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Abstract

Objective: Cardio-metabolic risk assessment in the general population is of paramount importance to reduce diseases
burdened by high morbility and mortality. The present paper defines a strategy for out-of-hospital cardio-metabolic
risk assessment, based on data acquired from contact-less sensors.
Methods: We employ Structural Equation Modeling to identify latent clinical variables of cardio-metabolic risk,
related to anthropometric, glycolipidic and vascular function factors. Then, we define a set of sensor-based measure-
ments that correlate with the clinical latent variables.
Results: Our measurements identify subjects with one or more risk factors in a population of 68 healthy volunteers
from the EU-funded SEMEOTICONS project with accuracy 82.4%, sensitivity 82.5%, and specificity 82.1%.
Conclusions: Our preliminary results strengthen the role of self-monitoring systems for cardio-metabolic risk preven-
tion.
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1. Introduction1

Cardiovascular disease (CVD) represents the world’s2

leading cause of death [1]: the World Health Organi-3

zation estimates 23.6 million deaths by 2030. Prevent-4

ing CVD is therefore a main global challenge. In this5

view, cardio-metabolic (CM) risk refers to those factors6

that may increase the likelihood of developing vascu-7

lar events or diabetes. CM risk involves traditional fac-8

tors included in risk calculators used in clinical practice9

(e.g., arterial hypertension, dyslipidemia, and smok-10

ing) and emerging risk factors (e.g., abdominal obesity,11

inflammatory profile, and ethnicity) [2]. Noteworthy,12

most factors can be reduced by improving individual13

lifestyle.14

The identification of at-risk subjects in the general15

population is of paramount importance to prevent the16
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development of overt disease and of co-related com-17

plications, which bear social and economical conse-18

quences [3, 4]. A key issue is to provide people with19

tools for self-assessing risk factors [5]. Recently, great20

attention has been paid to eHealth and mHealth appli-21

cations [6]. Smart devices give new perspectives to CM22

risk prevention in every-day life settings: prevention is23

expected to evolve towards smart, individual and proac-24

tive strategies particularly focused to lifestyle improve-25

ment.26

In this paper, we define a strategy for CM risk as-27

sessment for primary prevention in the general pop-28

ulation. Our strategy leverages on statistical model-29

ing, data analysis and advanced sensor-based monitor-30

ing technology, and can be implemented as part of a31

non-invasive monitoring system placed at home or other32

daily-life settings, such as gyms and chemist’s shops. A33

reliable at-home monitoring system for CM risk would34

reduce the number of people in care offices (decreasing35

the burden on medical professionals), and increase ad-36

herence with individually-tailored prevention actions.37

Our approach consists of two pathways. First, we de-38

fine a clinical model of CM risk factors, based on up-39
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List of acronyms used in the paper.

