squared error (MSE) and the forecasting performance.

3.4.1. MSE Results

In the following, we report our results in terms of MSE (Figure 10) and forecasting
(Figure 6).

(a)

(b)

(c)

(d)

(e)

(f)

Figure 10. Simulation results of filtered data (MSE, from left to right): CAMS 1 to 9; Pers: persistence;
models: ESN, LSTM, GRU, RNN, WMP4, and WMP; AVE: average of the models. See Table 1 for
station code reference: (a) 101983. (b) 15557. (c) 15609. (d) 52109. (e) 52149. (f) 62993.

3.4.2. Forecast Results

Figure 11 illustrates the forecast details for the time interval from the 200th to the 260th
day. Specifically, Figure 12 focuses on the case of station 52109. In the scenario without
data filtering, the echo state network (ESN) model exhibits the highest mean squared error
(MSE), while the long short-term memory (LSTM) model performs the best. However,
when the data are filtered, both the ESN and LSTM models show improved performance
and have similar MSE values. Removing outliers from the data significantly enhances the
forecast quality of both memory cell models. Notably, the mentioned significant difference
in terms of MSE between the ESN and LSTM models (as observed in Figure 5d) corresponds
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to the noticeable difference in their forecasting, as depicted in Figure 12a. The ESN memory
cell appears to be more affected by outliers compared with the LSTM.

(a)

(b)

(c)

(d)

(e)

(f)

Figure 11. Simulation results (Forecasting) of filtered data. Only the most performing memory cell is
graphed, along with the average of all the models. See Table 1 for code reference: (a) 101983. (b) 15557.
(c) 15609. (d) 52109. (e) 52149. (f) 62993.

On the other hand, filtering measurements with high pollution concentration further
improves the prediction performance of the artificial neural network (ANN) in terms of
MSE compared with the CAMS model forecasts and the persistence model (Figure 10).
When using the filtered dataset, the persistence model demonstrates better prediction
performance than any of the CAMS model forecasts (Figure 10), while with unfiltered
measurements, the CAMS model forecasts outperform the persistence model (Figure 5).
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This indicates that, in comparison with persistence, the CAMS forecasts also improve when
spikes are removed. However, regardless of whether the measurements are filtered or
not, the predictions of the artificial neural network (ANN) consistently show significantly
higher accuracy.

The fact that different memory cells show similar performances aligns with the existing
literature on PM10 forecasting in non-Arctic regions, which model PM10 forecasting tasks
on Markov chains [47,48]. However, Figure 12 demonstrates that LSTM and ESN react
differently to outliers. Although we did not make hypotheses about the origin of these
outliers, these results suggest that outliers introduce higher-order non-Markovian contents
that pose challenges for the ESN cell but can be effectively utilized by the LSTM cell.

(a)

(b)
Figure 12. Comparison between unfiltered (above) and filtered (below) forecast from 52109 station
data) using the ESN and LSTM memory cells. See Table 1 for code reference: (a) 52109, unfiltered.
(b) 52109, filtered.
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4. Discussion and Conclusions

In this study, we conduct an in-depth analysis of a 24 h forecasting design for PM10
concentrations that leverages both in situ measurements and forecasts generated by de-
terministic models. This utilization of input data consisting of measurements and model
forecasts at different times introduces a novel perspective to the task at hand, enhancing
the predictive capabilities of the algorithms employed. Furthermore, it offers a valuable
contribution to the existing literature by demonstrating the potential of incorporating
multitemporal data in time series forecasting.
Central to the design are the memory cells, which serve as alternative options for model-
ing the data and improving forecasting accuracy. Specifically, we explore the utilization
of echo state networks (ESNs), long short-term memory (LSTM), GRUs (gated recurrent
units), and recurrent neural networks (RNNs), as well as four-step and one-step temporally
windowed multilayer perceptron.

Our architecture exhibits remarkable performance by effectively capturing the strengths
of either the CAMS or measurements, regardless of the specific memory cell employed. It
consistently outperforms the CAMS, resulting in significant average improvements ranging
from 25% to 40% in terms of mean squared error (MSE). This demonstrates the effectiveness
of the design in harnessing the predictive capabilities of the alternative memory cells.

