
1

Tuning of database audits to improve scheduled
maintenance in communication systems

Stefano Porcarelli1, Felicita Di Giandomenico2, Amine Chohra2*, Andrea Bondavalli3

1 Univ. of Pisa, Computer Engineering Dep., Via Diotisalvi 2,I-56126, Pisa, Italy
stefano.porcarelli@guest.cnuce.cnr.it

2 IEI/CNR, Via Moruzzi 1, I-56100, Pisa, Italy
{digiandomenico, chohra}@iei.pi.cnr.it

3 Univ. of Firenze, Dip. Sistemi e Informatica, V. Lombroso 6/17, I-50134, Firenze, Italy
andrea.bondavalli@cnuce.cnr.it

Abstract. To ensure the consistency of database subsystems involved in
communication systems (e.g., telephone systems), appropriate scheduled
maintenance policies are necessary. Audit operations, consisting in periodic
checks and recovery actions, are typically employed in databases to cope
with run time faults which may affect the dependability and quality of
service of the overall system. This paper aims at investigating on
appropriate tuning of audit operations, so as to find optimal balances
between contrasting requirements, namely satisfactory database availability
and low overhead due to audits. For this purpose, a methodology to analyse
the behaviour of the database under scheduled maintenance is here
suggested. Analytical models, essentially based on Deterministic and
Stochastic Petri Nets (DSPN), are defined and analysed, in terms of
dependability indicators. A sensitivity analysis wrt to the most affecting
internal and external parameters is also performed on a case study.

* On leave at IEI-CNR, supported by ERCIM (European Consortium for Informatics and Mathematics) under

post-doctoral training program (Contract Nr: 99-04)

2

Categories and Subject Descriptors: C.4 [Performance of Systems]: Reliability,
availability and survivability; C.4 [Performance of Systems]: Modeling techniques;
D.2.7 [Distribution, Maintenance and Enhancement]; D.2.8: [Metrics]:
Performance measures.

1 Introduction

The problem of protecting data used by applications during their execution, against
run-time corruption, has long been recognised to be a critical aspect highly impacting
on the reliability/availability of systems relying on such internal database.
Communication systems, such as telephone systems, are today-typical systems
suffering from this problem, especially when a wireless environment is involved,
which makes the data more prone to corruption. Indeed, these systems need to keep
trace of resource usage status and of users data for correctly setting up and managing
user calls. For this purpose, a database is included, where data are organised in such
a way to capture the relationships existing among them. Unfortunately, the huge
amount and the dynamic nature of data contained in the database makes it extremely
vulnerable to the effects of data corruption. In fact, data corruption may result in the
delivery of a wrong service or in the unavailability of the service, with (possibly
heavy) consequences on the quality of service perceived by users. Effective
mechanisms to detect and recover from data corruption are then necessary; typically,
audit operations are used, to perform periodic maintenance actions. Audits check and
make the appropriate corrections according to the database status and the
detection/correction capability of the audit itself. How to tune the frequency of such
checks in order to optimise system performance becomes another important aspect of
the problem. This paper aims to give a contribution exactly on this last point.

In order to provide an analysis and evaluation support to help the on-line
monitoring of data structures, the goal of our work consists in the definition of a
methodology to model and evaluate the relevant dependability attributes of scheduled
audit strategies. Contrasting, but correlated, issues have to be coped with; namely:
high reliability/availability calls for frequent, deep-checking audits, while good
performance in terms of accomplished services suffers from the execution power
devoted to audits. An optimal trade-off is highly desirable, in accordance with other
system requirements and specific user needs. We follow an analytical approach,
essentially based on Deterministic and Stochastic Petri Nets (DSPN) [1, 7].
Analytical models, which capture the behaviour of the database in presence of
scheduled maintenance, are defined and evaluated, in terms of identified dependability

3

and performance measures. A sensitivity analysis with respect to the most affecting
internal and external parameters is also performed on a case study, which helps in
devising appropriate settings for the order and frequencies of audits and leading to
optimise selected performance indicators, in accordance with users
constraints/requirements.

