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Abstract7

Vessel tracking data help study the potential impact of fisheries on biodiversity and pro-8

duce risk assessments. Existing workflows process vessel tracks to identify fishing activity9

and integrate information on species vulnerability. However, there are significant data in-10

tegration challenges across the data sources needed for an integrated impact assessment11

due to heterogeneous nomenclatures, data accessibility issues, geographical and computa-12

tional scalability of the processes, and confidentiality and transparency towards decision13

making authorities.14

This paper presents an Open Science data integration approach to use vessel tracking15

data in integrated impact assessments. Our approach combines heterogeneous knowledge16

sources from fisheries, biodiversity, and environmental observations to infer fishing activ-17

ity and risks to potentially impacted species. An Open Science e-Infrastructure facilitates18

access to data sources and maximises the reproducibility of the results and the method’s19

reusability across several application domains.20

Our method’s quality is assessed through three case studies: The first demonstrates21

cross-dataset consistency by comparing the results obtained from two different vessel data22
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sources. The second performs a temporal pattern analysis of fishing activity and poten-23

tially impacted species over time. The third assesses the potential impact of reduced fish-24

ing pressure on marine biodiversity and threatened species due to the 2020 COVID-1925

lockdown in Italy. The method is meant to be integrated with other systems through its26

Open Science-oriented features and can rapidly use new sources of findable, accessible,27

interoperable, and reusable (FAIR) data. Other systems can use it to (i) classify vessel28

activity in data-limited scenarios, (ii) identify bycatch species (when catchability data are29

available), and (iii) study the effects of fisheries on habitats and populations’ growth.30

Keywords: Vessel transmitted information, Vessel tracking data, Automatic identification31

system, Statistical Analysis, e-Infrastructures, Open Science, Biodiversity, Integrated32

Environmental Assessment33

Monitoring fishery activity is integral for ecosystem approaches to resource planning34

that involve species vulnerability and complex social and economic factors (Bergh and35

Davies, 2002; Gianelli et al., 2018; Lockerbie et al., 2018; Muawanah et al., 2018; Koen-36

Alonso et al., 2019). Integrated Environmental Assessment (IEA) systems use this in-37

formation to model casual links between driving forces (economic and human activities),38

pressures (emissions, waste), chemico-physical and biological states, and the impact and39

responses of ecosystems (Antunes and Santos, 1999; Kristensen, 2004) (DPSIR frame-40

work). In this context, fishery activity classification is integral to systems that support41

policymakers at understanding fishery activity patterns and the impact of regulations and42

management strategies on ecosystems’ quality (Robards et al., 2016; Le Tixerant et al.,43

2018). Today, DPSIR frameworks and vessel-data processing systems have limitations44

due to the heterogeneity of nomenclatures, the accessibility of data resources, the interop-45
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erability of methodologies, and the scalability and reusability of models across ecosystems46

(Gari et al., 2015; Taconet et al., 2016; James et al., 2018). Furthermore, few of these sys-47

tems guarantee the transparency of the results to decision making authorities through open48

repetition and reproduction (Jennings and Lee, 2012; Dunn et al., 2018; Song et al., 2018).49

Fishery data processing is commonly based on information transmitted by vessels dur-50

ing navigation via an Automatic Identification System (AIS) or other satellite-based and51

radio systems (Chang, 2003; ITU, 2009; Previero and Gasalla, 2018; Kurekin et al., 2019).52

Typical vessel transmitted data include coordinates, speed, route, vessel identity, and day/-53

time. AISs can have a high reporting frequency (every few seconds) but may have limita-54

tions in range coverage due to the terrestrial receiver (in the case of radio frequency-based55

systems) and vessel type (e.g., they are usually installed on vessels with length overall56

above 15m) (European Parliament, 2008). Furthermore, technical and meteorological is-57

sues can compromise data quality (Taconet et al., 2019).58

Several vessel data processing systems enhance information quality and coverage by59

integrating gear-specific information (Lee et al., 2010; Palmer and Wigley, 2009), logbook60

information (Gerritsen and Lordan, 2011; Muench et al., 2018), and inter-port shared data61

(Kia et al., 2000; Davis, 2001; Olesen et al., 2012; Shaw et al., 2017; Roberson et al.,62

2019). Moreover, modern analytical frameworks integrate and correlate vessel data with63

other knowledge sources of fisheries, biodiversity, and societal information to extract new64

knowledge (Campanis, 2008; Agapito et al., 2019; Dinesen et al., 2019; Farmanbar et al.,65

2019). Applications of these frameworks to maritime spatial planning include: (i) iden-66

tifying fishing activity locations with the highest density and intensity in specific moni-67

tored regions (Bastardie et al., 2010; Gerritsen and Lordan, 2011; Le Guyader et al., 2017;68
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Belhabib et al., 2020), (ii) estimating the spatial overlap between large- and small-scale69

fisheries (Le Tixerant et al., 2018; Shepperson et al., 2018; Mullié, 2019), (iii) monitoring70

unregulated activities (Natale et al., 2015; Kurekin et al., 2019), (iv) studying species-71

vessel interaction (Robards et al., 2016; Lopes et al., 2019; Iacarella et al., 2020), and72

(v) monitoring maritime traffic (Tetreault, 2005; Eriksen et al., 2006, 2010; Pallotta et al.,73

