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parameters to assess alteration of cerebral blood flow and BBB permeability. More recently,
Matsushita and colleagues [93] demonstrated, through an MRI-based analysis, a tight
relationship between intracerebral hemorrhage and stroke clinical development confer-
ring to MRI investigations the capability to predict neurological dysfunction and animal
mortality (Figure 5B). Despite the great advantages provided by MR, this technique is not
extensively used in animal studies since the equipment is really expensive. Alternatively,
a more reasonably-priced approach for detecting CE in vivo exploits optical coherence
tomography (OCT) [94-96]. Based on the fact that the optical scattering of tissue is influ-
enced by the composition of the tissue itself, it will change accordingly with the increase
in water content during cerebral edema. OCT allows for the cross-sectional acquisition
of biological tissue with high resolution (micrometer) and tissue penetration of the order
of millimeters [94,95]. Rodriguez and collaborators [94] demonstrated the possibility of
employing OCT to detect optical changes correlated with cerebral edema in an in vivo
water intoxication model (Figure 5C). This study revealed an advancing alteration of the
gerebral cortex attenuation coefficient that goes hand in hand with the edema progression.
Moreover, they used Doppler OCT imaging to detect a decrease in cerebral blood flow
due to blood vessel compression during severe brain swelling [94]. Moreover, different
from clinical research, preclinical investigations allow the observation of BBB disruption
with high resolution by exploiting fluorescence imaging techniques in vivo. In particular,
two-photon fluorescence microscopy (2PFM) combined with fluorescent staining of the
vasculature provides a longitudinal evaluation on the blood vessels” permeability within
the mouse brain cortex through a cranial window. Moreover, this approach offers suffi-
cient temporal and spatial resolution to track transient changes in BBB permeability at a
microvascular level. Proof-of-concept in monitoring BBB disruption using 2PFM has been
demonstrated by Raymond et al. [97,98]. In that study, the authors injected fluorescent dyes
(e.g., Texas Red, Oregon Green) for the visualization of the microvasculature and trans-
mitted ultrasound from the ventral surface of the brain to induce BBB alterations. These
studies characterized the microscopic leakage patterns qualitatively but did not attempt
to quantify the rate of agent delivery. Then by extracting and correlating intravascular
and extravascular signals from the time-lapse 2PFM images, Nhan and collaborators [87]
(Figure 5D) demonstrated a quantitative approach to analyze the 2PFM images after BBB
disruption. In detail, they characterized the apparent permeability by comparing the intra-
and extravascular fluorescence between two time intervals after the injection of a tracer.
Recently, Allegra Mascaro et al. 2019 [82] applied this protocol in order to investigate BBB
permeability in a mouse model of photothrombotic stroke in the primary motor cortex.
More in detail, they investigated the extravasation of a low molecular weight dye (3KDa
Texas red dextran) at two different time points (15 and 30 days after the injury) after stroke.
Though 2PFM does not allow whole organ investigation, the great advantage of this ap-
proach is the capability to perform longitudinal studies, thus offering the possibility to
monitor the integrity of the BBB with high precision even in the chronic phase after stroke.