CVD Cardiovascular disease

CM Cardiometabolic

ML Machine Learning

SEM Structural Equation Modeling

SOM Self Organizing Maps

DT Decision Trees

RF Random Forests

k-NN k-Nearest Neighbour

RHI Reactive Hyperemia Index

BMI Body Mass Index

LDL Low-Density Lipoprotein

HbA1c Hemoglobin A1c

AGE Advanced Glycation End-products

fRBC fraction of Red Blood Cell Count

UV Ultraviolet

LED Light Emitting Diode

MSI Multispectral Imaging

SE Standard Error

RMSEA Root Mean Square Error of Approximation

SRMR Standardized Root Mean Residual

CFI Comparative Fit Index

TLI Tucker-Lewis Index

to-date clinical knowledge and standard clinical prac-40

tice. Then, we define a set of measurements closely re-41

lated with clinical risk factors, which can be evaluated42

at home through non-contact sensors. We demonstrate43

that our sensor-based measurements can recognize at-44

risk subjects, and provide a proof-of-concept for a per-45

sonalized strategy for risk prevention.46

To define the clinical model of CM risk, we collect47

clinical data on a population of 68 healthy subjects,48

and carry out Confirmatory Factor Analysis via Struc-49

tural Equation Modeling (SEM) [7]. The analysis con-50

firms the presence of three latent variables correspond-51

ing to different risk categories, namely, risk related to52

anthropometric factors, glycolipid function, and vascu-53

lar function. SEM is gaining momentum in disciplines54

such as psychology, social and economic sciences, and55

also medicine [8], as a technique to analyse conceptual56

models and quantify the relationships among a network57

of factors. As opposed to black-box machine learning58

techniques, SEM explains how single factors contribute59

to intermediate latent variables and to the final risk out-60

come.61

After defining the clinical model, we select a set of62

sensor-based measurements which are closely related63

to the latent variables of the clinical model, and which64

can be evaluated non-invasively in the context of self-65

monitoring at home. The measurements are taken on fa-66

cial features, according to a semeiotic model of CM risk67

[9]. We show that the sensor-based measurements have68

significant correlation with the latent variables from69

clinical parameters. Therefore, they can be used in place70

of clinical parameters for non-invasive self-monitoring71

at home. Furthermore, we use statistical analysis and72

Self Organizing Maps (SOMs) to show that our mea-73

surements are able to identify subjects at-risk, thus sup-74

porting the development of self-monitoring systems that75

warn individuals about the onset of CM risk, enable76

them to act on individual risk factors, and trigger medi-77

cal examination when needed.78

Remarkably, our CM risk monitoring strategy is ex-79

plainable by design: as our sensor-based measurements80

correlate with latent clinical variables identified via81

SEM, they inherit the interpretability of the underlying82

clinical model.83

To sum up, our main contributions are:84

• defining a clinical model of CM risk. While there85

are many studies on CM risk factors, our study86

of associations via SEM analysis can contribute87

to shed light on the multifactorial etiology of CM88

risk;89

• defining sensor-based measurements that corre-90

late with clinical parameters and that can be91

non-invasively acquired at home or other out-of-92

hospital settings;93

• demonstrating that sensor-based measurements are94

able to identify at-risk subjects, in good agreement95

with clinical evaluation;96

• a proof-of-concept about the potential of integrat-97

ing a multi-sensing platform with proper data mod-98

eling strategies, for the definition of CM risk in-99

dicators in the context of personalized monitoring100

and primary prevention in the general population.101

The paper layout is as follows. Section 2 discusses102

the state of the art about CM risk assessment. Sec-103

tion 3 introduces the dataset. Section 4 describes the104

SEM model based on standard clinical data and the105

sensor-based measurements. Section 5 provides results106

about the SEM model estimation and its consistency107

with clinical evaluation of CM risk, the correlation of108
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sensor-based measurements with SEM latent variables,109