2013; Yang et al., 2019). These approaches often use fishing activity classification algo-74

rithms based on AIS data, which are either rule-based processes (Coro et al., 2013) or75

machine learning models (de Souza et al., 2016).76

This paper contributes to developing holistic approaches to IEA and introduces a new77

multi-source analytical workflow that contextualises vessel tracking data with indicators78

on stocks, biodiversity, and the geophysical conditions of an area. Our workflow (i) iden-79

tifies fished locations, (ii) estimates fishing pressure per species, (iii) identifies possible80

target stocks in these locations, (iv) identifies non-commercial species that could be im-81

pacted by the fisheries because concentrated in high fishing-pressure locations. Unlike82

other approaches (Le Tixerant et al., 2018; Farmanbar et al., 2019; Galdelli et al., 2019),83

our process is flexible enough to be applied at multiple spatial and temporal scales and can84

work on user-provided data, while being fully integrated with fisheries and biodiversity85

knowledge sources. Our method can seamlessly work with satellite and AIS input data86

in near real-time. It uses an Open Science oriented e-Infrastructure (D4Science, Assante87

et al. (2019b)) to facilitate access to vast collections of stock and biodiversity information.88

In particular, this e-Infrastructure optimises access to data sources that enrich vessel track-89

ing data, and that meet the principles of Findability, Accessibility, Interoperability, and90

Reusability (FAIR data).91
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In the presented methodology, the integrated FAIR data include (i) environmental data92

from the Copernicus marine environment monitoring service (CMEMS, Von Schuckmann93

et al. (2016)), (ii) species occurrence records retrieved from the Ocean Biodiversity Infor-94

mation System (OBIS, Grassle (2000)), (iii) species’ risk level from the Red List of the In-95

ternational Union for Conservation of Nature (IUCN, 2001), (iv) taxonomic data accessed96

from the Aquatic Sciences and Fisheries Information System of FAO (ASFIS, Garibaldi97

et al. (2002)), and (v) global stocks’ distributions from the Global Record of Stocks and98

Fisheries (GRSF, i-Marine (2020)). Our method is provided as two Open Science-oriented99

Web services deployed in D4Science (differing only for their input parameters), available100

through a Virtual Research Environment that guarantees the reproduction and replication101

of all experiments and fosters the reuse of the processes across several domains.102

Three case studies demonstrate the validity and versatility of our method. The first103

one uses vessel transmitted data from the West coasts of Canada and U.S.A. to compare104

information extracted from two different large data sources, i.e., the Global Fishing Watch105

and the BOEM-Marine Cadastre. This case demonstrates the consistency of our results106

using the two datasets separately. The second case reports a pattern analysis over time107

(2012-2016) of the fishing activity in the same area as the first case, using Global Fishing108

Watch data. This case demonstrates how to use our method to monitor fishing activity109

and species-pressure change over time. The third case shows how to use our method to110

(i) evaluate the change of fishing pressure on known biodiversity indicators, (ii) develop111

vulnerability patterns following a particular event - in this case, the March-April 2020112

COVID-19 lockdown in Italy -, and (iii) assess potential benefits to biodiversity.113

The research addressed by this paper is also to explore the benefits and potential pitfalls114
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of the EU-promoted FAIR approach (Collins et al., 2018), by assessing the requirements of115

an IEA system against the realities of an EU-supported Blue flagship e-Infrastructure. In116

particular, based on the obtained results, this paper discusses the advantages brought by the117

use of FAIR data in statistical analyses but also the limitations due to data incompleteness,118

low update rates, and low quality control.119

As further applications, our workflow can also be used by other systems to (i) extend120

current vessel activity classification processes through a more flexible approach that works121

in data-limited scenarios, (ii) identify bycatch species when catchability and fishing gear122

data are available, (iii) study the effects of fisheries on habitats and populations’ growth123

when species distribution and life-history-trait data are available. FAIR data and Open124

Science-oriented technology guarantee integrating new data sources rapidly and reusing125

the workflow in other systems.126

1. Materials and methods127

Our process is an Open Science workflow that combines vessel tracking data from128

satellite and AIS systems with global, high-quality, environmental, biodiversity, and fish-129

ery data (Figure 1). The core process is made up of three macro-steps:130

1. Classifying vessel activity: Vessel activity is (i) classified as fishing/not-fishing us-131

ing a rule-based algorithm that uses bathymetry data from CMEMS, (ii) spatially132

aggregated, and (iii) processed to estimate high/medium/low fishing activity cells;133

2. Enriching vessel data with biodiversity and stock information: Fishing activity cells134

are enriched with (i) species occurrence records from OBIS, (ii) vulnerability level135

information from the IUCN Red List, and (iii) stock information from the GRSF;136
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3. Estimating fishing pressure on stocks and other species: Fishing hours per cell (pres-137

sure) are associated with all species, to estimate the number of hours each species138

likely undergoes in each cell. Furthermore, pressure on stocks is categorised as high-139

/medium/low through statistical analysis, and highly impacted non-stock species are140

identified.141

In our methodology, fishing activity is aggregated at a user-defined spatial resolution142

to make results comparable between different data sources and more independent of the143

abundance of data (Section 3). Spatial aggregation makes results more robust to missing144

vessel data and sampling biases in the species-observation data sources, and to differences145

between the data collection networks used by different data providers.146

In our method, non-stock species are those species that are not the target of any fish-147

eries in the study area according to the GRSF. Thus, the GRSF is considered as our main148

reference of stock information and, for ease of notation, non-GRSF species are named149

non-stock species in this paper.150

The main input to our method is a table dataset (in plain-CSV format) containing151

punctual vessel trajectory data from a specific area. This dataset should include at least152

the following minimal information:153

• A vessel identification code (even anonymous);154

• Speed per point;155

• Longitude/latitude per point;156

• Timestamp per point.157
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Three additional input parameters are required, which are used to keep the analysis158

consistent:159

• Spatial Resolution: The spatial aggregation of the data analysis. Default value is160

0.5°;161

• Minimum Number Of Records: The minimum number of species occurrence records162

per aggregation cell to consider the species as being present there. Default value is163