3.3. Optical Imaging to Investigate Structural and Functional Plasticity in Mouse Models of Stroke

Assessing the extension and progression of the CE and HT may not be sufficient to
understand the reasons for the discrepancies in the clinical cases reported above. As de-
scribed before, the entire NVU is involved in the degradation process triggered by cerebral
ischemia. In turn, this cascade of events affects brain organization at all levels, from single
synapses to neuronal networks to whole-brain activity. More in-depth understanding of
the ischemic progression that leads to neuronal survival or massive degeneration in the
penumbral tissue with cellular and subcellular detail is necessary. Preclinical research,
though it is still not always able to reproduce the complexity and the variety of human
clinical cases, presents the great advantage of dissecting neuronal structure and function
over multi-scale. In the last decades, the development of 2PFM [99], coupled with the
introduction of transgenic mice expressing genetically encoded fluorescent indicators in
cortical neurons [100], has enabled investigators to visualize longitudinal changes in the
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structure of dendritic spines in vivo. In particular, many studies have focused on structural
and functional plasticity as targets of both acute and chronic ischemia [101-104]. These
studies indicated the loss of spines and rapid swelling and beading of dendritic structure
within minutes of global ischemia coincident with a wave of ischemic depolarization [103].
Many studies [82,101,102] focused their attention on spines’ turnover and dendritic ori-
entation in the peri-infarct cortex. In particular, dendritic structures can be profoundly
altered by MCAO [103], whereas reperfusion can lead to recovery of structure similar to
pre-stroke levels. In another work, Murphy and collaborators [105] demonstrated that the
capability of dendritic arbors to recover within the penumbra was still maintained after
60 min of sustained ischemia (Figure 6A). By exploiting in vivo 2PFM and laser speckle
contrast imaging, they correlated dendritic blebbing with the fluctuation of blood flow,
showing that the recovery of the dendritic structure following reperfusion is restricted
to a relatively small penumbra region. Brown and colleagues [106] took advantage of
2PFM to monitor real-time changes in dendritic and vascular structure in a mouse model
of photothrombotic stroke (Figure 6B). In parallel, other studies investigated blood flow
before and after multiphoton nano surgery of single blood vessels in living animals [107]
(Figure 6C). 2P real-time imaging of blood flow through the blood vessels in the region of
the cortex surrounding the vascular lesion permits the characterization of the dynamics
of the degenerative event [107]. Since the reorganization of surviving cortical areas is
involved in post-stroke recovery, in the last decades, neuroscience pointed their attention
to functional in vivo studies too. Harrison and colleagues [108] investigated functional
rearrangement between cortical regions in a mouse model of photothrombotic infarct tar-
geted in the motor cortex. In this longitudinal study, they observed, through a combination
of sensory-motor stimulations and intrinsic optical signal imaging, which spared regions of
the cortex surrounding the stroke core were able to assume functions from stroke affected
areas. Thereafter, Lim and collaborators, by taking advantage of voltage sensitive dye and
optogenetic cortical stimulation, investigated neural rearrangement of cortical networks in
the mouse brain cortex [109]. This relatively noninvasive approach allows recording neu-
ronal activity triggered by optogenetic stimulation with high temporal resolution and large
spatial resolution. This work provided evidence of the global depression of cortical activity
characterizing the early stages after stroke. Moreover, they observed at a later time point
(8 weeks after stroke) that the global depression gradually resolved, though the overall
strength of the network remained reduced. Recently, Allegra Mascaro et al. [82] performed
a multi-scale study investigating structural and functional plasticity in parallel, in a mouse
model of post-stroke rehabilitation. More in detail, they observed in the peri-infarct cortex
an increase in spines’ surviving fraction and a preferential orientation of dendrites towards
the stroke core. Moreover, by investigating cortical activity during the execution of a motor
task, they observed a widespread activation in chronic conditions (Figure 6D).

In line with these preclinical studies, a similar system-level measure of functional
connectivity in humans through fMRI observed a consistent decrease in brain modularity
indicating a reduction in integration within functional areas and segregation between brain
systems during a subacute phase after store [110].
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Figure 6. (A) Two-photon imaging of local changes in the dendritic structure before, during, and after MCAO. In the left

panel, intact dendritic structures were observed; in the middle panel, extensive dendritic blebbing was observed; in the
right panel, a significant recovery of dendritic structures after reperfusion was observed. Modified by Li and Murphy 2008,
Copyright (2008) Society for Neuroscience. (B) Time-lapse imaging of apical dendrites showed the retraction of a dendritic
spine. Modified by Brown et al., 2007, Copyright (2007) Society for Neuroscience. (C) Time-lapse images of maximum
intensity z-projections (from 20 to 60 um) before (left) and after (right) the laser-induced ischemic hemorrhage. The figures
shown in green are the GFP-labeled neurons in a GFP-M mouse, and in red are the vascular networks labeled with Texas-red
dextran dye. The tip of the yellow lightning symbol represents the laser irradiation point. The first image was acquired just
before the laser irradiation. $cale bar, 20 um. Modified from Allegra Mascaro et al. 2010. (D) Image sequences of cortical
activation as assessed by calcium imaging during pulling of the handle by the contralateral forelimb of CTRL (top), STROKE
(bottom) Thy1-GCaMP6f mice in the M-Platform. A small area located in the motor-sensory region reproducibly lit up in
CTRL mice, while a large area covering most of the cortical surface of the injured hemisphere was activated in STROKE
mice 1 month after stroke. A+P, anterior posterior, M-L, medio-lateral, M1, primary motor area, V1, primary visual area, S1,
primary sensory area, Rs, Retro splenial area, BF, barrel field. The black dashed lines define the lesion borders. The black
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dot indicates bregma. Scale bar 1 mm. Modified from Allegra Mascaro et al., 2019.

