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Abstract—The δ-SPH scheme proposed in Antuono et al.
[1] has been applied to the analysis of sloshing phenomena
(i.e. violent fluid motions inside a tank) in shallow water
regimes. The study of such motions is of fundamental importance
for the stability and structural safety of Liquid Natural Ga s
carriers. In this context, sloshing phenomena in shallow water
represent a very demanding problem for both numerical schemes
and theoretical models because of the major role played by
nonlinearities. To assess the accuracy of theδ-SPH scheme,
comparisons have been made with experimental measurements
and with an analytical model. In all the considered cases, the
δ-SPH scheme, the experiments and the analytical model display
a good agreement. This further confirms the ability of theδ-SPH
scheme in the modeling of violent free surface motions.

I. I NTRODUCTION

The sloshing phenomenon indicates the fluid motion inside
a tank induced by external forces. It is particularly important
for Liquid Natural Gas carriers and, in general, for ships
which transport fluids. In fact, during the largest part of
the ship travel, tanks used for the fluid/gas storage are only
partially filled and the external sea motion can induce violent
fluid motions inside them. Specifically, when the frequency
spectrum of the ship motion is peaked in the region close to
the lowest natural tank mode, violent free-surface flows may
appear, inducing large local loads (see Faltinsen et al. [2]) and
increasing the risk for the integrity of the structure.

For a complete description of the sloshing phenomenon it is,
therefore, necessary a numerical scheme which can describe
complex free surface flows (including fragmentation and wave
breaking) and which can accurately predict the pressure loads
against the tank walls. In this context, the SPH scheme has
proved to be a reliable choice (see, for example, [3]–[6])
thanks to its Lagrangian structure and to the absence of any
computational grid.

The aim of the present work is to add a further contribution
to the modeling of sloshing phenomena through SPH schemes.
Specifically, we adopt theδ-SPH scheme proposed in Antuono
et al. [1] and further inspected in Antuono et al. [7] for gravity
wave propagation. This scheme has proved to be very accurate
in both the description of the free surface evolution and to the
prediction of the local loads against structures.

In the present work, we deal with sloshing phenomena
in shallow water conditions since they represent a very
demanding problem for both numerical schemes and
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Fig. 1. Sketch of the tank and of the frame of reference.

theoretical models because of the major role played by
nonlinearities. To assess the accuracy of theδ-SPH scheme,
comparisons have been made with experimental measurements
and with an analytical model. In the former case, the
experimental campaign of Lepelletier & Raichlen [8] and
the experimental data available at the INSEAN on the
shallow-water sway motion of a rectangular tank has been
considered. For what concerns the comparison with the
analytical model, a modal system based on depth-integrated
equations (Boussinesq-type equations with a linear dispersive
term) has been adopted.

In all the cases/experiments which follow, a rectangular
tank is used and the frame of reference is set like in figure
1. Specifically,L andD indicate the tank length and breath
respectively,h the filling height andk = π/L the wave length.

II. δ-SPHSCHEME

Theδ-SPH scheme is based on the assumption that the fluid
is barotropic and weakly-compressible. Te reference equations
for the flow evolution are the Euler equations along with a
linear state equation. A proper artificial diffusive term isused
into the continuity equation in order to remove the spurious
numerical high-frequency oscillations in the pressure field
and, similarly to the largest part of the weakly-compressible
SPH schemes, an artificial viscous term is added inside the
momentum equation for stability reasons (see for example
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Monaghan [9]). Theδ-SPH scheme reads:
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Dρi
Dt

= −ρi
∑

j

(uj − ui) · ∇iW (rj)Vj +

+δ ǫ c0
∑

j

ψij · ∇iW (rj)Vj ,

ρi
Dui

Dt
= −

∑

j

(pj + pi)∇iW (rj)Vj + ρi f i +

+αǫ c0 ρ0
∑

j

πij ∇iW (rj)Vj

pi = c20 (ρi − ρ0) ,

Dri
Dt

= ui ,

(II.1)

where ρi, pi and ui are the density, the pressure and the
velocity of the i-th particle whileρ0 and c0 are the density
at the free surface and the sound velocity. Symbolǫ indicates
the smoothing length whilef i denotes the body force acting
on thei-th particle in the frame of reference of the tank. The
arguments of the diffusive and viscous terms are:

ψij = 2 (ρj − ρi)
(rj − ri)
|rj − ri|2

−
[

〈∇ρ〉Li + 〈∇ρ〉Lj
]

,

πij =
(uj − ui) · (rj − ri)

|rj − ri|2
.