5 records;164

• Occurrence Time Range: The additional time extent, around the dataset time frame,165

to retrieve species observation records from OBIS. Default value is 5 years.166

These parameters are meant to make the statistical analysis consistent, to reduce po-167

tential sources of biases due to a non-uniform reporting of occurrence records in OBIS,168

and to conduct multi-scale spatial analyses, as discussed in Section 3.169

The output of our process is made up of the following information:170

1. Distribution of fishing activity locations at the input spatial resolution (in tabular and171

image formats);172

2. Histograms reporting the distribution across fishing-pressure categories of (i) the173

number of different species retrieved from OBIS, (ii) the fishing hours, and (iii) the174

overall species’ occurrence records in the fishing cells;175

3. One table reporting the list of species possibly involved in the fishing activities.176

For each species, the table specifies: (i) taxonomic information, (ii) the number177

of occurrence records in the fishing locations, (iii) the total fishing hours in the178

observation locations, (iv) if the species is a stock in the study area, (v) if the species179
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is threatened according to the IUCN Red List, and (vi) if the species is potentially180

highly impacted by the fishing activity.181

The next sections explain the computational details and the input parameter roles.182

1.1. Classifying vessel activity183

Classifying vessel trajectory points as corresponding to fishing or not-fishing activity184

is the first computational step. Classification is operated through a rule-based algorithm185

(Coro et al., 2013) that uses bathymetry and speed information:186

Algorithm 1 Vessel fishing activity classifier
For each vessel trajectory:

for each trajectory point:

if (speed ≤ 2kn)→ hauling (Not-Fishing)

if (2kn < speed ≤ 4kn and depth ≥ 500m) → trawling (Fishing)

if (2kn < speed ≤ 4kn and depth < 500m) → mid-water trawling (Fishing)

if (speed > 5kn) → steaming (Not-Fishing)

This algorithm assumes that speed-bathymetry criteria reflect the spatial relationships187

of consecutive points (Murawski et al., 2005; Lee et al., 2010; Lambert et al., 2012; Russo188

et al., 2013). Bathymetry data are accessed on-the-fly through longitude/latitude querying189

of the CMEMS Global Ocean 1/12° physics analysis and forecast updated daily NetCDF190

file. One copy of this file is hosted on a Unidata Thredds (John Caron and Davis, 2006)191
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instance of the D4Science e-Infrastructure (Supplementary material) and is remotely ac-192

cessed through the OPeNDAP protocol (Cornillon et al., 2003).193

Based on the point-by-point classification, our process calculates fishing hours (fahs)194

as the time difference (in hours) between consecutive fishing points in a trajectory (i.e.,195

the locations classified as Fishing locations). Furthermore, any fishing point that differs196

from a previous fishing point with more than 4 hours is excluded and assigned 0 fahs. This197

heuristic is compliant with the one used by other vessel activity classification algorithms198

(Campanis, 2008; Galdelli et al., 2019).199

As an additional step, the Spatial Resolution input parameter is used to spatially aggre-200

gate fahs into fishing cells. A statistical analysis classifies these cells as high/medium/low-201

fishing activity cells:202
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Algorithm 2 Fishing hours’ classifier
For each cell of Spatial Resolution square size in the study area:

find all fishing points in the cell from all trajectories

sum the fishing hours

associate the total fishing hours to the cell

Fit all fahs to a log-normal distribution

calculate the geometric mean

calculate confidence limits

For each fishing cell:

if (fahs ≥ upper confidence limit) → high fishing-activity cell

if (lower confidence limit < fahs < upper confidence limit)→medium fishing-activity

cell

if (fahs ≤ lower confidence limit) → low fishing-activity cell

The use of a log-normal distribution comes after the empirical observation - over the203

used repositories of satellite and AIS data - that larger fahs tend to be farther away from204

the geometric mean than smaller values. This is particularly evident for large areas and205

input datasets, where effort is fairly and log-normally distributed across the fishing-activity206

classes.207
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1.2. Enriching vessel data with biodiversity and stock information208

In the next computational step, biodiversity information is attached to each cell. This209

operation retrieves species’ occurrence records and taxonomic information from OBIS per210

fishing cell. Records are extracted from a time frame of Occurrence Time Range years,211

before and after the time period referred by the vessel dataset. For example, if the vessel212

trajectories refer to a particular period in 2018, and Occurrence Time Range=2, OBIS213

occurrences will be retrieved from 2016 to 2020 for each fishing cells. To this aim, a214

geospatial query to OBIS is made through the “robis” R package (Provoost et al., 2017).215

This package is also used to validate if a species is threatened (i.e., at least vulnerable)216

according to the IUCN Red List. Overall, the Occurrence Time Range parameter is used217

as a tolerance threshold to account for missing records due to under-sampling in the time218

period of the vessel activity.219

The list of species retrieved from OBIS is further reduced to consider only species220

included in the FAO-ASFIS collection, which includes more than 12,000 species of par-221

ticular interest to fisheries, aquaculture, and biodiversity. ASFIS is used to select species222

related with fisheries activities, which are the focus of our study. This dataset is accessed223

as a CSV table (updated to 2020) hosted by the D4Science platform storage system for224

computational use (Supplementary material). Association between cells and species is225

made after checking, for each species, which cells have a number of observation records226

higher than Minimum Number Of Records. As a final step, the species are checked against227

the GRSF to be stocks or non-stocks in the fishing cells. This operation is achieved through228

a direct query to the SPARQL endpoint of the GRSF semantic knowledge base (i-Marine,229

2020)230
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Overall, this process can be summarised as follows:231

Algorithm 3 Biodiversity and stock information extraction
Build a geospatial query to OBIS for the fishing cells