However, it is important to note that the choice of the memory cell has a substantial im-
pact on the forecasting capability of the design when dealing with data series characterized
by intricate behavior.

Furthermore, we investigated the impact of outliers as a potential source of error and
assessed how their removal significantly affects the forecasting capability of our model.

While our proposed approach has shown effectiveness in our tests, there are limitations
that should be acknowledged. These include the simplistic method of combining memory
cell contributions (simple average) and the limited input data considering only PM10
observations without accounting for the relationship between pollutant concentrations and
chemical constituents.

Therefore, future research endeavors can explore the integration and fusion of the
distinct strengths exhibited by different memory cells, going beyond the conventional
approach of simply averaging their results. By developing an ensemble design that se-
lectively leverages the best options based on the specific characteristics of the data series
to be forecast, we can further enhance the overall forecasting performance and reliability
of the system. Additionally, an interesting avenue for exploration in future studies could
involve redesigning the ANN model to incorporate spatiotemporal correlations among
nearby monitoring stations (for instance inserting graph neural networks [49] or graph
networks [50] at the beginning of the forecasting pipeline) and the PM10 chemistry com-
position, potentially providing valuable insights into the relationship between pollutant
concentrations and chemical constituents. Such investigations have the potential to enhance
our understanding of air quality dynamics and improve the accuracy of PM10 forecasts.

Based on our results in Section 3.4.2, we interpret that the PM10 Arctic observations
exhibit predominantly Markovian behavior, where the future evolution of the underlying
dynamic system depends primarily on the present state. However, Figure 11 demonstrates
that two non-Markovian memory cells, namely LSTM and ESN, react differently to outliers.
Specifically, ESN shows poorer performance in the presence of outliers, while LSTM
performs best among all the memory cells. Figure 11 also illustrates that the performances
of the two cells are comparable only when the outliers (i.e., values deviating from the
log-normal distribution) are filtered out. Although we did not make hypotheses about
the cause of these outliers, these results suggest that outliers introduce higher-order non-
Markovian contents that pose challenges for the ESN cell but can be effectively utilized
by the LSTM cell. Therefore, as another interesting topic for future research, it would be
valuable to investigate the presence of outliers in the data, their nature, and their impact
on the non-Markovian nature of the underlying dynamics. This research could potentially
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lead to improved modeling techniques that can effectively handle outliers and prevent
large or catastrophic events.
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Appendix A

Appendix A.1

In the algorithm, the function calculate_optimal_threshold is based on the assumption
that the expected data distribution should fit the log-normal. This assumption translates
to replacing the outliers in the observation data with the temporally nearest data: the
algorithm finds the optimal threshold to correspondingly cut the histogram. The position
of this threshold is calculated to minimize the MSE between the histogram of the new data
and the corresponding log-normal distribution.

Appendix A.2

Algorithm A1 results are plotted in Figure A1.

Algorithm A1 ComputeOptimalThsh

1: procedure COMPUTEOPTIMALTHSH(file_data)
2: y, _← read_data( f ile_data)
3: num_bins← length(data)÷ 10
4: hist, bin_edges← create_histogram(data, num_bins)
5: params← fit_lognormal_distribution(data)
6: optimal_threshold_quantile← optimize_threshold_quantile(data, hist, bin_edges)
7: optimal_threshold← calculate_optimal_threshold(data, optimal_threshold_quantile)
8: return optimal_threshold
9: end procedure

https://github.com/pfaz69/ForecastPM
https://github.com/pfaz69/ForecastPM
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(a)

(b)

(c)

(d)

(e)

(f)
Figure A1. Simulation results (filtered MSE). See Table 1 for code reference: (a) 101983. (b) 15557.
(c) 15609. (d) 52109. (e) 52149. (f) 62993.