The symbol 〈∇ρ〉Li indicates that the gradient has been
evaluated through a Moving Least Square interpolator (MLS
hereinafter) (see Fries & Matthies [10] for more details). In
all simulations,δ = 0.1 while α changes according to the
kinematic viscosity used in the SPH scheme. As shown in
Monaghan [9], the kinematic viscosity for two-dimensional
problems isνsph = α ǫ c0/8.

To reduce the computational effort, it is a common practice
in the weakly-compressible SPH solvers to use a sound
velocity much smaller than the physical one, generally, one
order of magnitude larger than the maximum expected velocity
of the fluid. However, for gravity waves the flow velocity is
generally small while the most important quantity associated
with the wave propagation is the wave celerity, that is,c2 =
g/k tanh(kh) (see, for example, Madsen & Shäffer [11]). For
kh going to zero, the shallow water regime is approached
and the relation above becomesc2 = gh. Since the latter
expression is an upper bound for the wave celerity (that is
g/k tanh(kh) ≤ gh), we choosec0 = 10

√
g h.

The detection of the free surface has been obtained through
the algorithm proposed by Marrone et al. [12] while the
solid boundaries have been modeled through the fixed ghost
particles as described in Marrone et al. [13]. In the specific,
a free slip condition has been implemented along solid
boundaries and the Neumann condition has been imposed, that

is ∂p/∂n = ρf · n wheren is the normal unit vector to the
solid profile pointing out of the fluid region.

As verified in Antuono et al. [7], the damping coefficient
of the SPH scheme with free-slip conditions along solid
boundaries is given byβsph = 4 νsph k

2. This term has been
derived from the works of Lamb [14] and Lighthill [15] under
the assumption that the dissipation due to the boundary layer
is negligible. Conversely, if the action of the boundary layer
is accounted for, the correct damping coefficient for then-th
mode of the sloshing motion is that given by Keulegan [16]:

βn =

√

n k c ν

2

(

2 h+D

hD

)

+ 4 ν n2 k2 , (II.2)

whereν is the kinematic viscosity of the fluid andc is the
shallow water celerity, that is,c =

√
g h. The first term in

the right-hand side of (II.2) takes into account the dissipation
due to the boundary layers while the second one describes the
dissipation inside the fluid bulk.

Since the structure of the SPH damping coefficient
is intrinsically different from (II.2), the SPH can only
approximately model the dissipation due to boundary layer.
However, a good approximation is to require that the order
of magnitude ofβsph is similar to that ofβ1 (that is βn

with n = 1). Generally, a proper choice isβsph ≃ 0.2 β1.
This approximation leads to the specific choice for the SPH
viscosity (that is,νsph).

III. SHALLOW WATER SLOSHING

A. Experimental set-up

The tank used during the experimental campaign at
INSEAN is L = 1 m long,D = 0.1 m wide and is filled with
water up to a heighth. To ensure a purely sinusoidal motion,
A sin(2πt/T ) along the longitudinal direction, anad hoc
mechanical system has been used. HereA is the displacement
amplitude andT is the period of the prescribed motion. The
geometry of the tank,i.e. D/L = 0.1, ensures an almost-2D
flow in the main tank plane.

Two capacitance wave probes are placed at the sides of the
tank. The first oneη1 is positioned at a distance of1 cm from
one side, the second oneη2 at distance of5 cm. During the
tests, flow visualizations were performed through low- and
high-speed digital video cameras. In particular, a low-speed
camera (JAI CV-M2) with spatial resolution 1600x1200 pixels
and frequency rate equal to 15 Hz was placed in front of the
tank and sufficiently far from it to record the global behavior
of the wave propagating. Further, a high-speed camera was
placed closer to the front wall. Finally, a wire potentiometer
was used for a direct measurement of the position of the tank.
Particular care has been devoted to the synchronization of the
several acquisition systems with different sampling rates, used
for the recording of the signals. A suitable synchronizer has
been used to trigger the start of the several acquisition systems
at the selected time instants.
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Fig. 2. sketch of the tank and probes used during the experimental campaign
at INSEAN.