Query OBIS in the time frame of the vessel dataset ± Occurrence Time Range years, to

retrieve:

the list of species observed in the area

all species occurrence records

taxonomic information for these species

their IUCN threatening status

Reduce the list of species by taking only those present in ASFIS, to maximise relation with

fisheries activities

For each species:

select and associate those cells with occurrence records above Minimum Number Of

Records

check if the species is a stock for the GRSF in these cells, and classify the species

as stock or non-stock accordingly

In summary, this algorithm associates information on stocks, species variety, and threat-232

ening status to the fishing hours of each cell in the studied area.233
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1.3. Estimating fishing pressure on stocks and other species234

Fishing pressure per stock is here defined as the number of fishing hours per cell where235

the stock occurs:236

FP∣s = ∑C
c=1 fah∣s(c)

∑C
c=1(associated(c, s))

where C is the total number of cells; fah∣s(c) is the number of fishing hours in cell c237

associated with stock s; associated(c, s) is a function that returns 1 if cell c is associated238

with stock s and 0 otherwise.239

Considering FP∣s as a statistical variable over the stocks, its distribution can be heuris-240

tically approximated with a log-normal distribution. Thus, the confidence intervals of this241

distribution can be used to classify stocks as subject to a high/medium/low fishing pres-242

sure:243
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Algorithm 4 Stock pressure classifier
For each stock:

sum the fahs in the associated cells

count the associated cells

calculate fishing pressure FP∣s

Fit FP∣s to a log-normal distribution

calculate the geometric mean

calculate confidence limits

For each stock:

if (FP∣s ≥ upper confidence limit) → high-pressured stock

if (lower confidence limit < FP∣s < upper confidence limit) → medium-pressured

stock

if (FP∣s ≤ lower confidence limit) → low-pressured stock

Calculating fishing pressure on a species is meaningful only if we know the species244

catchability, which is directly related with the gear deployed and the species’ location.245

Introducing catchability data in our algorithm requires the availability of global FAIR stock246

assessment data (Thorsteinsson, 2002), which unfortunately do not exist yet. Instead, our247

approach approximates risk for non-stock species from observations in the catch (then248
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assuming their catchability is high), or where there is a significant indirect consequence of249

the interference of human activity with the ecosystem (Tromeur and Doyen, 2019; Hilborn250

et al., 2020). This risk is higher for those species that are concentrated and frequent in the251

high fishing-activity cells.252

One way to estimate this risk for non-stock species as an impact score, is to define the253

following weighted sum:254

I∣s = ∑h fah∣s(h) ⋅ n.occurrences∣s(h)
count(h∣s)

where h is a high fishing-activity cell; fah∣s(h) is the number of fishing hours in cell255

h where also species s (a non-stock species) is present; n.occurrences∣s(h) is the number256

of occurrence records of species s in cell h (related with its commonness in the area, Coro257

et al. (2015b)); count(h∣s) is the total number of high fishing-activity cells h∣s where the258

species is present. It is worth stressing that the set s of species over which I∣s is defined259

(i.e., non-stocks) is different from that of FP∣s (i.e., stocks).260

The rationale of this formula is the following: if a species is very concentrated where261

a high fishing activity is present, the species impact score should increase. Conversely,262

if the species is rare in the high fishing-activity zones, the impact score should decrease.263

Finally, if fishing hours are relatively low in an extensive area, the impact score should264

decrease. The I∣s score can be seen as a statistical variable over the non-stock species and265

can be heuristically modelled with a log-normal distribution. The confidence intervals of266

this distribution can be used to assess if a species is potentially impacted by the fishing267

activity:268
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Algorithm 5 Potentially impacted species detector
For each non-stock species:

select the high fishing-activity cells where the species has occurrence records

weigh the fahs in these cells for the number of occurrence records

sum the weighted fahs and divide by the number of selected high fishing-activity

cells

calculate the impact score I∣s

Fit I∣s to a log-normal distribution

calculate the geometric mean

calculate confidence limits

For each non-stock species:

if (I∣s ≥ upper confidence limit) → potentially impacted species

The use of the upper confidence limit of the log-normal distribution selects species that269

have an outstanding impact score. This approach aims at maximising the probability that270

a species with a high score is really impacted (i.e., is a true positive), and thus to increase271

the classification precision. Using a lower threshold would have been more precautionary272

but less precise. In order to explore the unclassified impacted species, more information273

should indeed be introduced in our system (Section 3).274

This final step of our algorithm produces a list of potentially impacted species and275

17



the distribution of fishing pressure on stocks, which contribute to give an overview of the276

potential impact of the fishing activity on the study area.277

1.4. Open Science methodology and tools278

Our workflow implements a FAIR approach that tests FAIR data principles’ practica-279

bility. It is open-source (Supplementary material) and was integrated with the DataMiner280

Cloud computing platform of the D4Science e-Infrastructure (Coro et al., 2017), which281

allows accessing the mentioned knowledge sources on-the-fly during processing (Candela282

et al., 2016; Coro et al., 2015a). Data FAIRness is facilitated through the indexing of283

these resources in the D4Science catalogue (Assante et al., 2019b), which can be accessed284

by all processes via the Catalogue Services for the Web (CSW) standard of the Open285

Geospatial Consortium (OGC, 2020). Geospatial data are offered as standarised NetCDF286

files available on a distributed ISO/OGC compliant Spatial Data Infrastructure included in287

D4Science (Assante et al., 2019b). All other resources are stored on a distributed system288

based on MongoDB (mongodb.com) that ensures high availability and a fast access to the289

resources via direct HTTP connection (Assante et al., 2019a). The GRSF is hosted and290

managed by D4Science, which optimises access time and ensures a high service avail-291

ability. Data external to D4Science (e.g., OBIS) are accessed by the processes via direct292

connection through provider-specific libraries.293

DataMiner offers 15 machines with Ubuntu 18.04.5 LTS x86 64 operating system, 16294

virtual cores, 32 GB of RAM, and 100 GB of disk, to run executions in parallel/distributed295

and multi-tenancy modes. Furthermore, this platform enables the repeatability, repro-296

ducibility, reusability, and interoperability of the processes, within a collaborative online297

environment (Assante et al., 2019b; Coro et al., 2021). To this aim, it offers a script-298
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to-service transformation tool and a provenance tracking feature (i.e., it records all input299

and output data, parameters, and metadata) (Coro et al., 2016c). The hosted services are300

published under the Web Processing Service standard (WPS, Schut and Whiteside (2007))301

of the Open Geospatial Consortium (OGC) to maximise their reuse from other software.302

