
The ASSIST High Performance
Programming Environment for
Parallel and Grid Applications

ASSIST is a programming environment aimed at providing parallel programmers with user-friendly, effi cient, portable, fast ways of implementing parallel applications. It includes a
skeleton based parallel programming language (ASSISTcl, cl stands for coordination language) and a set of compiling tools and run time libraries. The ensemble allows parallel programs
written using ASSISTcl to be seamlessly run on top of workstation networks supporting POSIX and ACE (the Adaptive Communication Environment) and computational grids.

ASSISTCONF is a graphical user interface designed to confi gure and execute ASSIST applications on Globus-based grids. It hides the programmer the structure of the grid used
and provides the interaction between the ASSIST Run Time Support and the Globus middleware (Globus Toolkit 2.4).
The programming environment, the coordination language and the graphical user interface have been designed in a joint project ASI/CNR (Italian National Space Agency and Italian National
Research Council), by people of the Dept. of Computer Science of Pisa and of the CNR Information Science and Technologies Institute. Recently, this program terminated and the develop-
ment of ASSIST has been moved to other italian national research projects (Strategic projects “Legge 449/97” No. 02-00470-ST97 02-00640-ST97 and a FIRB project No. RNBNE01KNFP
“GRID.it“).

Using ASSISTcl the program-Using ASSISTcl the program-
mer may structure paral-
lel application as generic
graphs of either sequential

processes or parallel mod-processes or parallel mod-
ules. Nodes in the graphs ules. Nodes in the graphs

(i.e. the processes or the par-(i.e. the processes or the par-
allel modules) are connected by allel modules) are connected by

means of data streams. Non-deterministic
control is provided to accept inputs from
different streams and explicit commands
are provided to output items on the output
streams. Sequential portions of code can
be written using C, C++ or FORTRAN77.

data
source1

data
merge

data
filter

data
source2
& sink

VP

VP VP VP

VP VP

VP VP VP

External World
(shared objects)

input
streams

output
streams

syntax and
type checker

module
builder

code
builder

ASSIST
program

abstract
syntax

intermediate
representation

(task code)

XML
configuration

traditional
compiler

C/C++/F77
Makefileslibraries

.dll

.soX
.so

cluster
loader

ASSIST compiler

X

ASSISTCONF

Globus Toolkit 2Globus Toolkit 2

X

The compiler works
on three basic steps:
fi rst syntax is parsed
and an abstract syn-
tax form is produced.
Then a task code (ar-
chitecture independent
parallel abstract code)
is produced out of the
abstract syntax tree. In
this step optimizations
are performed aimed
at improving program
performance and effi -
ciency. Last, POSIX/ACE
object code is generat-
ed out of the task code,
which is suitable to be
run onto either a COW
through the ASSIST
CLAM (Coordination
Language Abstract Ma-
chine) or a grid through
ASSISTCONF interfaces
for Globus Toolkit 2
services (GSI, MDS,
GRAM, GridFTP). The
object code is actually
produced using stan-
dard C++ compilers.
Along with the object
code, an XML confi gu-
ration fi le is generated,
holding all the informa-
tion needed to run the
parallel code. Such in-
formation include paral-
lelism degree, mapping
of specialized code to
processing nodes and
the alike.

ASSIST has been mostly designed by people of the Dept. of Computer Science, University of Pisa, Italy. Among the others, the following people contributed in either ASSIST(cl) design
or implementation: M. Aldinucci, S. Campa, P. Ciullo, M. Coppola, M. Danelutto (project leader), D. Guerri, D. Laforenza, M. Lettere, S. Magini, S. Orlando, A. Paternesi, R. Perego, P.
Pesciullesi, A. Petrocelli, E. Pistoletti, L. Potiti, R. Ravazzolo, M. Torquati, L. Vaglini, P. Vitale, M. Vanneschi (group leader), G. Virdis, C. Zoccolo.
ASSISTCONF has been mostly designed by people of the Information Science and Technologies Institute of the Italian National Research Council (ISTI-CNR). Among the others, the follow-
ing people contributed: R. Baraglia, D. Laforenza (group leader), T. Fagni, R. Ferrini, F. Furfari, P. Ciullo, S. Orlando, R. Perego, F. Silvestri, P. Pesciullesi, N. Tonellotto, M. Vanneschi.