B. Modal system

In the shallow water regime depth-averaged models are
widely used and well-established. Specifically, assuming that
the tank is subjected to a generic two-dimensional time-
dependent force, the following Boussinesq equations with a
linearized dispersive term (see, for example, Veeramony &
Svendsen [17]) can be used:











ηt + hux + (η u)x = 0

ut + u ux − F2(t) ηx − h2

3
uxxt = F1(t) ,

(III.3)

whereη is the free-surface elevation,u the fluid velocity,g is
the gravity acceleration whileF1 andF2 are the horizontal and
the vertical components of the global force on the tank. At the
right and left walls of the tank, the impermeability condition
has to be imposed, that is:

u(0, t) = u(L, t) = 0 ∀ t ≥ 0 , (III.4)

and, because of the mass conservation, the following condition
must hold true:

∫ L

0

η(x, t) dx = 0 ∀t . (III.5)

If waves are non-breaking, conditions (III.4) and (III.5) are
satisfied by using the following decomposition:































η(x, t) =

+∞
∑

n=1

Hn(t) cos(n k x) ,

u(x, t) =

+∞
∑

n=1

Un(t) sin(n k x) ,

(III.6)

whereH0 = U0 = 0, k = 2π/λ andλ = 2L. This approach
is somehow similar to the work of Hill [18] even if the series
in (III.6) rely only on a spatial decomposition of the water
fields, i.e., they are Fourier series in thex-variable. Since no
further assumptions are made on the mode structures (that is,
no specific hypotheses are made about the dependence ofUn

andHn on time), the expressions in (III.6) can be regarded as
a generalization of the Hill’s model.

Since the decomposition in (III.6) does not allow a
straightforward inclusion of the forcing termF1 inside the
momentum equation, a proper spatial modulationM(x) is
introduced as follows:










ηt + hux + (η u)x = 0

ut + u ux − F2(t) ηx − h2

3
uxxt = M(x)F1(t) .

(III.7)

The modulating term has is built accordingly to the
decompositions in (III.6) and to the boundary conditions
(III.4). Further, it has to satisfy the conservation of the
momentum and of the energy associated with system (III.3)
and it must approximate unity, that isM(x) ≃ 1. This implies:

M(x) =

+∞
∑

n=1

Mn sin(n k x) (III.8)

with

Mn = − 2

[

(−1)n − 1

nπ

]

for n ∈ Z\{0} , (III.9)

and M0 = 0. Substituting (III.6) and (III.8) into (III.7), we
get a system of2 × N ordinary differential equations for
Hn andUn with n = 1, 2 . . .N (N is the number of modes
considered for the simulation). Similarly to the works of Hill
[18] and Faltinsen & Timokha [19], a linear viscous term (i.e.,
a term that is proportional to the fluid velocity) is added to
the equation forUn. The coefficient of the viscous term (that
is, the damping coefficient) is given by the expression (II.2)
for βn.

C. Sway motion

Sway motion consists of a horizontal forcing while the
vertical displacement and rotation are null.

We first consider the experimental campaign made by
Lepelletier & Raichlen [8] where two different configurations
were considered. In the first case, the tank dimensions are
L = 117.5cm, D = 12cm and the still water level is
h = 6cm The first resonant frequency predicted through the
linear theory isωr = 2.04s−1, the horizontal forcing law is
sinusoidal and its amplitude isA1 = 0.39cm. The kinematic
viscosity isν = 0.0094cm2/s.