The rest of the paper is organised as follows. Section 2 gives an overview of the
assumed context, presenting the main characteristics of the target system and of the
available audit policies. Section 3 introduces our approach to audit tuning. Section 4
presents the relevant figures of merit we have identified for our objective, the
assumptions made, and the basic sub-model elements used to analyse the behaviour
of the database and of the audits. In section 5, a case study is set up, on which our
modelling effort is exercised to illustrate the practical utility of our approach.
Numerical evaluations are then performed and the obtained results discussed. Final
remarks and indications for future developments can be found in Section 6.

2 System Context

We target telephone communication systems, which include a database subsystem,
storing system-related as well as clients-related information, and providing basic
services to the application process, such as read, write and search operations. Data
concerning the status, the access rights and features available to the users, routing
information for dispatch calls, are all examples of data contained in the database. The
database is subject to corruption determined by a variety of hardware and/or software
faults, such as internal bugs and transient hardware faults. The occurrences of such
faults have the potential of yielding to service unavailability. Because of the central
role played by such database in assuring a correct service to clients, means to pursue
the integrity/correctness of data have to be taken.

With the term data audit it is commonly indicated a broad range of techniques to
detect errors and recover from them. The kind of checks performed on the data to
test its correctness highly depends on the specific application at hand, and on the
system components and environmental conditions which determine the expected fault
model. Both commercial off-the-shelf and proprietary database systems are generally
equipped with utilities to perform data audits, such as [3, 4, 8]. For the purpose of
our study, we assume that a set of audit procedures to cope with data corruption are
provided, each characterised by a cost (in execution time) and coverage (as a
measure of its ability to detect and/or correct wrong data). From the point of view of
coverage, we distinguish between partial audits, characterised by a coverage lower

4

than 1, and complete audit, which performs complete checks and recovery such that,
after its execution, the system can be considered as good as a new one. The
considered audits are activated at pre-determined time intervals, in accordance with a
maintenance strategy performed by an audit manager. In fact, an audit manager is
present in the system, which selects the part of the database to check/recover, the
detection/recovery scheme to apply, and the frequency with which each
check/recovery operation has to be performed. The audit manager is therefore
responsible for applying the maintenance strategy to cope with database corruption
and therefore preventing system unavailability. To set up an appropriate maintenance
strategy, the audit manager would need some support which helps it in evaluating the
efficacy of applying different combinations of the available audit operations. In this
work, we focus on such evaluation component (strategy evaluator), by approaching
a methodology to proper tuning of audit operations. In Fig. 1, the logical structure of
the database subsystem and of the involved components is shown.

Set of Audit
Operations

Audit Manager
Strategy Evaluator

DATABASE

Fig. 1. Logical overview of the database subsystem

To fulfil real-time operation, dictated by the application context, a specific array-
based implementation of the database is assumed, according to which all tables and
records are stored contiguously in the memory. Records of the database tables also
include fields that are used to reference records belonging to other tables. Such
reference fields (pointers) have a dynamic content. Whenever a call is set up, a set of
linked records is inserted in the database; these records store all the data relevant for
the establishment and management of the on-going calls. Records allocated to store
the information on a specific call are released when a call ends. The specific set of
relations that identify the linked structure of the database defines the dependency
scheme. In general, different types of table dependencies may be present in the
database; in this work we restrict to consider cyclic dependence only: a closed path
linking several tables (i.e., a link exists between the last table and the first one).

5

A pointer may fail in two ways: out of range, i.e., its value incorrectly assumes the
value of a memory location outside the database tables, or in range, when it wrongly
points to a location memory inside the tables space. In the first case, when the user
call, originating the cyclic dependence affected by that failure, ends, an already free
memory location is released while the record at the correct address becomes no more
accessible (unless through another pointer failure). In the second case, instead, a
wrong record is deallocated, with possible catastrophic consequences on the current
call, or on others concurrently running with it. On the basis of such kinds of pointer
failures, two possible system failures are distinguished: i) a benign failure, due to an
out of range pointer failure; the system can continue working, unless memory
unavailability has been reached; ii) a catastrophic failure due to an in range pointer
failure, or to memory unavailability because too many benign failures already
occurred. After a catastrophic failure, the system stops working.

The detection and diagnosis of pointers corrupted out of range are, of course,
easier and less costly than for in range corruption (being the memory portion devoted
to the database well known); thus, the treatment of such pointer failures necessitates
of audits of different coverage and complexity.