Resource Discovery
In order to carry out a mapping for
an application it is needed to select
the suitable machines by accessing a
list of available machines.
ASSISTCONF can obtain the list
and the characteristics of the
available machines by accessing
the Grid Information System,
implemented by the Monitoring
and Discovery System (MDS).

Confi guration and Mapping
By accessing the context menus of ASSISTCONF it is possible to specify the
parallelism degree of a parallel module and the number of instances of a replicated
module. The fi nal step of the confi guration process is to establish a mapping
between the program modules and the machines in the computational grid.

Staging & Execution
In order to execute an ASSIST application on a grid we exploit the Globus stag-
ing and execution mechanisms (GSI, GridFTP, RSL and GRAM APIs). To do this,
ASSISTCONF provides functionalities to create and manage a proxy of a valid
X.509 certifi cate. The input fi les and libraries to be staged can be selected from
a list of local fi les; the executable fi les are selected by directly accessing the con-
fi guration fi le. To execute the application, ASSISTCONF generates a RSL string
for each executable module using information obtained by the confi guration fi le.
The execution par-
allel activation is
synchronized by
the integration of
the GRAM and the
ASSIST Run Time
Support.

ASSIST features
Programmability
 Skeleton and coordination
technology are exploited in the
ASSIST environment in such a
way the programmer is not re-
quired to handle most of the er-
ror prone details he is usually
concerned with (processes and
communications setup, schedul-
ing, mapping, etc.). The skel-
etons included in ASSISTcl are
far more powerful that the tradi-
tional ones. The programmer can
therefore implement parallel ap-
plications with complex parallel-
ism exploitation patterns.

Code reuse
 Sequential portions of code
embedded in ASSISTcl programs
can be written in C, C++ and
FORTRAN, thus enhancing the
possibility to reuse existing code.

Rapid prototyping
Programmer can experiment dif-
ferent parallelization strategies
just changing a few lines of code
and recompiling.

Interoperability
 ASSISTcl programs can ac-
cess external objects via CORBA.
A whole ASSISTcl program can
be automatically exported (i.e.
standard IDL can be automatical-
ly generated and proper skeleton
code is generated) as a CORBA
object to the external world. Fur-
thermore, facilities are present
in the language that allow to use
external libraries from within the
sequential portions of code in the
ASSISTcl programs.

Portability
 ASSIST has been currently
implemented on POSIX/ACE Linux
workstation networks. We are cur-
rently testing the compiler part
needed to target heterogeneous
architectures.

Performance
 ASSISTcl benchmarks dem-
onstrated good (close to ideal)
scalability and effi ciency on Linux
clusters. Effi ciency close to 99%
has been achieved using medium
to coarse grain parallel code.

Grid Targeting
The ASSISTCONF main function-
alities are aimed to:

• select the computational re-
sources needed to run an appli-
cation

• confi gure an ASSIST applica-
tion

• assist the user to establish a
mapping of the various modules
on the selected computational
resources

• stage on the selected compu-
tational resources the libraries,
executable modules and input
fi les neede to run the ASSIST
application

• activate the modules execu-
tion

• transfer the output fi les to the
user machine and delete, if re-
quired, all the fi les used to run
the application from the grid re-
sources.

The parmod (the parallel module skel-
eton) allows to defi ne a set of Virtual Pro-
cessors, to assign task (to all of them or
one task per Virtual processor or one task
per partition of Virtual processors), to han-
dle concurrent accesses to state variables,
to manage zero or more input stream and
zero or more output streams, and to inter-
act with external world accessing (possibly
shared) objects via standard object access
methods (e.g. CORBA).
A parmod can be specialized to behave as
the most common parallelism exploitation
pattern/skeleton/design patterns.
Therefore parmods can be used to express
farms, pipelines as well as geometric and
data parallel computation patterns.

Consiglio
Nazionale
delle Ricerche

Dipartimento di
Informatica
Università di Pisa