the clinical evaluation of CM risk, and the recognition110

of at-risk conditions by SOMs. Conclusions are drawn111

in Section 6.112

2. State of the art113

2.1. Cardio-metabolic risk indicators114

Several validated risk charts are reported in the med-115

ical literature [14, 15, 16, 17, 18, 19, 20]. Most risk116

scores use standard CVD risk factors (age, sex, smok-117

ing, blood pressure and cholesterol); some also incor-118

porate advanced markers on metabolic or homeostasis119

processes. As opposed to existing risk scores that tend120

to capture specific features, the risk model in the present121

paper is multi-faceted, as it takes into account the whole122

spectrum of CM risk, including both CVD and type2-123

diabetes.124

A recent survey [21] debates the use of CM risk125

scores in clinical practice on the basis of clinical out-126

comes. While the use of risk charts in sporadic visits127

by specialized medical professional may have a lim-128

ited positive effect, we hypothesize that a continuous129

and personalized assessment may guarantee a thorough130

monitoring of risk factors and a timely delivery of alerts.131

Several solutions have been devised so far for the re-132

mote monitoring of chronic patients [22, 23, 10], while133

few attempts target CM risk prevention in healthy sub-134

jects [11]. None of these works has yet defined a per-135

sonalized risk assessment tool.136

In this paper, we present a proof-of-concept for137

a personalized preventative solution based on self-138

monitoring, through measurements computed at home139

via contact-less, non-invasive sensor measurements.140

Table 1 compares our proposal with the works dis-141

cussed in this section.142

2.2. Machine learning for cardio-metabolic risk assess-143

ment144

Recent works have tried to improve the accuracy of145

existing CM risk scores via Machine Learning (ML).146

The authors of [12] frame risk prediction as a classi-147

fication problem and compare three ML methods with148

the HellenicSCORE, on a dataset that comprises demo-149

graphic, metabolic and biometric variables. The ML150

methods are k-Nearest Neighbours (k-NNs), Decision151

Trees (DTs) and Random Forests (RFs). ML meth-152

ods do not outperform the HellenicSCORE. The authors153

also comment on k-NNs and Random Forests classifiers154

being not easily intelligible, and making it hard to ex-155

plain classification results. On the other hand, Deci-156

sion Trees are easier to understand, yet more simplistic157

when compared to the other models. Another study [13]158

investigates whether ML can improve the accuracy of159

risk prediction within a large general primary-care pop-160

ulation. The authors compare the prediction accuracy161

of the ACC/AHA index [24] against logistic regression,162

Random Forests, gradient boosting machines, and artifi-163

cial neural networks (ANN). The results show ML algo-164

rithms outperform the ACC/AHA index. Nonetheless,165

the best performance is obtained by an artificial neural166

network, which suffers from the so-called “black-box”167

effect, despite the use of explanatory visualization tech-168

niques.169

On the contrary, we model CM risk to be explain-170

able by design, thanks to the use of SEM, a data-driven171

approach suitable to identify latent variables and their172

influence in an easily interpretable way.173

2.3. SEM techniques174

SEM is a technique to discover pathways of associ-175

ations between latent and observed variables, by tak-176

ing into account collinearities in the data. We refer the177

reader to [7] for a comprehensive description.178

Khodarahmi et al [25] use SEM to assess the as-179

sociation of adherence to a healthy-eating index with180

socio-demographic factors, psychological characteris-181

tics, and CM risk factors among obese individuals.182

Lewlyn et al. [26] reveal via SEM the positive asso-183

ciation of cigarettes smoked per day, alcohol consumed184

per week, and diastolic blood pressure with hyperten-185

sion and coronary heart disease. Shakibaei et al. [27]186

use SEM to investigate the integration of standard med-187

ical data to assess CM risk in clinical settings.188

SEM techniques have been proven effective and ro-189

bust on datasets of relatively small size. Another major190

advantage of SEM is that it can be used when no su-191

pervisory information is available on the data, as in our192

context.193

3. Dataset194

To set up the clinical model of CM risk, and then195

test the sensor-based self-monitoring strategy, we col-196

lected data about a population of 75 volunteer subjects197

in overall healthy conditions. Being healthy does not198

exclude the presence of potential CV risk factors, and199

we aim indeed at primary prevention in the general pop-200

ulation. In particular, our population was chosen on the201

basis of lack of physical and mental disease at least for202

6 months before enrollment; care was taken to exclude203

subjects under any sort of medical treatment or previ-204

ous autoimmune or neoplastic disease and specifically205

3



Table 1: Positioning our proposal within the state of the art. Top: with respect to delivered output and target population. Bottom: with respect to
methodological aspects and reference clinical indicators.

Reference Delivered output Target

[10] Decision Support System Chronic patients, Follow up

[11] Digital platform Chronic patients, Secondary prevention

Ours Multisensory platform, CM Risk model Healthy subjects, Primary prevention

Reference Methods Reference clinical indicators Target

[12] k-NN, DT, RF HellenicSCORE Primary prevention

[13] Logistic Regression, RF, ANN ACC/AHA index Primary prevention

Ours SEM, SOM Novel, multi-faceted clinical model of CM risk Primary prevention

Table 2: Clinical parameters for CM risk assessment and their statistics, grouped by risk factors.

Male (30) Female (38) Total P-value

Anthropometric factors

Body Mass Index Class

<25 23.3% 36.8% 30.9%

0.27825 to 29.9 50.0% 31.6% 39.7%

>30 26.7% 31.6% 29.4%

Waist Circumference (cm) 25 to 29.9 50.0% 31.6% 39.7% 0.001

Hip Circumference (cm) 25 to 29.9 50.0% 31.6% 39.7% 0.787

Fat Mass 25 to 29.9 50.0% 31.6% 39.7% 0.001

Glycolipid factors

Cholesterol Levels mean ±sd 195.8 ±33.1 200.2 ±42.6 198.3 ±38.5 0.645

LDL (mg/dl) mean ±sd 122.1 ±28.7 122.3 ±32.9 122.2 ±30.9 0.974

Glucose (mg/dl) mean ±sd 95.3 ±12.4 88.5 ±9.8 91.5 ±11.5 0.140

HbA1c (mmol/mol) mean ±sd 36.6 ±3.5 36.4 ±4.0 36.5 ±3.8 0.875

Triglycerides mean ±sd 117.8 ±61.3 92.6 ±47.9 103.7 ±55.2 0.061

Vascular function Reactive Hyperemia Index mean ±sd 2.1 ±0.5 2.4 ±0.7 2.3 ±0.6 0.118

those with known systemic hypertension, hypercholes-206

terolemia, diabetes. Subjects with increased body mass207

index alone were not excluded keeping in mind that the208

category of healthy obese exist. In 68 enrolled subjects209

full data were available for the present study. At base-210

line, all subjects underwent a complete medical history.211

Then, a physical examination followed. The data anal-212

ysed in this paper were collected once for each subject.213

The characteristics of the study population and the data214

collected are described in Appendix A.215

Our working hypothesis is that CM risk can be de-216

scribed in terms of three main risk factors: anthropo-217

metric factors, glycolipid factors, and vascular function.218

Table 2 reports the set of clinical parameters used in the219

present study for CM risk assessment and some basic220

statistical values, with the parameters grouped accord-221

ing to the three risk factors above mentioned:222

• Antropometric factors: four anthropometric pa-223

rameters that are sensible to obesity and over-224

weight, and that are commonly used in clinical225

practice;226

• Glycolipidic factors: abnormal lipid metabolism227

and hyper-glycaemia, which are recognized CM228

risk factors;229

• Vascular function: the Reactive Hyperemia In-230

dex (RHI) measured by pulse amplitude tonome-231

try [28], to measure endotelial dysfunction, which232

is a major physio-pathological mechanism corre-233

lated with CM risk factors, leads towards coro-234

nary artery disease, and is involved in several dis-235
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ease processes (e.g. hypertension, hypercholes-236