3 A Methodology to Fine-Tuning of Audit Operations

Our goal is to identify a methodology to model and evaluate the relevant
dependability attributes of scheduled audit strategies in order to derive optimal
maintenance solutions. The main aspects of such a methodology are:
1. the representation of basic elements of the system and the ways to achieve

composition of them;
2. the behaviour of the system components under fault conditions and under audit

operations to restore a correct state;
3. the representation of failure conditions for the entire system;
4. the interleaving of audits with on-going applications and their relationships;
5. the effects of (combinations of) basic audit operations on relevant indicators for

the system performance, in accordance with applications requirements.
Our approach is based on Deterministic and Stochastic Petri Nets (DSPN).

Specifically, in accordance with the points listed above, we defined general models
which capture the behaviour of the database and of the maintenance policy checking
it, to be easily adapted to specific implementations of databases and audit actions.
The defined models allow to investigate on the most relevant aspects in such system,

6

related to both the integrity of the database and the overhead caused by the audit
activities.

For the analysis purpose, the basic elements of the database are the pointer fields
of the tables. In order to compact the basic information, one can represent in the
same model structure the pointers belonging to database tables which: i) have the
same failure rate; and ii) share the same audit operations, applied at the same
frequency. We call the tables whose pointer fields share such characteristics as
homogeneous set. Such compactness process has to be carefully performed in
accordance with the set of maintenance policies to be analysed.

To represent the process of generation of pointers and of their next deletion at the
end of the user call, one need to model also the applications working on the database.
This way, the events of system failure caused by erroneous pointers in dependencies
at the moment of the end of a call are also captured.

Finally, the complete maintenance strategy has to be modelled, in the form of
alternation of pure operational phases with others where applications and audits run
concurrently.

The presentation of such general models, as well as the interactions among them,
follow in the next section.

4 Modelling of Maintenance Policies

Before presenting the models, the relevant figures of merit defined for the analysis
purpose and the assumptions made in our study are described.

4.1 Definition of Appropriate Figures of Merit

In performing the system analysis and evaluation, we consider that the system
works through missions of predefined duration.

To our purpose, two measures have been identified as the most sensible
indicators, and the developed models have been tailored to them.
1. The reliability that should be placed on the database correctness, expressing the

continuity of service delivered with respect to system specifications [5]. Actually,
to better appreciate the effect of maintenance, we will evaluate the unreliability, as
a measure of the probability of not surviving a mission of a pre-fixed duration.

2. A performability measure [6], which shows appropriate to evaluate whether a
certain maintenance strategy is "better" than another. Necessary to performability
is the definition of a reward model; we use here, by way of example, a simple

7

additive reward model that fits our mission-oriented systems. We assume that a
gain G1 is accumulated for each unit of time the system spends while performing

operational phases, and a value G2 is earned for each unit of time while audit
operations are in execution, with G1>G2. Finally, a penalty P is paid in the case of

failure, again for each time unit from the failure occurrence to the end of the
mission.

4.2 Assumptions

The models and analysis have been developed under the following assumptions:
1. pointers corrupt with an exponential rate ? c. Pointer faults occur independently

from each other, so the corruption rate for a dependence is the sum of the
corruption rates of each pointer involved in that dependence;

2. audit operations and applications share the same processor(s); when audits are in
execution, a reduced number of user calls can be satisfied. The entity of such
reduction depends on the actions executed by the audits, thus may vary
significantly;

3. audit operations are characterised by a coverage c, which gives a measure of the
detection/correction abilities of the audits. Intuitively, the higher is c, the more
complex (and time consuming) is the corresponding audit;

4. according to the kinds of pointer failure (i.e., in range or out of range),
catastrophic or benign failures are possible, as already discussed in Section 2;

5. each active user call involves an element (record) in each database table.

4.3 The Models

Exploiting the multiple-phased structure of our problem, we developed separate
models to represent a) the behaviour of the system through the alternation of
operative and audit phases, and b) the failure/recovery process of the system
components.

Fig. 2 shows the model of a generic maintenance strategy. It represents the
alternation of a (variable) number of operational phases (Op1, … , Opn) and audit
phases (Ma1, … , Man), determining a maintenance cycle, which is then cyclically re-
executed. Only one token circulates in the net. The deterministic transitions TOp1,
… , TOpn model the duration of operational phases, while the deterministic transitions
TMa1, … , TMan model the duration of the correspondent audit phase. The places

8

S1,… , Sn and the instantaneous transitions TS1, … ,TSm allow to complete the
recovery action in the homogeneous sets (described later) before a new phase starts.