Figure 3 displays the comparison between the experiments
by Lepelletier & Raichlen [8] (triangles and thin solid line)
and theδ-SPH scheme (diamonds and thin solid line) for the
steady-state maximum wave elevation at the right wall of the
tank (x/L = 1). The overall agreement is very good and the
bifurcation predicted by the present model is close to that
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Fig. 3. Sway motion, response amplitude operator atx/L = 1 for the first
configuration of Lepelletier & Raichlen [8] (h/L = 0.051, A/h = 0.065).
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Fig. 4. Snapshots of the free surface evolution for the first configuration of
Lepelletier & Raichlen [8] (h/L = 0.051, A/h = 0.065, ω/ωr = 1.02).
Black diamonds indicate the analytical solution obtained through the modal
system.

shown by the experiments even if theδ-SPH scheme tends to
slightly delay the bifurcation point. The adopted viscosity for
the δ-SPH scheme isνsph = 2.4 · 10−4m2/s.

The small peaks that appear along the left branch of the
response amplitude operator (see figure 3) correspond to the
boundaries of different regimes of the sloshing evolution.Each
regime is characterized by a specific number of waves and this
number decreases as the peaks approach the bifurcation point
(see, for example, Olsen & Johnsen [20]). The last regime
before the bifurcation is characterized by a solitary wave that
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Fig. 5. Snapshots of the free surface evolution for the first configuration of
Lepelletier & Raichlen [8] (h/L = 0.051, A/h = 0.065, ω/ωr = 1.08).
Black diamonds indicate the analytical solution obtained through the modal
system.
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Fig. 6. Sway motion, response amplitude operator atx/L = 1 for the second
configuration of Lepelletier & Raichlen [8] (h/L = 0.098, A/h = 0.033).

moves back and forth in the basin. After the bifurcation, only
one wave is observed. Figures 4 and 5 display the free surface
elevation for some of these regimes. These results have been
compared with the modal system described in Section III-B
showing an excellent match.

The second configuration considered by Lepelletier &
Raichlen [8] is particularly demanding for it is characterized
by h/L = 0.098 and, therefore, is very close to the
intermediate water regime. Lepelletier and Raichlen observed
the occurrence of wave breaking during the transient evolution
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Fig. 7. Evolution of the free surface atx/L = 0.95 for the second
configuration of Lepelletier & Raichlen [8] (h/L = 0.098, A/h = 0.033,
ω/ωr = 0.99)..

of those cases characterized by frequencies just to the left
of the bifurcation point (that is,ω/ωr = 1.06). However, no
breaking was observed at the steady state. This implies that
the comparison with the modal system of Section III-B is still
allowed. Indeed, since the modal system cannot describe wave
breaking, this leads to an excess of energy during the transitory
which just corresponds to a delay in the attainment of the
steady state.

Figure 6 displays the comparison between the amplitude
response operator atx/L = 1 as given by the experimental
measures (triangles and thin solid line) and by theδ-SPH
scheme (diamonds and thin solid line). The overall match
is very good and the bifurcation point is predicted with a
fair accuracy. Here, the viscosity of theδ-SPH scheme is
νsph = 6.5 · 10−5m2/s.

In this case only two regimes are observed before the
bifurcation point: a two-wave regime and a solitary-wave
regime. Between these regimes a special region of motion
was detected during the experimental campaign. In that region
no steady state was attained and a nonlinear subharmonic
modulation of 18 periods was observed (see Lepelletier &
Raichlen [8]). Remarkably, both theδ-SPH scheme and the
modal system predict the same modulation in a region very
close to that shown by the experiments (see figure 6). Details
on the nonlinear beating phenomenon are provided in figure
7 and are compared with the modal system. In this case,
very long simulations have been performed to ensure the
attainment of a periodic asymptotic solution. Again, the
agreement between the numerical and theoretical model is very
good.
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Fig. 8. Free surface elevation atx/L = 0.95 for the general 2D motion
described in Section III-D

D. General 2D motion

To prove that theδ-SPH scheme is capable to describe a
sloshing flow excited by a generic two-dimensional motion,
we consider a problem in which sway, roll and heave motion
are involved. The tank dimensions and filling height are the
same of the first configuration used by Lepelletier & Raichlen
and the tank motion is given by:

x(t) = A1 sin(ω1 t+ φ1) y(t) = A2 sin(ω2 t+ φ2)

