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Abstract—The 6-SPH scheme proposed in Antuono et al.
[1] has been applied to the analysis of sloshing phenomena A
(i.e. violent fluid motions inside a tank) in shallow water Y
regimes. The study of such motions is of fundamental importace
for the stability and structural safety of Liquid Natural Ga s
carriers. In this context, sloshing phenomena in shallow wir
represent a very demanding problem for both numerical scheras
and theoretical models because of the major role played by
nonlinearities. To assess the accuracy of thé-SPH scheme,
comparisons have been made with experimental measurements h
and with an analytical model. In all the considered cases, #
0-SPH scheme, the experiments and the analytical model dispt
a good agreement. This further confirms the ability of thes-SPH
scheme in the modeling of violent free surface motions. 5

L
|. INTRODUCTION Fig. 1. Sketch of the tank and of the frame of reference.

The sloshing phenomenon indicates the fluid motion inside
a tank induced by external forces. It is particularly impoit
for Liquid Natural Gas carriers and, in general, for shipgeoretical models because of the major role played by
which transport fluids. In fact, during the largest part ofonlinearities. To assess the accuracy of &@PH scheme,
the ship travel, tanks used for the fluid/gas storage are o@gmparisons have been made with experimental measurements
partially filled and the external sea motion can induce vibleand with an analytical model. In the former case, the
fluid motions inside them. Specifically, when the frequendggxperimental campaign of Lepelletier & Raichlen [8] and
spectrum of the ship motion is peaked in the region close e experimental data available at the INSEAN on the
the lowest natural tank mode, violent free-surface flows m&jpallow-water sway motion of a rectangular tank has been
appear, inducing large local loads (see Faltinsen et glaja considered. For what concerns the comparison with the
increasing the risk for the integrity of the structure. analytical model, a modal system based on depth-integrated

For a complete description of the sloshing phenomenon it Rfuations (Boussinesg-type equations with a linear disygeer
therefore, necessary a numerical scheme which can desctffé) has been adopted.
complex free surface flows (including fragmentation andavav In all the cases/experiments which follow, a rectangular
breaking) and which can accurately predict the pressumslodank is used and the frame of reference is set like in figure
against the tank walls. In this context, the SPH scheme hhasSpecifically,L and D indicate the tank length and breath
proved to be a reliable choice (see, for example, [3]-[6fespectivelyh the filling height and: = =/L the wave length.
thanks to its Lagrangian structure and to the absence of any
computational grid. Il. §-SPHSCHEME

The aim of the present work is to add a further contribution
to the modeling of sloshing phenomena through SPH schemesThe §-SPH scheme is based on the assumption that the fluid
Specifically, we adopt th&SPH scheme proposed in Antuonads barotropic and weakly-compressible. Te reference émpumt
et al. [1] and further inspected in Antuono et al. [7] for gtgv for the flow evolution are the Euler equations along with a
wave propagation. This scheme has proved to be very accullatear state equation. A proper artificial diffusive termuised
in both the description of the free surface evolution anch® tinto the continuity equation in order to remove the spurious
prediction of the local loads against structures. numerical high-frequency oscillations in the pressuredfiel

In the present work, we deal with sloshing phenomersad, similarly to the largest part of the weakly-comprelssib
in shallow water conditions since they represent a veBPH schemes, an artificial viscous term is added inside the
demanding problem for both numerical schemes amdomentum equation for stability reasons (see for example
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Monaghan [9]). The-SPH scheme reads: is Op/On = p f - n wheren is the normal unit vector to the
Dpi solid profile pointing out of the fluid region.
7; =—pi Z(uj —u;) - ViW(r;)V; + As verified in Antuono et al. [7], the damping coefficient
j of the SPH scheme with free-slip conditions along solid
boundaries is given by, = 4 v k2. This term has been
+decoy Z¢ij VW (r;)V;, derived from the works of Lamb [14] and Lighthill [15] under
J the assumption that the dissipation due to the boundary laye
5 is negligible. Conversely, if the action of the boundarydeay
i . N N s is accounted for, the correct damping coefficient for thth
"Dt ;(pj TP VW) Vi & pifit (1.1) mode of the sloshing motion is that given by Keulegan [16]:

k 2h+ D
+aecypo Zm—jViW(rj)Vj Bn = ”n 201/ ( h; > + dvn?k?, (1.2)

J

o wherev is the kinematic viscosity of the fluid andis the

pi =< (pi = po). shallow water celerity, that is; = /g h. The first term in

Dr the right-hand side of (11.2) takes into account the dissia

Dr Wi due to the boundary layers while the second one describes the
) dissipation inside the fluid bulk.

where p;, p; and w; are the density, the pressure and the gince the structure of the SPH damping coefficient

velocity of thei-th particle whilepg and_co are th_e d_ensny is intrinsically different from (I.2), the SPH can only

at the free surface and the sound velocity. Symbioldicates 555 0yimately model the dissipation due to boundary layer.

the smoothing length whilgf; denotes the body force actingyqyever, a good approximation is to require that the order

on thei-th particle in the frame of reference of the tank. Thg¢ madnitude of 3., is similar to that of 3, (that is 3,

arguments of the diffusive and viscous terms are: with n = 1). Geneprally, a proper choice I8, ~ 0.2 5.