Moreover, a Web graphic interface is automatically generated based on the input/output303

definitions. Among the advantages of publishing our algorithms via D4Science are (i) low304

maintenance costs, (ii) the native support of an integrated distributed storage system in305

a cloud computing platform with online collaborative tools, and catalogues of metadata306

and geospatial data, and (iii) a long-term sustainability plan based on a large number of307

European projects (Assante et al., 2019b).308

D4Science supports Virtual Research Environments (VREs), Web-based environments309

that foster the collaboration between users working on the same topic while managing data310

and services access policies (Candela et al., 2013). D4Science also includes security and311

accounting facilities that monitor the usage of all VRE resources (storage, computational312

services, etc), and prevent policy violations. Currently, D4Science hosts more than 150313

VREs, with either free or moderated-access, which are the main means to foster the reuse314

of processes across application domains including our workflow. Overall, these features315

guaranteed a fast development of our workflow as a multi-source, parallel, secure, and316

Open Science process.317

Our workflow was implemented on DataMiner as two different WPS Web services318

(Supplementary material), namely Fishing Activity and Pressure from VTI data (FAP-319

VTI) and Fishing Activity and Pressure from Global Fishing Watch data (FAP-GFW).320

The FAP-VTI service accepts user-provided vessel tracking data in CSV format, and fo-321
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cuses the analysis on the implicit time frame and spatial extent of these data. Instead, the322

FAP-GFW service embeds all daily vessel tracking data at 0.1° resolution, between 2012323

and 2016, from the Global Fishing Watch. In this free-to-use dataset, fishing activity is324

pre-classified using a machine-learning model, which allows skipping our fishing activity325

classifier (Section 1.1). The FAP-GFW service asks the user to simply draw a bounding326

box on an ocean area, and to specify the analysis period, but is limited to the 2012-2016327

time frame. The other input parameters and the produced output are the same between the328

two services (Section 1).329

1.5. Benchmark data330

As a first benchmark dataset, an area in the Northwest Atlantic off the coasts of Canada331

and North U.S.A. was used (Figure 2), because of its abundance of associated species and332

stock data. This 481,958.228 km2 area is monitored by the Northwest Atlantic Fisheries333

Organization (NAFO) and is under the national jurisdiction of U.S.A. and Canada. In this334

area, vessel tracking data were collected from two main public sources:335

• BOEM-Marine Cadastre (BMC) (BOEM, 2020): a collection of GIS mapping re-336

sources from Alaska to the Gulf of Mexico; started by the Bureau of Ocean Energy337

Management (BOEM) and the National Oceanic and Atmospheric Administration338

(NOAA) in U.S.A. to monitor offshore data and offer dissemination and analysis339

tools for policymakers and citizens. Marine Cadastre data are downloadable in CSV340

format and contain the information required by our methodology. Fishing vessel341

tracking data (types 30 and 1001) were downloaded for the Northwest Atlantic anal-342

ysis area, and fishing activity was classified using the algorithm described in Section343

1.1.344
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• Google Global Fishing Watch (GFW) (Merten et al., 2016): A Website managed345

by Google in partnership with Oceana and SkyTruth to give a global view of com-346

mercial fishing activities, based on satellite, AIS-terrestrial, and Infrared Imaging347

Radiometer Suite (VIIRS) data. At the time of writing, global-scale GFW data348

were downloadable for scientific purposes for the 2012-2016 period only. GFW349

distributes vessel data aggregated at 0.01° and 0.1° resolutions with fishing activity350

cells already classified through a machine learning model.351

Our first benchmark dataset contained data from BMC and GFW in the fishing sea-352

son from March to May 2015 for ease of result presentation. In the selected region and353

time frame, GFW data were much more abundant than BMC data: ∼20,000 fishing hours354

(GFW) against ∼5,500 hours (BMC).355

As a second benchmark dataset, the complete time series of annual-aggregated GFW356

data from 2012 to 2016 in the Northwest Atlantic study area was used to show how our357

results can illustrate large fishing pattern changes over time.358

As a third benchmark dataset, CSV data from the March-April 2020 COVID-19 lock-359

down period were produced from GFW raster images around Italy (GFW, 2020), and were360

reused to estimate the effects of the lockdown restrictions on the fishing pressure over bio-361

diversity and threatened species.362

2. Results363

This Section reports three evaluation cases for our methodology. The first case demon-364

strates that the information retrieved from two different datasets is coherent in terms of365

stock and impacted species composition, i.e., in the number of different species retrieved366
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for each year (Section 2.1). The second case demonstrates how our methodology can be367

used to highlight fishing-activity and stock composition patterns over time (Section 2.2).368

The third case, shows how our methodology can inform about the change of pressure369

on biodiversity and threatened species after a large socio-economic phenomenon like the370

COVID-19 lockdown in Italy. All experiments used the following input parameters: Spa-371

tial Resolution = 0.5°, Minimum Number Of Records = 5, Occurrence Time Range = 8.372