Appendix B

We tested SARIMAX to exploit eventual seasonal patterns, considering the possibility
of seasonality in our data, although it was not immediately evident. To identify the most
effective SARIMAX hyperparameters, we employed grid search, which involved systemati-
cally evaluating various combinations of the hyperparameters’ orders and seasonal orders
based on both the Akaike information criterion (AIC) and mean squared error (MSE). We
found that the resulting interpolation produced less satisfactory outcomes, generating
rather “flat” graphs. Figure A2) reports MSE (left) and forecasting (right) for station code
101983, 160 test steps, for order = [1, 1, 1], and seasonal order = [2, 0, 2, 12], found using the
AIC criterion.
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(a)

(b)

(c)

(d)
Figure A2. SARIMAX (top row) vs LSTM (bottom row) results in 160 test steps: Left column: the
9 bars on the left show the CAMS MSE; the light color (red) bar shows the persistence MSE; and the
last bar on the right shows the model MSE. The right column of the figure shows the algorithms’ time
forecast (dark color/blue) vs the observation measurements (light color/orange): (a) SARIMAX MSE.
(b) LSTM MSE. (c) SARIMAX forecasting. (d) LSTM Forecasting.

Appendix C

Figure A3 shows a comparison of the error histograms when adopting different
indicators: MSE and MAE. The two diagrams are reduced to the same size to highlight
similarities, but their different scales are shown on the y axis.

Figure A3. MSE vs. MAE.



Remote Sens. 2023, 15, 3348 22 of 26

Appendix D

This section gives an overview of the theoretical blueprint of the algorithms developed
in our work. As mentioned in Section 2, our analysis involves the comparison of several
predictive models which rely on artificial neural network structures, namely:

• Multilayer perceptron;
• Recurrent neural network;
• Gated recurrent unit;
• Long short-term memory network;
• Echo state network.

Each one relies on specific architectural features. We now describe the structure of the
networks used in our models.

Appendix D.1. Data Processing

The input vector for each of the networks (exception made for the multilayered
perceptron with four time steps) consists of observation data at day d, i.e., obs(d) = obsd
paired with CAMS models analyses at times d + 1. At each time step, the input vector is
then given by

x(d) = [obsd, CAM1
d+1, . . . , CAM9

d+1]

The input vector is then normalized by minmax scaling, i.e., fitting the data in the
range [0, 1] via the transformation:

x 7→ x−min{x}
max{x} −min{x}

In the next few sections, we use the compact notation x to identify the input vector
with time dependency as described above.

Appendix D.2. Model Architecture

An artificial neural network consists of several units subdivided into an input layer
(given by a data vector), one or more hidden layers, and an output layer, each connected
through activation functions.

The number of units per layer, as well as the number of layers, are determined in the
hyperparameters tuning phase, as described in Section 2.5.2, and for each architecture, such
variables are recapped in Tables 3–5. Designs of the different models are represented in
Figure 2. All models have weights optimized via gradient descent algorithms, and the loss
considered is the mean absolute error.

Appendix D.2.1. Multilayer Perceptron

The model used in our approach consists of three layers: input, output, and one
hidden layer. While the model has two types of implementation for a prediction within
a time series framework (an input vector with one time step and another one with four
time steps), the hidden and output layer structures are identical. The network follows a
feed-forward backpropagation model applied to three dense layers.

Let x = {xi} denote the input vector and y the output observation. Let ωk = {ωk
i }

denote the vector of weights at layer k. The activation functions for the hidden and output
layer are denoted by σ1 and σ2, respectively. Considering the input vector as described
above and the hidden layer consisting of five units, the output of the network is then
defined as

ŷ = g(x) = σ2

(
5

∑
j=1

ω2
j · σ1

(
10

∑
i=1

ω1
j,i · xi + b1

j

)
+ b2

)

where bk are the biases at layer k.
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Using backpropagation, the weights at each layer are then updated by means of the
error signals, defined from the derivatives of the cost function.

Appendix D.2.2. Recurrent Neural Network

Recurrent neural networks are an upgraded version of forward-propagation networks,
where edges within hidden layers may admit connections with units at adjacent time steps.
At iteration time t, the vector x(t) = xt denotes the input vector (i.e., the time step t within
the time series), h(t) = ht denotes the hidden state vector at time t and o(t) = ot the output
at time t.