terolemia, and diabetes).237

4. Methods238

Section 4.1 describes our modeling strategy to de-239

fine latent variables on top of the clinical measurements240

listed in Table 2. Then, Section 4.2 defines the sensor-241

based counterparts for the clinical latent variables, to be242

computed in the context of CM risk self-monitoring.243

4.1. Identifying latent variables in CM risk244

In terms of SEM, a model of CM risk can be based245

on a set of linear equations that relate observed clinical246

parameters to latent variables representing different risk247

components [7].248

As observed above, we focus on CM risk related to249

anthropometric factors, glycolipid factors, and vascu-250

lar function. Since for vascular function we have a sin-251

gle observed parameter (RHI), no latent variable is in-252

troduced. For the other two risk components (anthro-253

pometric and glycolipidic), we model the relations be-254

tween observations and latent clinical variables as in255

Figure 1, by defining the two latent variables:256

• Anthropometric factors variable, depending on257

Body Mass Index (BMI), Waist Circumference,258

Hip Circumference, and Fat Mass;259

• Glycolipidic factors variable, depending on LDL260

Cholesterol level, Glucose, Glycated hemoglobin,261

and Triglycerides.262

Using the notation in Table 3, we denote with {λi}
4
i=1

and {γi}
5
j=1 the clinical parameters, withΛ and Γ the cor-

responding latent variables. Therefore, we can write the
following structural equations:

λi = bi + ciΛ + ϵi, i = 1, . . . , 4

γ j = d j + e jΓ + ϵ j, j = 1, . . . , 5

where bi, ci, d j, e j are the model coefficients and ϵs are263

noise terms.264

In Section 5 we estimate the model coefficients by265

fitting the model to the population described above, and266

analyse how the single observed variables (correspond-267

ing to clinical parameters) contribute to each latent risk268

factor.269

4.2. Non-invasive self-monitoring of CM risk via270

sensor-based measurements271

We propose a set of sensor-based measurements as272

counterparts for the two latent clinical variables (anthro-273

pometric and glycolipidic factors variables) and for the274

Table 3: Symbol convention for SEM modelling

Variable name Latent Variable Measurement

Anthropometric factors Λ

BMI Class λ1

Waist Circ. λ2

Hip Circ. λ3

Fat Mass λ4

Glycolipidic factors Γ

Cholesterol Levels LDL γ2

Glucose γ3

HbA1c γ4

Triglycerides γ5

vascular function parameter (RHI). The measurements275

can be non-invasively evaluated via a self-monitoring276

device. We use the multi-sensing system developed in277

the context of the European project SEMEOTICONS.278

The system is called Wize Mirror, as it has the ap-279

pearance of a mirror to easily fit into daily-life settings280

(Figure 2). The Wize Mirror includes a 3D acquisi-281

tion module with a low cost depth sensor for face de-282

tection, reconstruction, and morphometric analysis; and283

a multispectral imaging (MSI) module with five com-284

pact monochrome cameras with band-pass filters at se-285

lected wavelengths and two computer-controlled LED286

light sources [29]. Three prototypes of the Wize Mirror287

were deployed in three clinical sites (Pisa, Milan and288

Lyon), where sensory data were acquired.289

Our sensor-based measurements for CM risk assess-290

ment derive from the face semeiotic model of CM risk291

in [9]. They are listed below, grouped according to the292

three risk categories identified in the previous sections.293

All measurements are non-invasive and contact-less:294

• Anthropometric measurement (Wize Mirror Mor-295

phoE): We compute Wize Mirror MorphoE as the296

maximal length of curves resulting from intersect-297

ing the 3D face surface and a set of spheres cen-298

tered in the nose tip and with increasing radius299

(Figure 3.a). This measure has been shown to cor-300

relate with standard weight-related measurements301

(weight, body mass index, waist and neck cir-302

cumference), and therefore is an indicator of over-303

weight and obesity [30];304

• Glycolipidic measurement (Wize Mirror AGE):305

Wize Mirror AGE quantifies AGE (Advanced Gly-306

cation End-products) deposits of skin tissue, which307

are favoured by metabolic alterations due to dia-308

betes [31]. AGE in sub-cutaneous layer can be de-309

tected via autofluorescence stimulated by UV light310

[32]. We use the technique in [33], based on the ac-311
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Anthropometric factors

BMI

Hip Circ.

Waist Circ.