The complete output, the source code, and the links to the used Web services are reported373

in the Supplementary material.374

2.1. Cross-data source consistency375

Our analysis inferred 17 high fishing-activity cells from both the BMC and GFW376

datasets with independent statistical analyses in the selected Northwest Atlantic study area,377

but their distributions were different (Figure 2). Overlaps were present in the Southwest378

and central parts of the fishing area, but the fishing locations estimated from the BMC379

were generally closer to the coast than those estimated from the GFW. This discrepancy is380

due to (i) the different sizes of the two datasets, (ii) the use of our fishing activity classifier381

for BMC data against the Google’s classification for GFW data, and (iii) a greater pres-382

ence of AIS-terrestrial data in the BMC dataset. However, the fishing-activity cells were383

uniformly distributed over the entire area in both cases.384

Despite the discrepancies between the two datasets, the extracted information on stocks385

and biodiversity had a great overlap (Table 1): 28 stocks (of which 12 highly-pressured386

stocks) were extracted from BMC, and 29 (of which 15 highly pressured stocks) from387

GFW, with an overlap of 27 stocks (90%). Only three stocks (10%) were not included388

in both the lists, and 11 stocks (68.8%) were jointly indicated as highly pressured. Fur-389
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thermore, 92 non-stock species were inferred from BMC (2 potentially impacted), and 77390

from GFW (3 potentially impacted), with an overlap of 70.7% between the two lists. The391

2 BMC potentially impacted species were included in the 3 GFW potentially impacted392

species. As for threatened species (both stock and non-stock), 29 were detected from393

BMC and 27 from GFW, with 25 (80.6%) shared between the two analyses.394

These overlaps indicate a large agreement between our two parallel analyses and thus395

enforce the validity of our approach.396

2.2. Temporal analysis397

In the second case study, our methodology was executed on annual-aggregated GFW398

data in the Northwest Atlantic study area (Figure 3). This analysis highlighted a change of399

fishing activity patterns and intensity over time (Figure 3-a). In particular, (i) an expansion400

of the fishing activity can be observed from 2012 to 2013, (ii) a partial shift of the intense401

fishing activity towards the South-East occurred in 2014, (iii) fishing patterns were very402

similar between 2014 and 2015, as also reflected by the low variation of both stock and403

non-stock compositions, (iv) an overall contraction of the fishing activity can be observed404

between 2015 and 2016 coupled with a significant increment of the fishing hours and fish-405

ing activity density in 2016. Generally, a non-linear growth of fishing hours occurred in406

the entire area and in the high fishing-activity cells (Figure 3-b and -c). The number of407

different species retrieved had a low variation (9.8% coefficient of variation) - since fish-408

ing activity covered a major part of study area - but decreased by 18% in 2016 (Figure409

3-d). The number of inferred stocks and threatened species had a low variation too (8.6%410

and 6.7% coefficient of variation, respectively) (Figures 3-e and -f). There were generally411

few potentially impacted non-stock species (Figures 3-g). These always included the crit-412
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ically endangered Squalus acanthias, and also birds concentrated in high fishing-activity413

locations that could be accidentally captured (e.g., Larus argentatus and Puffinus gravis),414

which is a known issue (Eng and Pipkin, 2020).415

The variation in the species composition, i.e., the percentage of different species in-416

volved between two years, was higher between 2013 and 2012 and between 2016 and 2015417

than in the other years (Figure 3-h). This variation highlights a slight shift of the fishing418

patterns in these years, with potential different impacts on the biodiversity of the area.419

In particular, in 2013, the fishing area expanded to cover 30% more (reported) species420

than in 2012, and in 2016, the contracted fishing area covered 22% fewer species than in421

2015. The consistent fishing patterns in intermediate years are related to a low species-422

composition variation. This similarity was reflected also by a stock composition overlap,423

but only when fishing patterns were very similar (e.g., between 2015 and 2014, Figure424

3-i). Overall, the composition of targeted stocks hardly changed across the years, with425

a maximum of 5 stocks between 2013 and 2012. This observation may indicate that the426

changing patterns were caused by population shifts (Section 3).427

2.3. Effect of COVID-19 lockdown on fisheries in Italy428

The Global Fishing Watch recently published a comparative analysis between fish-429

ing activity around Italian coasts during the 2020 COVID-19 lockdown from 1 March to430

30 April, and the activity of the same period in 2019 (GFW (2020), Figure 4-a). This431

time-frame is of particular importance for Italy, because it was the period of maximum432

lockdown and infection (Coro, 2020a).433

In our third case study, the GFW data of this period were processed through our434

workflow to enrich them with information on stocks, biodiversity, and species’ IUCN-435
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threatening status, and to highlight possible consequences of lockdown restrictions. As a436

first step, our analysis aggregated the GFW data at a 0.5° resolution. Then, the areas with437

the highest fishing activity were calculated for 2019, and the same statistical confidence438

intervals were used to estimate high fishing-activity locations in 2020 (Figure 4-b and -c).439

As a result, this operation highlighted that the greatest loss of fishing hours occurred in440

the Adriatic Sea. Interestingly, a significantly lower number of fishing hours was reported441

in the northern Tyrrhenian Sea - within the Ligurian Sea Cetacean Sanctuary - and in the442

highly urbanised region of the gulf of Naples, which host several threatened species.443

Out of this information, our analysis extracted data on the richness, presence, and444

vulnerability of ∼100 species and 843 observations in the cells with the highest fishing445

activity. Species information was also aggregated per cell and classified into clusters of446

low/medium/high quantities using log-normal confidence limits (Figure 4-d, -e, and -f).447

As a result, some potential effects of the lockdown period on biodiversity (i.e., the num-448

ber of different species per cell) and presence (i.e., the number of occurrence records per449

cell) became apparent. In particular, intense fishing activity decreased mainly in locations450

with medium biodiversity and presence levels. Thus, fishing pressure on the species liv-451

ing in these locations was lower in 2020 than in 2019. Unfortunately, locations with rich452

biodiversity and presence faced high fishing pressure also during the lockdown period. In-453

terestingly, several locations with medium/high numbers of threatened species underwent454

a much lower fishing activity in 2020 (from 1000 to 3000 hours, i.e., 40-70% less).455
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3. Discussion and conclusions456