For each time step t, the output vector is influenced by both the input vector at time
t and the information stored by the hidden state at time t− 1. The two vectors are then
concatenated and multiplied by the weight matrix before passing to the output layer.
As described in Table 3, the activation functions are hyperbolic tangent for the recurring
layer and linear for the output layer. The vectors are then implemented as follows:

h(t) = tanh(Wh · [ht−1, xt] + bh)

o(t) = Wo · [ht−1, xt] + bo

where Wh, Wo represent the weight matrices and bh, bo the bias vectors for the hidden and
output layer, respectively.

Appendix D.2.3. Long Short-Term Memory Network

Long short-term memory networks arise as recurrent neural networks capable of han-
dling long-term dependencies by storing and controlling the information in the memory
block. Such a component consists of three gates: input, output, and forget gates. The com-
ponent which stores the information is called the cell state; at time step t, it is denoted by
c(t). Similarly to the RNN case, the input layer is denoted as xt and the hidden layer as ht.
In order to understand the dynamics within the memory cell, let us decompose the process
into steps:

1. Deciding which pieces of information to throw away from the cell state: similarly
to the RNN case, the information that the block carries over is defined by the con-
catenation between the input vector at time t and the hidden vector at time t − 1.
An activation function defining values between 0 (forget entirely) and 1 (keep every-
thing) defines the extent to which the information is passed on to the cell state:

ft = σf (W f · [ht−1, xt] + b f ) ∈ [0, 1]

where W f denotes the weight matrix for the associated gate and b f the bias units.
2. Deciding which pieces of new information to store in cell state: values to update are

carried over by a sigmoid layer (the input layer it), while new features are determined
by a hyperbolic tangent gate:

it = σi(Wi · [ht−1, xt] + bi)

c̃t = tanh(Wc · [ht−1, xt] + bc)

where Wi, Wc denote the weight matrices for the associated gate and bi, bc the bias units.
3. Updating the old cell state to a new one: the new updated step consists of the

combination of the piecewise multiplication of the old state ci−1 with the forget state
output and the new candidate values component-wise multiplied with the input gate
output:

ct = ft � ct−1 + it � c̃t

4. Determining filtered output: the output is determined by a sigmoid layer from the
initial cell state, the updated cell state is put through a hyperbolic tangent, and the
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updated hidden state is finally obtained by component-wise multiplication of the
output layer and the modulated cell state:

ot = σo(Wo · [ht−1, xt] + bo)

ht = ot � tanh(ct)

where Wo is the weight matrix for the associated gate and bo the bias units.

Appendix D.2.4. Gated Recurrent Unit

The gated recurrent unit network is a simplified version of an LSTM which combines
the forget and input gates into one update gate (zt), merging cell state and hidden state
(ht). The update and reset gate are obtained in a similar fashion as the input/forget/output
gates in LSTM, with weight matrices and bias factors modulated by a sigmoid:

zt = σz(Wz · [ht−1, xt] + bz)

rt = σr(Wr · [ht−1, xt] + br)

The candidate activation vector is obtained by combining the initial information with
the reset information component-wise put together with the previous hidden state:

h̃t = tanh(Wh · [xt, rt � ht−1] + bh)

Finally, the output state combines the update gate with the hidden state and the
candidate activation:

ht = zt � h̃t + (1− zt)� ht−1

Appendix D.2.5. Echo State Network

An echo state network is a type of recurrent neural network where the hidden state
(the Reservoir) consists of a sparsely and randomly connected, untrained layer:

ht = tanh(Win · xt + Ŵ · ht−1 + bh)

The sparse condition is translated with a connectivity factor of 10%, while the echo
state property can be retrieved from Ŵ: the spectral radius ρ(Ŵ) = max(|eig(Ŵ)|) is set
to 0.9 in order for the state of the reservoir ht to be sufficiently independent from initial
conditions (and thus avoid fixed points).

An output linear layer (the Readout) is then connected to the reservoir, where the
network is finally trained:

ot = Wout · ht
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