Titolo:
PhNnew1.eps
Autore:
fig2dev Version 3.2.3 Patchlev el
Anteprima:
L'immagine EPS non • stata salvata
con l'anteprima inclusa in essa.
Commento:
L'immagine EPS potr̂ essere stampata con una stampante

Fig. 2. Model of the maintenance strategy

The application sub-net is shown in Fig. 3 (a). In it:
?The number of tokens in the place Call_active represents the number of the on-
going calls; the tokens in the place Call indicate the number of potential calls that
the database can still manage, in addition to those already in Call_active.
?The number of tokens in the place Corrupted represent an out of range corruption
of a dependence (benign failure); one token in the place Failed represents the
catastrophic failure of the system.
?The instantaneous transition T_active allows updating the number of tokens in the
homogeneous set: whenever a call is set-up a token is added in the place Table.
?The exponential transition T_idle represents the duration of a call. In particular,
when the system is in an operational phase that transition fires with rate ? ??During
an audit phase the rate is x*? , where x is a parameter that takes values from 0 to 1
and represents the percentage of the power processing lost during an audit phase
with respect to an operational one.
?The instantaneous transitions I_to_S, I_to_C, and I_to_F model the behaviour of
the database when a call ends. The choice of which of them fires depends on the
marking of the places actived and failed1 (out of range) or failed2 (in range) in the
representation of a homogeneous set sub-net (see Fig. 3(b)).

9

Titolo:
Application.eps
Autore:
fig2dev Version 3.2.3 Patchlevel
Anteprima:
L'immagine EPS non • stata salvata
con l'anteprima inclusa in essa.
Commento:
L'immagine EPS potr̂ essere stampata con una stampante
PostScript e non con
altri tipi di stampante.

Titolo:
Dy namic.eps
Autore:
fig2dev Version 3.2.3 Patchlevel
Anteprima:
L'immagine EPS non • stata salv ata
con l'anteprima inclusa in essa.
Commento:
L'immagine EPS potr ̂essere stampata con una stampante
PostScript e non con
altri tipi di stampante.

Fig. 3. The application model (a) and the model of a homogeneous set
(b)

Fig. 3 (b) shows the model of a homogeneous set, i.e., of the pointers belonging to
database tables having the same failure rate and subject to the same audits, with the
same frequency. The sub-nets of the application and of the homogeneous set have to
be connected together, since pointers are created and deleted by user calls. The
meaning of the main elements in Fig. 3 (b) is:
?The firing of the exponential transitions Tcor models a pointer corruption. The
instantaneous transitions Tout and Tin move a token in the places Out and In
respectively to distinguish if a given pointer is corrupted out of range or in range.
?The instantaneous transitions no_out, ok_out, no_in, ok_in model the recovery
actions performed in the audit phases. These actions can lead to a recovery of a
corrupted pointer in range or out of range, or the recovery can fail according to
the coverage of these procedures.
?When a call ends, a token (a pointer) will leave the homogeneous set sub-net. In a
probabilistic way and on the basis of the marking of the places failed1, failed2, and
actived the decision is made on whether the dependence associated with a call is
corrupted (out of range or in range) or not. The choice is performed by the
instantaneous transitions I_to_S, I_to_C, and I_to_F of the application sub-net
(see Fig. 3 (a)).
?The instantaneous transitions to_I, to_I1, to_I2, to_I3, and to_I4 are enabled
when there is a token in the place Idle of the application model sub-net.

10

?The instantaneous transitions flush_actived, flush_failed1, and flush_failed2 fire
when there are no tokens in the place Idle and after the instantaneous transitions
I_to_S, I_to_C and I_to_F of the application sub-net.

From the DSPN models, the measures we are interested in are derived as follows:

?The Unreliability is the probability of having one token in the place Failed (in the
application model) or a given number of tokens in the place Corrupted.
?The Performability is evaluated with the following formula:
G1* {Operational time while the system works properly} + G2*{Audit time while

the system works properly} – P*{Time while the system is failed}.

5 A Case Study

To illustrate the usefulness of our approach and to give the reader an idea of the
relevance of our analysis, a case study is set-up and evaluated.