Fat Mass

! 1

! 4

! 3

! 2

Glycolipidic factors

Cholesterol

Glucose

LDL

HbA1c

Observed variables

Tryglicerides

! 1

! 4

! 3

! 2

! 5

Observed variables

Figure 1: Latent clinical variables (ellipses) and their relation to clinical observations (rectangles). ϵiss are noise terms.

Figure 2: The Wize Mirror prototype.

quisition of multispectral images of the face during312

UV exposure (Figure 3.b);313

• Endothelial Dysfunction measurement (Wize Mir-314

ror ENDO): Our sensor-based measurement Wize315

Mirror ENDO is based on the analysis of mi-316

crocirculatory blood flow after local heating [34].317

Changes in skin fraction of Red Blood Cell Count318

(fRBC) during local heating are related to reactive319

hyperemia and can be used as indicators of en-320

dothelial function [35]. fRBC can be measured re-321

liably using MSI, after heating the face skin to the322

temperature of 39°C for about 10 minutes through323

a computer-controlled heater and an IR thermome-324

ter measuring skin temperature.325

In Section 5.2 we demonstrate our measurements are326

positively correlated with the clinical variables, and that327

they can identify at-risk subjects in our population. The328

ability to discriminate between normal and risk con-329

ditions is assessed via Self-Organizing Maps (SOMs)330

[36]. Details on SOMs are given in Appendix B.331

5. Results332

5.1. SEM model333

Estimation of SEM coefficients334

We estimate the model coefficients on the SEMEOTI-335

CONS’ data-set. The values of the standardized regres-336

sion coefficients are reported in Table 4. The regres-337

sion coefficients show how the single observed vari-338

ables (corresponding to clinical parameters) contribute339

to each latent risk factor. The most important predic-340

tors for the anthropometric factor score were Body Mass341

Index (standardized regression coefficient β = 0.939,342

standard error S E = 0.027, significance p < 0.0001)343

and Hip Circumference (β = 0.829, S E = 0.043,344

p < 0.0001). For the glycolipid factor score the HbA1c345

(mmol/mol) (β = 0.741, S E = 0.093, p < 0.0001), and346

the Cholesterol levels (β = 0.655, S E = 0.098, p <347

0.0001) were the most relevant predictors. The Struc-348

tural Model Fit indices (Root Mean Square Error of Ap-349

proximation, RMSEA; Standardized Root Mean Resid-350

ual, SRMR; Cmparative Fit index, CFI; Tucker–Lewis351

Index, TLI) indicate that the proposed models fit the352

data adequately [37].353

Model evaluation354

To check the consistency of SEM-derived factor355

scores with clinical findings, we test if the factor scores356
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a. b.

Figure 3: a. The set of curves used to compute the Wize Mirror MorphoE, indicative of fatness or obesity. b. Auto-fluorescence map obtained by
UV light exposure. The skin in forehead and cheeks is particularly responsive to the stimulation due to the accumulation of AGEs.

Table 4: Regression coefficient of the SEM model built on top of clinical parameters.

Regression coefficients Fit Indices

Factor Observed variables
Standardized

SE P> |z|
Standardized Regression Coeff.

RMSEA SRMR CFI TLI
Regression Coeff. (95% Confidence Interval)

