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Natural products (NPs) are always a promising source of novel drugs for tackling
unsolved diseases [1–3]. Natural molecules have addressed the rational design of many
synthetic small-molecule drugs [4–6], despite their chemotypes having higher structural
complexity, heavier molecular weights (often > 500), more sp3 carbon atoms which amplify
tridimensionality and stereocenters, more oxygen atoms, fewer nitrogen and halogen
atoms, more H-bond acceptors and donors, marked hydrophilicity, and greater molecular
rigidity [7]. Natural molecules are likely still inspiring drug discovery due to their incredible
scaffold diversity, making them extremely unique and selective in the chemistry field [8].
Thus, developing new natural bioactive compounds and repurposing approved natural
drugs are hot topics in drug discovery and medicinal chemistry [9]. Since most compounds
exhibit synergistic effects [10] or share multiple targets [11,12], traditional approaches
to finding potential drug candidates, such as bioassay-guided fractionation, can reduce
their therapeutic efficacy. As a result, new techniques are required to produce drugs with
high and multi-target activity as well as improved bioavailability [13–15]. For example,
molecular biological techniques can increase the availability of novel compounds produced
by bacteria or yeasts [16,17], and virtual screening approaches can generate screening
libraries of natural compounds resembling drug-like compounds [18–21] or predict their
biological activity and related molecular targets with chemical accuracy [22,23]. Moreover,
advances in metabolomics have also allowed us to identify active compounds from natural
product mixtures as well as to reveal synergistic effects in complex mixtures [24,25].

We gathered twenty articles for this Special Issue that discuss the discovery of novel
bioactive NPs with potential for medical purposes. The application of synthetic biology
with all its multidisciplinary aspects (bioinformatics, data mining, pathway refactoring,
cell factories, DNA editing, and computational chemistry) was preferred to allow the
identification of novel drug molecules from microbial strains or bioresources that might
escape classical top-down strategies.

The plant kingdom is a significant source of molecules with potential therapeutic
benefits for humans; bioactive molecules derived from plants often exhibit clear therapeutic
profiles and can be employed as drugs or starting points to derive synthetic drugs [26–29].
Several recent publications on the biological activity of plant compounds are collected in
this Special Issue.

In particular, Sun et al. [30] extracted and purified the lipophilic diterpene Tanshinone
IIA (TAN) from Salvia miltiorrhiz Bunge and evaluated its role in maintaining chondrocyte
viability and promoting cartilage regeneration in osteoarthritis patients. TAN was already
recognized in herbal medicine for its anti-inflammatory, antioxidant, and vascular endothe-
lial cell-protective properties. Likewise, Schwarz et al. [31] investigated the mode of action
of the steroid sapogenin diosgenin, previously identified in the Chinese plant Dioscoreae
rhizoma, in dampening the autoimmune inflammatory response in T helper 17 (Th17)-
driven pathologies. By combining methodological approaches including gene expression
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analysis and in silico analyses, the authors revealed diosgenin as an inverse agonist of
the key transcription factors leading to Th17 cell differentiation and metabolism. Kim
and colleagues [32] demonstrated that the plant-derived ferulic acid acts as a therapeutic
agent for wound healing via inhibiting β-catenin in keratinocytes and activating Nrf2 in
wound-induced inflammation.

Florets of Safflower (Carthamus tinctorius) were identified as a source of polyacetylene
glycosides, which are responsible for preventing excessive lipid accumulation in obesity
through the inhibition of adipocyte differentiation, reducing the transcription levels of
mature adipocyte marker genes (Adipsin and Fabp4), promoting the expression of lipolytic
genes, and downregulating the expression of lipogenic genes [33].

The application of plant-derived compounds (such as polyphenols) in therapies is
often hampered by several factors including structural instability; poor bioavailability,
gastric solubility, and residence time; and fast metabolization in the liver [34–36]. Through
the combination of experimental (spectroscopy and calorimetry) and simulation techniques
(docking and molecular dynamics simulations) the glycosyl derivate of the flavonoid rutin
(quercetin-3-O-rutinose) was found to exhibit comparable potency to the parental molecule
rutin and an estimated higher bioavailability. Thus, the results of this work were proposed
as the basis for the development of quercetin-like antiviral compounds in coronavirus
infection management [37].

Like quercetin, the alkaloid antitumoral camptothecin (CPT) shows weak pharmacoki-
netic and pharmacodynamics properties [38]. Nanotechnology is perfect for improving CPT
bioavailability; thus, the review by Ghanbari-Movahed et al. provided a comprehensive
and critical evaluation of the novel, efficient nano-CPT formulations being developed for
cancer therapy [38]. By contrast, biotransformation of the antioxidant resveratrol (RSV)
by the entomopathogenic fungus Beauveria bassiana yielded a safer RSV metabolite, the
stilbene glycoside resvebassianol A [39].