This paper has presented a methodology to aggregate, classify, and extract new infor-457

mation from vessel-transmitted data through the analysis of heterogeneous data sources458

in an Open Science e-Infrastructure. The results confirm the feasibility of cross-domain459

analysis if FAIR data principles are considered when establishing data repositories. Poten-460

tial applications, based on Open Science principles, have been demonstrated through three461

case studies.462

The first case study has shown that our Open Science process can produce consistent463

information from two different and large input datasets. The extracted major fishing pat-464

terns differ because of (i) the heterogeneous data collection systems used, (ii) the order465

of magnitude difference of the dataset sizes, and (iii) the different fishing-activity classi-466

fication algorithms used. However, the extracted information about stocks, species com-467

position, vulnerability levels, and fishing pressure per species, largely overlaps and thus is468

cross-dataset consistent. The detected stocks are also monitored by the Northwest Atlantic469

Fisheries Organization in the study area (NAFO, 2020), and the highest impacted species470

have been reported as bycatch species in this area also by other studies. For example,471

Puffinus gravis and Larus argentatus are seabirds commonly captured in the Northwest472

Atlantic (Zhou et al., 2019; Kelleher, 2005); the IUCN-vulnerable Squalus acanthias is473

a benthopelagic and oceanic species that is frequently captured in Northwest Atlantic by474

commercial fisheries (Tallack and Mandelman, 2009). The few complementary species475

and stocks found by the two analyses depend on the different distributions of fishing hours476

across the study area, which consequently correspond to different observation records in477

OBIS. Overall, our first case study has shown how our method can infer the possible target478
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stocks of the fisheries and the overlap between fishing activity and the threatened species479

present in the study area, just from a set of vessel trajectory data.480

The second case study has shown a temporal analysis conducted on the GFW data, on481

another time scale (i.e., multi-annual) than the first case study. In the Northwest Atlantic482

study area, our analysis confirmed a general non-linear increase of the fishing effort and483

pressure also highlighted by other studies globally (Colloca et al., 2017; Froese et al.,484

2018; Rousseau et al., 2019). The analysis also highlighted expansions and contractions485

of fishing patterns between 2012 and 2016, which other studies have indicated as being486

the consequence of populations’ shift due to climate change and fishing pressure increase487

(Greene and Pershing, 2000; Burgess et al., 2005; Merzouk and Johnson, 2011; Mills et al.,488

2013; Boudreau et al., 2017; Adams et al., 2018; McManus et al., 2018; Stanley et al.,489

2018). When used within an Integrated Environmental Assessment system, our analysis490

can inform about fishing-pressure change in time and its potential impact on threatened491

species (Piet et al., 2006; Mouillot et al., 2011; Coll et al., 2012). Furthermore, our output492

can be the input of other models that monitor and forecast fishing activity change, stock493

exploitation, and population shift (Coro et al., 2016a; Coro and Walsh, 2021). Finally,494

our Open Science services can flexibly manage different levels of temporal aggregations495

(i.e., seasonal, annual, etc.) to support studies of stock distribution change across fishing496

periods.497

The third case study has demonstrated how our methodology can enrich the GFW498

analysis on the fishing-activity change in Italy due to the March-April 2020 COVID-19499

lockdown. Our analysis has highlighted that a beneficial reduction of fishing pressure to500

ecosystems and biodiversity has potentially occurred in several sea areas of Italy. A major501

27



reduction of the potential impact of fishing activity is expected for vulnerable species in the502

Ligurian Sea and off the Campanian coasts, where a large variety of threatened species is503

concentrated. This observation agrees with the positive effects observed on Italian wildlife504

after the lockdown restrictions (Manenti et al., 2020), and generally with the expectations505

on other World areas (Chitra et al., 2020; McVeigh, 2020; Michael, 2020). However, high506

fishing pressure has persisted during the lockdown period in areas with a great variety507

of species. Fishing pressure did not reduce, especially in the Adriatic Sea, where already508

many stocks are at or above the maximum sustainable fishing pressure (Froese et al., 2018).509

This aspect is currently under study with localised investigations to evaluate its reflection510

on profitability (CNR, 2020).511

One source of bias in our analysis is the non-uniform and scarce reporting of occur-512

rence records in the OBIS database. Adjusting the Occurrence Time Range and the Mini-513

mum Number Of Records parameters can partially account for this bias because if a species514

is uncommon in a specific place, it unlikely has occurrence records in OBIS within a suf-515

ficiently large time frame (Coro et al., 2015b, 2016b; Claus et al., 2018). In the future de-516

velopments of our methodology, this issue will be managed by enabling the possibility of517

using additional sources of occurrence records connected to the e-Infrastructure (e.g., the518

Global Biodiversity Information Facility, Lane and Edwards (2007)). Another approach519

to compensate for this bias would be to use multiple spatial resolutions - by changing the520

Spatial Resolution parameter - and check how consistent the list of species is across spa-521

tial aggregations. A multi-resolution decision approach is usually effective in these cases522

(Magliozzi et al., 2019). Another aspect of our approach is that the statistical analysis has523

a higher precision when vessel data are abundant, and the analysis resolution is suited to524
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the study area. Thus, the user should provide statistically significant data and use the most525

appropriate spatial resolution for the analysis. These considerations relate to general is-526

sues with FAIR data and big data processing: easy access to a large amount of data comes527

at the expense of a low guarantee of data quality and completeness. The precision of our528

workflow’s output depends on (i) the completeness of the input vessel data, (ii) the update529

rate of the GRSF, (iii) the completeness of the OBIS data in the selected time range, and530