Anthropometric

Body Mass Index (BMI) 0.939 0.027 0.000 0.885 to 0.993

0.075 0.004 0.935 0.917
Waist Circ. 0.787 0.054 0.000 0.681 to 0.893

Hip Circ. 0.829 0.043 0.000 0.745 to 0.914

Fat Mass (Bod Pod) 0.684 0.071 0.000 0.545 to 0.825

Glycolipid

Cholesterol Levels 0.655 0.098 0.000 0.462 to 0.847

0.098 0.042 0.985 0.963

LDL (mg/dl) 0.643 0.099 0.000 0.448 to 0.838

Glucose (mg/dl) 0.650 0.104 0.000 0.447 to 0.854

HbA1c (mmol/mol) 0.741 0.093 0.000 0.558 to 0.924

Triglycerides 0.565 0.113 0.000 0.344 to 0.786

are able to place the subjects in our population in differ-357

ent CM risk categories. A cardiologist grouped the 68358

subjects into three classes of CM risk: no risk (green),359

mild to moderate risk (yellow), high risk (red). The360

grouping was performed for each of the three latent vari-361

ables: anthropometric, glycolipidic, and vascular func-362

tion. The colorization is based on the clinical parame-363

ters related with risk factor: green if all parameters fall364

within normal limits; yellow if at least one parameter is365

slightly outside the upper limit; and red if at least one366

parameter is well above upper limits. It is worth noting367

that Vascular function has two groups (red and green)368

only. This is due to the fact that a single threshold is369

used in clinical practice for RHI. Fourteen subjects were370

classified as green, fourteen as yellow, and forty as red.371

The box and whiskers plots in Figure 4.a show how372

the latent variables identified via SEM were able to dis-373

criminate subjects in different risk categories. This con-374

firmed the ability of SEM to correctly identify latent375

variables.376

5.2. Evaluation of sensor-based measurements377

Correlation with clinical risk factors378

We analyse the correlation between sensor-based379

measurements and the latent variables from clinical pa-380

rameters.All the three measurements have significant381

positive correlation with their clinical counterparts, with382

p-value less than 10−2. In particular, the anthropomet-383

ric sensor measurement Wize Mirror MorphoE has a384

Pearson correlation of 0.559 with the anthropometric385

clinical factor score; the glycolipidic sensor measure-386

ment Wize Mirror AGE has a Pearson correlation of387

0.349 with the glycolipid clinical factor score; the en-388

dothelial dysfunction sensor measurement Wize Mirror389

ENDO has a Pearson correlation of 0.648 with the en-390

dothelial dysfunction clinical factor score. The corre-391

lation coefficients and their statistical significance for392

all three sensor-based measurements show their suit-393
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a.

b.

Figure 4: a.) Box and whiskers plots for clinical variables (two latent variables and RHI) on the study population. The clinical variables are able
to separate subjects having no risk (green) from subjects with moderate (yellow) or high (red) risk. It worth noting that Vascular function has two
groups (red and green) only, because a single threshold is commonly accepted in clinical practice for RHI. The reader should notice that RHI is
decreasing for impaired endothelial function. b.) Box-plots of sensor-based descriptors (Wize Mirror MorphoE, Wize Mirror AGE, Wize Mirror
ENDO) for risk (red) and no-risk groups (dark green). The dark green group includes both green and yellow group for clinical data

ability in place of clinical parameters for non-invasive394

self-monitoring.395

Usefulness for CM risk self-monitoring396

We investigate whether sensors-based measurements397

are able to assess individual CM risk, and thus trigger398

proper warnings. First, we check whether the sensor399

measurements are able to identify people at risk. As400

we did with clinical factor scores, we analyse box and401

whiskers plots on the study population, for each sensor402

measurement. In order to provide a clear cut separation403

between subjects with and without one or more CM risk404

factors, the sensor-based measurements are categorized405

in two groups only: dark green (including people with406

normal or slightly outside normal values, i.e., includ-407

ing green and yellow subjects in the previous classifi-408

cation) and red (absolutely outside normal range, same409

as in the previous classification). The box and whiskers410

plots of sensor-based measurements are shown in Fig-411

ure 4.b. Median values are significantly different in the412

two groups for all three measurements. Though, some413

overlapping exists between the groups for MorphoE and414

ENDO. This was expected, as our population mainly in-415

cludes healthy subjects, and those with history or cur-416

rent overt cardiovascular diseases and diabetes were ex-417

cluded.418

SOM analysis419

We train 2D Self Organizing Maps on the sensor-420

based measurements Wize Mirror MorphoE, Wize Mir-421

ror AGE and Wize Mirror ENDO. The training is run422

ten times with random weight initialization. We refer423

to a SOM with 7 × 7 units, which is coherent with the424

data set size and exhibits a good compromise between425

data representation and overall accuracy in recognizing426

different risk condition.427

Figure 5.a depicts the distribution of each weight di-428

mension in the network space (weight-plane maps). A429

clear spatial arrangement of weight values has emerged430

after training.431

To assess the discrimination capabilities of the net-432

work in discriminating different risk conditions, we ex-433

amine the distribution of winning units with respect to434

different data categories. As before, we consider dark435

green and red subjects, and evaluate the hit maps for436

the two group. In the left panel of Figure 5.b we have437

the hits map for normal (dark green) subjects, while in438

the middle panel the hit map for at risk (red) subjects439

is shown. The two groups of responder units are rather440

separated and suggest that the network can discriminate441

between the two different risk conditions.442

Using a majority voting scheme [38], we labeled the443

units as representative of the dark green group (lower444

CM risk) and red group (higher risk). The resulting la-445

belling is reported in the right panel of Figure 5.b. Ac-446
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a.

b.