As widely reported, NPs can exert multiple biological activities. For example, the
anti-inflammatory phenolic compound Apocynin, an inhibitor of NADPH-dependent
oxidase (NOX), was suggested to interact with plasmalemmal ionic channels by perturb-
ing ionic currents in excitable cells [40]. However, more evidence is needed to under-
stand the molecular-level nature of interactions affecting neuroendocrine, endocrine, or
cardiac function.

Food proteins from animals and plants are widely exploited for cryptic bioactive
peptides exhibiting multi-target activities [41–50]. Gambacorta et al. [51] evaluated the
inhibitory activity of the whey-derived bioactive small peptides MHI, IAEK, and IPAVF
against the SARS-CoV-2 3C-like protease (3CLpro) for the first time. These peptides were
previously obtained by the enzymatic hydrolysis of whey proteins and displayed ACE-
inhibitory activity [22]. The authors integrated theoretical and experimental techniques,
first performing molecular docking studies to rationally evaluate the putative chance of
binding and then in vitro testing for validation. The results confirmed the highest antiviral
activity for IPAVF and IAEK, providing new opportunities for the development of dual-
target small peptides endowed with antiviral 3CLpro- and ACE-inhibitory activities.

Using a machine learning approach, Casey et al. [52] predicted five novel anti-diabetic
peptides (pep_1E99R5, pep_37MB3O, pep_ANUT7B, pep_RTE62G and pep_QT5XGQ)
from a set of 109 peptides. Although further work is required to elucidate their bioavail-
ability, mechanism of action, and clinical efficacy, the authors presented pep_1E99R5 as the
most active peptide, affecting blood glucose metabolism. Bioactive peptide sequences can
also be re-designed to obtain novel drugs in cancer therapy, as reported by [53–55]. Thus,
an in silico peptide design optimization process was applied to identify active peptides
from the C-terminal of azurin, an anticancer bacterial protein produced by Pseudomonas
aeruginosa. Due to its molecular properties, CT-p19LC was predicted to exhibit the great-
est anticancer activity. This was confirmed in experimental trials and, therefore, it was
suggested for the development of novel anticancer strategies.
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Multidisciplinary approaches effectively reveal the synthesis pathways of NPs [56,57]
or discover new molecules that might be used as templates to develop novel biotherapeu-
tics [58,59].

Rugen et al. [60] collected venom from the assassin bug Rhynocoris iracundus and
investigated its composition and bioactivity in vitro and in vivo to exploit it for biomed-
ical applications. Assassin bug venom induced neurolysis, caused the paralysis and
melanization of Galleria mellonella larvae and pupae, and exhibited antibacterial activity.
The combined proteo-transcriptomic approach could successfully identify molecules re-
sponsible for biological effects (redulysins, kininogens, chitinases, hemolysins, and Ptu1
family peptide toxins).

Among 35 phytochemicals, sennoside B from Cassia angustifolia was predicted as a
TNF-α inhibitor by a competitive binding screening assay coupled with analytical size
exclusion chromatography and liquid chromatography–tandem mass spectrometry (LC-
MS). Molecular docking was also performed to determine the binding mode of sennoside
B to TNF-α, confirming its activity in TNF-α-induced HeLa cell toxicity assays [61]. Simi-
larly, molecular docking revealed that flavonoids (apigenin and luteolin) bound to histone
deacetylases (HDACs), with important implications in epigenetic therapy to regulate cel-
lular gene expression [62]. In addition, computational methods were applied to design
modified flavonoids endowed with high monoamine oxidase (MAO) B affinity for neu-
rological disorder treatment [63,64], as well as to identify new potential scaffolds against
Cyclin-dependent kinase 7 (CDK7) for the development of novel antitumoral strategies [65].

The bioactive compounds found in natural products are also a valuable source of
inspiration for new drug synthesis [14,66–68], such as the marine-inspired potent kinase
inhibitors with antiproliferative activities described by [69]. NPs can also be used to
chemically modify the molecular structure of existing drugs to improve their activity or
pharmacokinetics properties. For example, Neganova et al. [70] found that the conjugation
of sesquiterpene lactones, extracted from Inula helenium L. (Asteraceae), reduced the side
effects of antitumoral canthracycline antibiotics.

In conclusion, the articles published in this Special Issue underline the advances and
opportunities in using NPs in drug discovery. Several works show NPs’ key role in a
wide array of biological activities, such as maintaining tissue integrity, regulating immune
responses, and influencing complex processes in human diseases. Their current limitations
and promising strategies to design and identify novel molecules are also discussed.
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