We consider a database supporting an hypothetical telephone system, to which
both partial and total audits are periodically applied. The defined maintenance
strategy consists in alternating partial checks on different sets of dynamic data
(pointers) with operational phases for a certain number of times, after which a
complete audit is executed which resets the database status to the initial conditions.
We are interested in evaluating the unreliability and performability between two
complete audits; it is then straightforward to make forecasts on the system for any
chosen interval of time.

11

Titolo:
scenario1-7_net.eps
Autore:
fig2dev Version 3.2.3 Patchlevel
Anteprima:
L' immagine EPS non • stata salvata
con l'anteprim a inclusa in essa.
Com mento:
L' immagine EPS potr ̂essere stampata con una stampante
PostScript e non con
al tr i tipi di stampante.

Fig. 4. Model of the case study

By applying our methodology and composing the model elements defined in the

previous section, the model instance for our case study is derived, as shown in Fig. 4.
The upper part of the model represents the maintenance strategy, which

encompasses two operational phases interleaved with two executions of the same
partial audit on two non-disjoint sets of data. Therefore, three homogeneous sets (A,
B and C) are defined in the lower part of the model. The relationships with the
application model are shown in the right side of the Fig. 4.

5.1 Numerical Evaluation

The derived models are solved by the DEEM tool [2], which provides an analytical
transient solver. DEEM (DEpendability Evaluation of Multiple phased systems) is a
tool for dependability modelling and evaluation, specifically tailored for multiple
phased systems and therefore very suitable to be used in our context.

The variable parameters in our numerical evaluations are: i) the pointer corruption
rate ? c, which varies from 5*10-7 to 5*10-8 per seconds; ii) the duration of an

operational phase, Top, which ranges from 60 to 300 seconds; iii) the coverage

12

factor of partial audits, from 0.8 to 0.999; iv) the parameter P (penalty) of the reward
structure. The other involved parameters have been kept fixed; among them: the time
interval between two complete audits has been set to 2 hours; the maximum number
of user calls concurrently active is 100; the call termination rate is 3.33*10-3 per
seconds; the number of benign failures necessary to determine a catastrophic system
failure is 5.

Fig. 5(a) shows the performability as a function of the duration of the operational
phase, for different values of the penalty associated to the failure condition of the
system. For the chosen setting, it can be observed a noticeable influence of such
penalty factor P on the resulting performability. When P is just a few times the value
of G1 (i.e. the gain in case the system is fully and correctly operating), increasing

Top brings benefits to the performability. This means that in such a case, the main
contribution to the performability is given by the reward accumulated over
operational phases. However, for P from 200 to 300, an initial improvement can be
observed, which is then lost, although the performability degradation is not dramatic.
When P is two order of magnitudes higher than G1, the cost of a failure is so big that

lengthening Top (which implies a higher risk of failure) results in a performability
detriment.

Title: stampato_ora.eps
Creator: gnuplot 3.7 patchlevel 1
Preview: This EPS picture was not saved with a preview
(TIFF or PICT) included in it
Comment: This EPS picture will print to a postscript
printer but not to other types of printers

Title: stampato_ora.eps
Creator: gnuplot 3.7 patchlevel 1
Preview: This EPS picture was not saved with a preview
(TIFF or PICT) included in it
Comment: This EPS picture will print to a postscript
printer but not to other types of printers

Fig. 5. Performability at varying of Top and Penalty (a) and Coverage

(b) respectively

Fig. 5(b) shows the performability keeping fixed the reward structure and at
varying values of the coverage of the audit procedure and the length of the
operational phase. Two effects can be immediately noticed. First, as expected, the
performability improves with growing values of the coverage. Second, it can be
observed a "bell shape" of the curves: the performability grows at growing values of
the duration of the operational phase till a maximum value of Top after which the
trend inverts. This is due to the fact that the higher reward obtained during a longer
operational phase is at first the dominant factor in determining the performability, but

13

lengthening Top also means exposing the system to a higher risk of failure, and the
penalty P to be paid in such a case becomes the most influencing parameter of the
performability in the second part of the Fig. 5(b).