Figure 5: a) Maps of SOM weight components. Darkest colors indicate smallest values while light colors denote largest ones. b) Left: hits map for
green subjects, middle: hit map for Red subjects, right: map labeling as obtained using majority voting.

cording to this labelling scheme, we observe the classifi-447

cation performance detailed in Table 5 below. Accuracy,448

sensitivity and specificity are all larger than 82%, denot-449

ing good recognition capabilities of subjects at risk.450

To evaluate SOM behaviour with respect to size, Ta-451

ble 6 reports the performance for SOMs of varying di-452

mensions, coherent with the dataset size: from 5 × 5 to453

9 × 9 units. While maps with size below 6 × 6 are less454

accurate, maps with dimension 7 × 7 or higher show455

better performance. The 7 × 7 map has a number of456

units which guarantees good accuracy while containing457

the risk of overfitting, given the number of subjects in458

our dataset.459

6. Discussions and Conclusions460

ICT technologies can support efficient strategies461

against the spread of CVD and CM risk, by integrating462

multi-sensing platforms and data modelling to derive a463

personalized evaluation of risk conditions. In this work,464

we use data from the EU project SEMEOTICONS to465

provide a proof of concept of a sensor-based strategy to466

recognize the presence of one or more CM risk factors467

in individuals. The aim is to increase the awareness in468

Table 5: Confusion matrix for risk classification by SOM.

Clinical evaluation Lower risk Higher risk Total

SOM classification

Lower risk 23 7 30

Higher risk 5 33 38

Total 28 40 68

True Positives: 33

False positives: 5

True negatives: 23

False negatives: 7

Accuracy: 0.824 (23+33)/68

Sensitivity 0.825 33/40

Specificity 0.821 23/28

apparently healthy subjects about risk factors for dis-469

eases with high rates of morbidity and mortality. Our470

approach is based on two different pathways. From a471
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Table 6: Results for risk classification by SOM, according to different
map sizes.

Size Accuracy Sensitivity Specificity

5 × 5 0,676 0,700 0,643

6 × 6 0,779 0,775 0,786

7 × 7 0,824 0,825 0,821

8 × 8 0,838 0,850 0,821

9 × 9 0,853 0,850 0,857

clinical view point, data collected from volunteers are472

used to set a simple model of the main risk factors, rep-473

resented by clinical latent variables. This model is im-474

plemented according to the SEM methodology, which475

is explainable by design, and works well with limited476

data and no supervisory information. The model con-477

sistency with clinical findings is qualitatively reported.478

From the individual monitoring view point, we adopt479

sensor-based measurements of face signs. We demon-480

strate that they are closely related to the latent variables481

of the clinical model, and that they can identify high-482

risk subjects with respect to both single risk factors and483

overall risk.484

Our results are preliminary, due to the limited number485

of sensor-based measurements tested, the use of a pro-486

totype for their acquisition, and the relatively small size487

of the dataset. Nevertheless, our results are promising,488

especially in light of the fact that identifying at-risk sub-489

jects among individuals in overall healthy conditions is490

not an easy task.491

In the future, we plan to include additional sensor-492

based measurements, related to both physical and psy-493

chological aspects relevant to CM risk (e.g., blood pres-494

sure data, pulse-oxymetry, heart rate and heart rate vari-495

ability, facial signs of stress and anxiety). This is ex-496

pected to improve the sensitivity and specificity of our497

risk assessment procedure [39, 40]. Another line of498

research is the stability of the considered analysis to499

sensor measurement faults [41]. Moreover, encouraged500

by the results on the dataset from the SEMEOTICONS501

project, we plan to enlarge the population size. This502

would also allow us to experiment with different data503

analysis and learning techniques.504

Our results show that a sensor-based, non-invasive as-505

sessment of CM risk is feasible for primary prevention.506

Therefore, our findings contribute to strengthen the role507

of technology and data modeling for out-of-hospital in-508

dividual monitoring. In the era of precision medicine,509

the approach we presented may provide “the right treat-510

ment to the right person at the right time”.511

7. Summary table512

• CVD represents the world’s leading cause of death.513

CM risk refers to those factors that may increase the514

likelihood of developing CVD or diabetes.515

• Smart devices give new perspectives for the assess-516

ment of CM risk in every-day life settings.517

• A clinical model of CM risk is derived using the data518

from the population of the EU project SEMEOTI-519

CONS (68 healthy subjects). Using SEM method520

three variable are defined relating to Antropometric521

factors, Glycolipid factors and Vascular function. In522

the same population, sensor measurements related to523

antropometry, skin auto-fluorescence and endothelial524

function are taken on subject face using the sensors525

of the Wize Mirror system [29].526

• The sensor-based measurements have significant pos-527

itive correlation with the latent variables from clinical528

parameters. Using SOMs, our measures are able to529

identify subjects at-risk in good agreement with clin-530

ical evaluation.531
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Appendix A. Dataset548