(iv) the suitability of the selected spatial resolution for the analysis. However, our first531

and second case studies have demonstrated that our workflow can compensate for some of532

these biases - through data classification and spatio-temporal aggregation - mainly when533

large input datasets are used. Generally, it is worth noting that all big data processing534

methods are approximate, but they can discover general and valuable knowledge if the535

approximation is tolerated within the application context (Coro, 2020b).536

One important aspect of our methodology is the use of Open Science, which required537

to release our process as OGC-compliant and open-access Web Services within an Open538

Science e-Infrastructure. The used platform supports reproducible and repeatable experi-539

mentation, thus all our results can be verified through simple WPS invocations via a Web540

browser or a compliant software (e.g., QGIS or ArcGIS). The accepted input data are plain541

CSV files, which allows for rapidly feeding the workflow with new vessel tracking data542

from private and public repositories while the e-Infrastructure guarantees the privacy of543

the data and of the experiments. Finally, the e-Infrastructure maximises the reuse of our544

processes across Virtual Research Environments, i.e., virtual laboratories for scientists fo-545

cussing on different experiments related to Marine Science, COVID-19 (Coro, 2020a), or546

other disciplines (Coro and Trumpy, 2020c). Virtual Research Environments can be the547
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backbone for instantiating cross-institute collaborations to process and share vessel data548

and to guarantee that data access policies are respected (Galdelli et al., 2019). Specific549

initiatives to investigate the effect of lockdown restrictions on marine resources through550

this technology have already started in Europe (Blue Cloud, 2019; CNR, 2020).551

This paper has demonstrated how new knowledge can be generated out of FAIR fish-552

eries data. Furthermore, newly available information (e.g., catchability) can be integrated553

with our methodology to enhance classification precision. For example, FAIR data with in-554

formation on catchability, fishing gears, environmental parameters, and life-history traits555

can be used to identify bycatch species (Lewison et al., 2013), or to study the interac-556

tion between different fisheries (e.g., bottom, mid-water trawling, etc.) with the habitat557

preferences (e.g., benthic, epi-pelagic, and purse seine) and the size distribution of the558

species in the fished area (Armstrong and Falk-Petersen, 2008; Foley et al., 2012). The559

Open Science implementation of our methodology guarantees that these sources can be560

rapidly connected and integrated with the current implementation as soon as new FAIR561

data sources are available.562
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All stocks High-pressured stocks Threatened non-stock species in the
area

Impacted non-stock species

Clupea harengus Brosme brosme Alca torda Larus argentatus
Brosme brosme Chaceon quinquedens Alosa aestivalis Puffinus gravis
Chaceon quinquedens Cynoscion regalis Balaenoptera borealis Squalus acanthias
Cynoscion regalis Glyptocephalus cynoglossus Balaenoptera physalus
Gadus morhua Hippoglossus hippoglossus Caretta caretta
Glyptocephalus cynoglossus Malacoraja senta Cetorhinus maximus
Hippoglossoides platessoides Morone saxatilis Clangula hyemalis
Hippoglossus hippoglossus Mustelus canis Dermochelys coriacea
Homarus americanus Pandalus borealis Eubalaena glacialis
Illex illecebrosus Pollachius virens Fratercula arctica
Limanda ferruginea Pomatomus saltatrix Lepidochelys kempii
Lophius americanus Raja eglanteria Melanitta fusca
Malacoraja senta Stenotomus chrysops Mobula tarapacana
Melanogrammus aeglefinus Thunnus thynnus Mola mola
Merluccius bilinearis Urophycis tenuis Physeter macrocephalus
Morone saxatilis Xiphias gladius Pterodroma hasitata
Mustelus canis Rissa tridactyla
Pandalus borealis Sebastes fasciatus
Paralichthys dentatus Somateria mollissima
Peprilus triacanthus Sphyrna lewini
Pollachius virens Squalus acanthias
Pomatomus saltatrix
Prionace glauca
Pseudopleuronectes americanus
Raja eglanteria
Scophthalmus aquosus
Stenotomus chrysops
Thunnus thynnus
Urophycis tenuis
Xiphias gladius

Table 1: Report of all stocks, highly pressured stocks, threatened species (both stocks and non-stocks),
and possibly impacted species, retrieved by our analysis from the data of the Global Fishing Watch (GFW)
and the BOEM-Marine Cadastre (BMC) altogether, in a Northwest Atlantic study region (bounding box:
longitude [-72 ; -66], latitude [38 ; 45]). Red names refer to species retrieved from the GFW data but
not from the BMC data, and vice-versa for yellow names. Blue names refer to species detected from both
datasets.
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Figure 1: Schema of our methodological workflow, with processing divided into three separate steps. Red boxes in the input vessel tracking data
table highlight mandatory fields of our process.



Figure 2: Comparison between the spatial distributions, the amounts of fishing hours, occurrence records, and different detected species, extracted
by our analysis from the Global Fishing Watch data (left-hand side) and the BOEM-Marine Cadastre data (right-hand side) data, in a Northwest
Atlantic study region (bounding box: longitude [-72 ; -66], latitude [38 ; 45]). The histograms report statistics for threatened and non-threatened
species separately. Different chart scales are used because the two dataset sizes differ of one order of magnitude.



Figure 3: Temporal analysis of the daily data of the Global Fishing Watch from 2012 to 2016, annually-aggregated at a 0.5° resolution in a
Northwest Atlantic study region (bounding box: longitude [-72 ; -66], latitude [38 ; 45]). The charts report the time series of a) the distribution
of high/medium/low fishing-activity cells; b) the total fishing hours in the whole area and c) in the high fishing-activity cells; d) the number
of different species, e) target stocks, and f) threatened species detected by our analysis; g) the number of non-stock species that are possibly
ecologically impacted by the fisheries; h) the number of different species and i) stocks retrieved by our analysis from two consecutive datasets.
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