(rj —r;) B I This approximation leads to the specific choice for the SPH
Yij =2 (pj = pi) |,,jj, 2 (V)i +(Vp)i ], viscosity (that isvspr).
T = (u; _| ui) - (T|J’2_ ri) [1l. SHALLOW WATER SLOSHING
’I’] —7Tr;

. . A E imental set-
The symbol (Vp)F indicates that the gradient has been Xperimenta setup

evaluated through a Moving Least Square interpolator (MLS The tank used during the experimental campaign at
hereinafter) (see Fries & Matthies [10] for more details). IINSEAN is L =1 m long, D = 0.1 m wide and is filled with
all simulations,d = 0.1 while o changes according to thewater up to a height. To ensure a purely sinusoidal motion,
kinematic viscosity used in the SPH scheme. As shown itsin(27t/T") along the longitudinal direction, aad hoc
Monaghan [9], the kinematic viscosity for two-dimensionainechanical system has been used. Heiis the displacement
problems isvg,, = aecy/8. amplitude andrl" is the period of the prescribed motion. The
To reduce the computational effort, it is a common practigeometry of the tanki.e. D/L = 0.1, ensures an almost-2D
in the weakly-compressible SPH solvers to use a soufidw in the main tank plane.
velocity much smaller than the physical one, generally, oneTwo capacitance wave probes are placed at the sides of the
order of magnitude larger than the maximum expected vegloctank. The first oney, is positioned at a distance dfcm from
of the fluid. However, for gravity waves the flow velocity isone side, the second omg at distance of cm. During the
generally small while the most important quantity asseclat tests, flow visualizations were performed through low- and
with the wave propagation is the wave celerity, thatcs= high-speed digital video cameras. In particular, a lowespe
g/ktanh(kh) (see, for example, Madsen & Shaffer [11]). Focamera (JAlI CV-M2) with spatial resolution 1600x1200 psxel
kh going to zero, the shallow water regime is approachead frequency rate equal to 15 Hz was placed in front of the
and the relation above become$ = gh. Since the latter tank and sufficiently far from it to record the global behavio
expression is an upper bound for the wave celerity (that @$ the wave propagating. Further, a high-speed camera was
g/ktanh(kh) < gh), we choosey = 10+/g h. placed closer to the front wall. Finally, a wire potentiosret
The detection of the free surface has been obtained throwghs used for a direct measurement of the position of the tank.
the algorithm proposed by Marrone et al. [12] while th@articular care has been devoted to the synchronizatiomeof t
solid boundaries have been modeled through the fixed gheeveral acquisition systems with different sampling ratesd
particles as described in Marrone et al. [13]. In the specififor the recording of the signals. A suitable synchronizes ha
a free slip condition has been implemented along solltken used to trigger the start of the several acquisitioresys
boundaries and the Neumann condition has been imposed, #tahe selected time instants.
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whereHy = Uy = 0, k = 2w/A and A\ = 2 L. This approach

is somehow similar to the work of Hill [18] even if the series
in (111.6) rely only on a spatial decomposition of the water
fields, i.e., they are Fourier series in thevariable. Since no
further assumptions are made on the mode structures (that is
no specific hypotheses are made about the dependeriég of

L and H,, on time), the expressions in (I11.6) can be regarded as
a generalization of the Hill's model.

Since the decomposition in (Ill.6) does not allow a
straightforward inclusion of the forcing terrh; inside the
momentum equation, a proper spatial modulatigf{x) is
~ 5cm introduced as follows:

N + huy, + (nu), =0

) (I11.7)

h

The modulating term has is built accordingly to the
decompositions in (Ill.6) and to the boundary conditions
(I.4). Further, it has to satisfy the conservation of the
Fig. 2. sketch of the tank and probes used during the expetineampaign momentum and of the energy associated with system (l11.3)

probe n

at INSEAN. and it must approximate unity, thatdd (x) ~ 1. This implies:
+oo

B. Modal system M(x) =" M, sin(nkx) (1.8)
n=1

In the shallow water regime depth-averaged models areh
widely used and well-established. Specifically, assumirag t wit
the tank is subjected to a generic two-dimensional time- M, = —9 [(1)" - 1] forn e Z\{0}, (IL.9)
dependent force, the following Boussinesq equations with a nm

linearized dispersive term (see, for example, Veeramony & M, = 0. Substituting (111.6) and (111.8) into (I11.7), we