The data come from an acquisition campaign in549

the context of the EU-funded project SEMEOTI-550

CONS (FP7 Project - SEMEiotic Oriented Technology551

for Individual’s CardiOmetabolic risk self-assessmeNt552

and Selfmonitoring, http://www.semeoticons.eu, GA.553

611516). Volunteers were recruited through local ad-554

vertisements or during an outpatient visit in one of three555

clinical centers (Pisa, Lyon and Milan). Subjects were556

considered eligible according to the following inclu-557

sion criteria: age in-between 25 and 60 years; will-558

ing to participate in the study; overall healthy condi-559

tions, and under no medical treatment at study inclusion.560

As we target primary prevention in the general popula-561

tion, study exclusion criteria were represented by his-562

tory or current overt cardiovascular or cerebrovascular563

disease and/or diabetes. Nevertheless, CM risk factors564

were not assessed before enrollment. Ethical approval565

for the study was received from the Ethics Commit-566

tee for Clinical Trials of Northwestern Tuscany (Study567

n° 213/201, final approval date: 19/11/2015, Name of568

the trial: SEMEOTICONS, ClinicalTrials.gov Identi-569

fier: NCT02818504). Written informed consent was570

signed by all participants prior to study enrolment in571

front of a Medical Doctor. All study procedures were572

designed and conducted in accordance with the tenets573

of the Declaration of Helsinki.574

At baseline, after enrollment all subjects underwent575

a complete medical history. Table A1 reports the clin-576

ical and socio-demographic characteristics of the study577

population (age, gender, clinical history, lifestyle).578

Table A1: Clinical and socio-demographic characteristics of the study
population, made of 30 male and 38 female subjects.

Male Female Total p-value

Age (Mean ±sd) 46.3 ±9.9 45.0 ±10.6 45.6 ±10.3 0.614

Smoker
No 96.7% 81.6% 88.2%

0.055
Yes 3.3% 18.4% 11.8%

Diabetes
No 93.3% 97.4% 95.6%

0.421
Yes 6.7% 2.6% 4.4%

Cholesterol
No 66.7% 78.9% 73.5%

0.254
Yes 33.3% 21.1% 26.5%

Hypertension
No 90.0% 92.1% 91.2%

0.761
Yes 10.0% 7.9% 8.8%

The physical examination consisted of: anthropomet-579

ric parameters (height, weight, waist and hip circum-580

ference); body composition analysis (lean mass and fat581

mass) by an air displacement pletismograph BodPod582

(Cosmed, USA); peripheral venous blood samplings583

(total, HDL and LDL cholesterol, triglycerides, glu-584

cose, insulin, HbA1c, haemoglobin, creatinine); AGEs585

(Advanced glycation end products) assessed by forearm586

skin autofluorescence (AGE reader DiagnOptics Tech-587

nologies, The Netherlands); endothelium-dependent va-588

sodilatation via peripheral arterial tonometry (Endo-589

PAT2000, Itamar Medical Ltd., Caesarea, Israel); heart590

rate recorded by a standard 12-lead ECG; blood pres-591

sure measured non-invasively by a manual sphygmo-592

manometer and averaged over three consecutive mea-593

sures.594

Appendix B. SOM network595

SOMs are unsupervised neural networks having the596

capability to build accurate, but low-dimensional, topol-597

ogy preserving-maps of the input data space [36]. This598

means that similar inputs data tend to excite neighboring599

units in the map. The map space is defined beforehand,600

usually as a finite two-dimensional region where a set601

of nodes mi, i = 1, . . . ,N is arranged in a regular grid.602

Each node is fed by input data xk via a weight vector wi.603

For a given input xk, the output of the network is defined604

by the best matching (or winning) unit mc obtained by:605

c = argmink(||wk − x||)

The weight wc represents the network response and606

is a point in data space.607

During training, nodes in the map space stay fixed,608

while their weight vectors are moved toward the in-609

put data without spoiling the topology induced from610

the map space. During a training epoch all input pat-611

terns are presented to the network. For each pattern,612

the weight of mc unit and neighboring units are adapted613

according to a predefined neighborhood function hck614

(Gaussian is a common choice for h). In this work we615

adopted the batch version of the SOM adaptation algo-616

rithm [36] leading to the adaptation rule:617

wi =

∑
k hcixk∑

k hci

This equation ensures a faster convergence and pro-618

vides more stable results with respect to stochastic adap-619

tation. After training, SOM can build accurate topo-620

graphic representation of the input space catching sig-621

nificant details including possible data clustering. In622

particular, each weight vector can be viewed as a pro-623

totype in data space as it tends to respond to a set of624

“near” input points.625
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glycated end product accumulation in skin using auto fluores-804

cence multispectral imaging, Comput Biol Med 85 (2017) 106–805

111. doi:10.1016/j.compbiomed.2016.04.005.806

[34] M. J. Joyner, N. M. Dietz, J. T. Shepherd, From belfast to807

mayo and beyond: the use and future of plethysmography to808

study blood flow in human limbs, Journal of Applied Physiology809

91 (6) (2001) 2431–2441. doi:10.1152/jappl.2001.91.6.2431.810

[35] S. Bergstrand, M.-A. Morales, G. Coppini, M. Larsson,811
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