θ(t) = θ0 sin(ω0 t+ φ0) ,

whereA1 = 0.006m,ω1 = 2.2s−1, φ1 = 0 (sway motion),
A2 = 0.03m,ω2 = 4.29s−1, φ2 = 0 (heave motion) and
θ0 = π/720 rad, ω0 = 0.22s−1, φ0 = 0 (roll motion).
The axis of rotation is placed atr0 = (L/2, 0). To avoid
an impulsive start and make the motion more general, we
introduce a polynomial ramp during the early stages of the
tank evolution. This is given by:

r(τ) = τ3
(

6 τ2 − 15 τ + 10
)

, (III.10)

whereτ = (t− t
(r)
0 )/∆t, t(r)0 is the instant when the ramp is

firstly applied (t(r)0 has been set equal to the initial time of the
simulation) and∆t is the ramp duration (here∆t = 2π/ω0).
The polynomial ramp satisfies:

r(0) = ṙ(0) = r̈(0) = 0 r(1) = 1 ṙ(1) = r̈(1) = 0 ,

so that the initial application of the ramp and its transition
towards the imposed motion is perfectly smooth. Similarly to
the first case of sway motion, the SPH viscosity is set equal to
2.4 · 10−4m2/s. Since no comparisons with experiments are
available for this case, we use the analytical model described
in Section III-B to get a reference solution.

In figure 8 the free surface evolution atx/L = 0.95 is
displayed. The time history clearly shows different periods
of oscillations induced by the nonlinear interaction of the
components of the tank motion (that is, sway, roll and heave).
The comparison with the modal system is very good. Similarly,
figure 9 displays the comparison between the free surface
predicted through theδ-SPH and the modal system. Here,
the match is slightly worse with respect to the sway cases
described in Section III-C. In any case, apart from small
discrepancies, the global wave pattern is well predicted. This is
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Fig. 9. Snapshots of the free surface evolution for the general 2D motion
described in Section III-D. Black diamonds indicate the analytical solution
obtained through the modal system.

a relevant results since the sloshing problem at hand involves
both sway, heave and roll motion and, therefore, representsa
very demanding test.

E. Experiments at INSEAN

Here we consider a specific case of sway motion taken
from the large amount of data available at INSEAN. This is
characterized byh/L = 0.03 andA/L = 2.33, that is, by a
very shallow water depth and by a large horizontal forcing.
For these reasons, wave breaking and splash-up events occur
during the flow evolution and this case represents a very
demanding test for numerical schemes.

Figures 10 and 11 display the response amplitude operators
obtained atx/L = 0.99 and x/L = 0.95 respectively.
Although the experimental data are a few, the agreement with
the δ-SPH scheme is very good. Note that the shapes of the
amplitude operators in figures 10 and 11 are quite different
from those displayed in figures 3 and 6. This is due to the
occurrence of wave breaking for those cases characterized
by a higher response to the sway forced motion. This leads
to energy dissipation and to a consequent lowering of the
response operator in the neighborhood of the bifurcation point.

A further confirmation of the capability of theδ-SPH
scheme to correctly predict the flow evolution is given in
figures 12 and 13. There, some snapshots of the free surface
evolution are displayed forω/ωr = 1.231 andω/ωr = 1.319.
The δ-SPH scheme well describes wave breaking and the
subsequent splash-up events.

IV. CONCLUSION

Using experimental data available in the literature and
comparisons with a semi-analytical modal scheme, theδ-
SPH has been tested against several shallow water sloshing
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Fig. 10. Sway motion, response amplitude operator atx/L = 0.99 for the
case described in Section III-E.
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Fig. 11. Sway motion, response amplitude operator atx/L = 0.95 for the
case described in Section III-E.

problems into a rectangular tank. Both sway motion and a
generic two-dimensional motion have been considered proving
that theδ-SPH is capable to predict the sloshing evolution with
high accuracy even during the occurrence of wave breaking
and splash-up events.
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Section III-E (ω/ωr = 1.319). Upper panels: experiments. Lower panels:
δ-SPH.
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