Svendsen [17]) can be used: get a system of2 x N ordinary differential equations for
e + hug + (nu), =0 H, andU, with n =1,2...N (N is the number of modes
(111.3) considered for the simulation). Similarly to the works ofIHi
h? ' [18] and Faltinsen & Timokha [19], a linear viscous term.(i.e
ut + wiz — Fa(t) e — 3 Usat = B3 OF a term that is proportional to the fluid velocity) is added to

the equation foU,,. The coefficient of the viscous term (that

wheren is the free-surface elevation,the fluid velocity,g is . . - i )
g 1S, the damping coefficient) is given by the expression )I1.2

the gravity acceleration whilg; and F; are the horizontal an
the vertical components of the global force on the tank. At tﬁor
right and left walls of the tank, the impermeability conditi ¢, Sway motion

has to be imposed, that is: Sway motion consists of a horizontal forcing while the

u(0,t) = u(L,t) = 0 Vt>0, (I1.4)  vertical displacement and rotation are null.
] .. . We first consider the experimental campaign made by
and, because of the mass conservation, the following Gond'tLepelletier & Raichlen [8] where two different configurai®

must hold true: were considered. In the first case, the tank dimensions are
L Qe — 0 v s L = 117.5em, D = 12em and the still water level is
. n(z,t)dr = b (1L5) }, — 6em The first resonant frequency predicted through the

linear theory isw, = 2.04s~!, the horizontal forcing law is
sinusoidal and its amplitude id; = 0.39¢m. The kinematic
viscosity isv = 0.0094cm?/s.
> Figure 3 displays the comparison between the experiments
n(w,t) =Y Hy(t) cos(nkz), by Lepelletier & Raichlen [8] (triangles and thin solid lne
n=1 and the)-SPH scheme (diamonds and thin solid line) for the
(111.6) . : )
too steady-state maximum wave elevation at the right wall of the
u(z,t) = ZUn(t) sin(nkx), tank (x/L = 1). The overall agreement is very good and the
ot bifurcation predicted by the present model is close to that

If waves are non-breaking, conditions (Ill.4) and (lll.Sea
satisfied by using the following decomposition:
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Fig. 3. Sway motion, response amplitude operatarat = 1 for the first  £ig 5 Snapshots of the free surface evolution for the fiosffiguration of
configuration of Lepelletier & Raichlen [8h(/L = 0.051, A/h = 0.065). Lepelletier & Raichlen [8] k/L = 0.051, A/h = 0.065, w/w, = 1.08).

Black diamonds indicate the analytical solution obtainexugh the modal
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Lepelletier & Raichlen [8] k/L = 0.051, A/h = 0.065, w/w, = 1.02).
Black diamonds indicate the analytical solution obtainecugh the modal Fig. 6. Sway motion, response amplitude operatar/dt = 1 for the second
system. configuration of Lepelletier & Raichlen [8]x(/L = 0.098, A/h = 0.033).

shown by the experiments even if theSPH scheme tends tomoves back and forth in the basin. After the bifurcationyonl
slightly delay the bifurcation point. The adopted viscp$dr one wave is observed. Figures 4 and 5 display the free surface
the 9-SPH scheme is,, = 2.4 - 10=4m?/s. elevation for some of these regimes. These results have been
The small peaks that appear along the left branch of taempared with the modal system described in Section I1I-B
response amplitude operator (see figure 3) correspond to shewing an excellent match.
boundaries of different regimes of the sloshing evolutteach The second configuration considered by Lepelletier &
regime is characterized by a specific number of waves and tRiaichlen [8] is particularly demanding for it is characted
number decreases as the peaks approach the bifurcation poyn /L. = 0.098 and, therefore, is very close to the
(see, for example, Olsen & Johnsen [20]). The last reginrermediate water regime. Lepelletier and Raichlen oleskr
before the bifurcation is characterized by a solitary wdnad t the occurrence of wave breaking during the transient elasiut
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1t 1 we consider a problem in which sway, roll and heave motion
ofdy [V [ 01 A5 1 1B 1 ' Nt i N TR are involved. The tank dimensions and filling height are the
A ARAATARTA VAV R AN same of the first configuration used by Lepelletier & Raichlen
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Fig. 7. Evolution of the free surface at/L = 0.95 for the second x(t) = A; sin(wyt + ¢1) y(t) = Ag sin(wa t + ¢2)

configuration of Lepelletier & Raichlen [8Jx/L = 0.098, A/h = 0.033,
w/wr = 0.99)..