Title: stampato_ora.eps
Creator: gnuplot 3.7 patchlevel 1
Preview: This EPS picture was not saved with a preview
(TIFF or PICT) included in it
Comment: This EPS picture will print to a postscript
printer but not to other types of printers

Title: stampato_ora.eps
Creator: gnuplot 3.7 patchlevel 1
Preview: This EPS picture was not saved with a preview
(TIFF or PICT) included in it
Comment: This EPS picture will print to a postscript
printer but not to other types of printers

Fig.6. Performability at varying ? op and ? c (a) and Unreliability (b) at varying c and
? op

Fig. 6(a) completes the analysis of the performability, at varying values of Top and
for three different values of the pointer failure rate. The impact of ? c on the

performability is noteworthy, and a behaviour similar to that in Fig. 5(a) is observed.
Fig. 6(b) shows the behaviour of the unreliability at varying values of the coverage
and for several values of Top. Of course, the unreliability improves at increasing both
the audits frequency (i.e., small Top) and the coverage of the audits. It can be noted
that same values of the unreliability can be obtained by adopting audits with a higher
coverage or applying more frequently audits with a lower coverage.

The analyses just discussed give a useful indication about the tuning of the major
parameters involved in the database system. The optimal trade-off between the
frequency of the audits and the investment to improve the coverage of the audits can
be found, to match the best performability and dependability constraints.

6 Discussion and Conclusion

This paper has focused on maintenance of dynamic database data in a
communication system. To achieve a good trade-off in terms of overhead and
efficacy of the maintenance, it is necessary to properly choose which audit operations
are to be applied and how frequently they should be used.

We proposed a modular methodology to model and evaluate the relevant
dependability attributes of scheduled audit strategies. Our approach is based on
Deterministic and Stochastic Petri Nets (DSPN) and on the DEEM tool. Despite our

14

proposed approach needs further work for being assessed, nevertheless we have
identified several relevant characteristics specific to this class of systems.

The major impact of this study is the definition of a general model for the
evaluation of the effectiveness of the audit strategies. Paramount criteria for our
work have been the extensibility and flexibility in composing the audit strategies. Of
course, in order for our models to be really useful for the selection of proper order
and frequencies of audit operations, input parameters such as cost and coverage of
the check and failure data are necessary and should be provided.

Investigations to assess the merits of our approach towards the incremental
structure of audit methods are planned as the next step. Also, extensions to the case
study to include the comparison of the effectiveness/benefits derived from applying
different combinations of audits (i.e., different maintenance strategies) constitute
interesting evolution to this work.

References

1. A. Bondavalli, I. Mura, and K. S. Trivedi. Dependability Modelling and
Sensitivity Analysis of Scheduled Maintenance Systems. In Proc. Dependable
Computing - EDCC-3, Third European Dependable Computing Conference,
September 1999, pp. 07-23.

2. A. Bondavalli, I. Mura, S. Chiaradonna, R. Filippini, S. Poli, F. Sandrini. DEEM:
a Tool for the Dependability Modeling and Evaluation of Multiple Phased
Systems. In Proc. IEEE Int. Conf. on Dependable Systems and Networks, New
York, June 26-28, 2000.

3. D. Costa, T. Rilho, H. Madeira. Joint Evaluation of Performance and
Robusteness of a COTS DBMS through Fault-Injection. In Proc. Int. Conference
on Dependable Systems and Networks, 2000, pp. 256-260.

4. G. Haugk, F. M. Lax, R. D. Royer, J. R. Williams. The 5ESS Switching System.
Maintenance Capabilities. AT&T Technical Journal, vol. 64, n.6, 1985, pp. 1385-
1416.

5. J. C. Laprie. Dependability - Its Attributes, Impairments and Means. In
Predictably Dependable Computing Systems, J.C. Laprie, B. Randell, H. Kopetz,
B. Littlewood (Eds.), Springer Verlag, 1995, pp. 3-24.

6. J. F. Meyer. On Evaluating the Performability of Degradable Computing
Systems. IEEE Transactions on Computers, vol. C-29, pp. 720-731, August
1980.

15

7. I. Mura, A. Bondavalli, X. Zhang and K. S. Trivedi. Dependability Modeling and
Evaluation of Phased Mission Systems: a DSPN Approach. In Proc. of 7th IFIP
Int. Conf. on Dependable Computing for Critical Applications, San Jose, CA,
USA, IEEE Computer Society Press, 1999, pp. 299-318.

8. Oracle8 Server Utilities, release 8.0. Chapter 10,
http://pundit.bus.utexas.edu/oradocs/server803/A54652_01/toc.htm