4. Conclusions

The limited knowledge on the molecular, cellular, and network level that can be offered
by common clinical practice hinders the understanding of the mechanism underlying a
specific clinical outcome. Within this review, we discussed the potentials and limits of
preclinical research to answer clinical questions raised by the reported exemplary cases.
Among others, the two major questions that this review tried to address were: (1) why
does MT not improve stroke outcome in all patients, despite full recanalization? (2) how
can stroke reperfusion treatments be further improved? Preclinical researchers are thrilled
to bring their contribution to stroke care in a way that works alongside stroke clinicians
and helps get the right patient to the right treatment (precision medicine), but there is still
plenty of work to be done.

The last two decades have witnessed a remarkable increase in the number, breadth,
and depth of preclinical research studies on acute ischemic stroke [111], but most of them
carry some key mismatches between clinical practice and preclinical models:

e  Stroke is most prevalent in elderly men and women, whereas preclinical models
mostly test young animals.

e  Stroke is more devastating in patients with multiple comorbidities not often captured
by preclinical models.

However, exploratory research aimed at investigating potential new therapeutic
targets or theoretical understanding of pathophysiological mechanisms does not neces-
sarily need to perform experiments on an extensive range of age and comorbid mod-
els. Furthermore, since the incidence of stroke in young adults has increased in the last
decades [112,113], preclinical research with young animals represents a fundamental way
for understanding the underlying pathophysiological mechanisms in this subgroup of
patients. Finally, the capability to investigate, at multiple-scale with different approaches,
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the ischemic progression from the onset up to the chronic phase after the insult allows the
deep understanding of the post-stroke transformation, disentangled from other factors.

Unlike clinics, where HT and CE are used to define the prognosis of stroke patients,
preclinical studies usually characterize the severity of the insult with behavioral tests
in vivo or through the evaluation of the lesion volume ex-vivo. Nevertheless, since cerebral
hemorrhage and edema are the most frequent clinical complication in the acute phase after
an ischemic stroke, we illustrated that preclinical research had developed a multifaceted
array of techniques to investigate these pathological processes. Another emerging topic
that is catching the attention of preclinical research is the understanding of the role of
cortical depolarization waves in the acute phase after stroke. Many studies [114-118], both
in animals and humans, suggest that spreading depression-like depolarizations play a
crucial role in the tissue damage process. Indeed, in the early stages after focal cortical
ischemia, spreading depolarization waves propagate from the rim of the stroke core to the
surrounding intact tissue [119,120]. Previous investigations [121] showed that in the in-
jured brain, the succession of spreading depolarizing waves induces a series of intracellular
alterations (i.e., collapses ionic gradients, activation of NMDA receptors and gap junctions),
triggering a massive calcium influx that in energy-compromised neurons promotes the
cell death cascade. Moreover, other studies highlighted the crucial role of the interaction
between cortical spreading depression waves and the brain’s vasculature since in patho-
logical conditions, they induce severe vasoconstriction and spreading ischemia [122,123].
Balbi and collaborators revealed the propagation of depolarizing waves by inducing a
photothrombotic stroke in awake mice without the interference of anesthesia throughout
the entire cortex [71]. Moreover, a recent work [124], by simultaneously investigating the
neurovascular coupling during and following photothrombosis, identified a determining
role of cortical spreading depression waves in the secondary progression of tissue damage
during and after acute brain injury, emphasizing their potential therapeutic target. Though
up to now the finest cellular and molecular pathophysiological mechanisms of ischemic
progression are still largely unknown, future preclinical research should flank the charac-
terization of hemorrhage and edema to neurovascular investigation in order to understand
the mechanisms underlying the FR and define better therapeutic paradigms.

To this aim, neuroscientists are making a great effort in order to optimize animal
models of stroke with reperfusion to investigate HT and CE in parallel with neuronal func-
tionality and structural plasticity of synaptic contact, better resembling clinic progression
observed in humans.

In conclusion, the ongoing technological development of cutting-edge investigation
approaches will offer the capability to realize a more specific and detailed investigation of
the pathophysiological mechanisms underlying ischemic progression. Undoubtedly, the
bi-directional collaborative approach between preclinical and clinical researchers represents
a propulsive thrust to improve stroke treatments.
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