H(ﬁ) =0y sin(wot + ¢0) ,

where 4; = 0.006m,w; = 22571, ¢; = 0 (sway motion),
of those cases characterized by frequencies just to the laft = 0.03m,ws; = 4.29s7 %, ¢, = 0 (heave motion) and
of the bifurcation point (that isp/w, = 1.06). However, no ¢, 7/720rad,wy = 0.22571, ¢9 = 0 (roll motion).
breaking was observed at the steady state. This implies th&e axis of rotation is placed aty = (L/2,0). To avoid
the comparison with the modal system of Section IlI-B id stian impulsive start and make the motion more general, we
allowed. Indeed, since the modal system cannot describe wawroduce a polynomial ramp during the early stages of the
breaking, this leads to an excess of energy during the toagsi tank evolution. This is given by:
which just corresponds to a delay in the attainment of the
steady state.

Figure 6 displays the comparison between the amplitudgherer = (¢ — tff))/At, té’”) is the instant when the ramp is

response operator af/L = 1 as given by the experimentalfirstly applied (. has been set equal to the initial time of the
measures (triangles and thin solid line) and by $8PH simulation) andAt is the ramp duration (herAt = 27 /wy).
scheme (diamonds and thin solid line). The overall matgthe polynomial ramp satisfies:

is very good and the bifurcation point is predicted with a ] } )
fair accuracy. Here, the viscosity of theSPH scheme is r(0) = 7#(0) = #(0) = 0 (1)

Vsph = 6.5-107°m?/s. so that the initial application of the ramp and its transitio
In this case only two regimes are observed before th@wvards the imposed motion is perfectly smooth. Similady t
bifurcation point: a two-wave regime and a solitary-wavthe first case of sway motion, the SPH viscosity is set equal to
regime. Between these regimes a special region of motignl - 10~*m?/s. Since no comparisons with experiments are
was detected during the experimental campaign. In thabnegiavailable for this case, we use the analytical model desdrib

no steady state was attained and a nonlinear subharmadniSection IlI-B to get a reference solution.

modulation of 18 periods was observed (see Lepelletier & In figure 8 the free surface evolution a/L = 0.95 is
Raichlen [8]). Remarkably, both th& SPH scheme and thedisplayed. The time history clearly shows different pesiod
modal system predict the same modulation in a region veo§ oscillations induced by the nonlinear interaction of the
close to that shown by the experiments (see figure 6). Detailsmponents of the tank motion (that is, sway, roll and heave)
on the nonlinear beating phenomenon are provided in figufee comparison with the modal system is very good. Similarly
7 and are compared with the modal system. In this cadigure 9 displays the comparison between the free surface
very long simulations have been performed to ensure tpeedicted through the@-SPH and the modal system. Here,
attainment of a periodic asymptotic solution. Again, ththe match is slightly worse with respect to the sway cases
agreement between the numerical and theoretical modelys vdescribed in Section 1lI-C. In any case, apart from small
good. discrepancies, the global wave pattern is well predictéds B

r(r) = 7% (672 — 157 + 10) , (11.10)

r(1) =1 #(1) =0,
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Fig. 9. Snapshots of the free surface evolution for the gér@d motion  55e described in Section IlI-E.

described in Section IlI-D. Black diamonds indicate the gl solution
obtained through the modal system.

nhf e 5spPH
_ _ _ 35k A experiments

a relevant results since the sloshing problem at hand iegolv -
both sway, heave and roll motion and, therefore, represents N
very demanding test. 3F
E. Experiments at INSEAN 2.5F

Here we consider a specific case of sway motion taken -
from the large amount of data available at INSEAN. This is 2r
characterized by,/L = 0.03 and A/L = 2.33, that is, by a - a
very shallow water depth and by a large horizontal forcing. 15k
For these reasons, wave breaking and splash-up events occ -
during the flow evolution and this case represents a very 1:'
demanding test for numerical schemes. N A

Figures 10 and 11 display the response amplitude operator 0'5:'
obtained atz/L = 0.99 and z/L = 0.95 respectively. N T T T T T T

Although the experimental data are a few, the agreement witt 075 1 125 15 175 2 225

the -SPH scheme is very good. Note that the shapes of .

amplitude operators in flgu?es 10 and 11 are qwteIO dlfferegy%e descﬁ\tl)\’:é/ ,Togtgg,oﬁﬁogse amplitude operator/a = 0.95 for the

from those displayed in figures 3 and 6. This is due to the

occurrence of wave breaking for those cases characterized

by a higher response to the sway forced motion. This leaggblems into a rectangular tank. Both sway motion and a

to energy dissipation and to a consequent lowering of tigeneric two-dimensional motion have been considered pgovi

response operator in the neighborhood of the bifurcationtpo that thed-SPH is capable to predict the sloshing evolution with
A further confirmation of the capability of thé-SPH high accuracy even during the occurrence of wave breaking

scheme to correctly predict the flow evolution is given iand splash-up events.

figures 12 and 13. There, some snapshots of the free surface

evolution are displayed fav/w, = 1.231 andw/w, = 1.319.

The §-SPH scheme well describes wave breaking and theThe research leading to these results has received
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