
A 3D TEXTURE-BASED OCTREE VOLUME

VISUALIZATION ALGORITHM

Imma Boada?

Isabel Navazo}

Roberto Scopignoz

? Institut d'Inform�atica i Aplicacions,Universitat de Girona, Spain
} Departament LSI,Universitat Polit�ecnica de Catalunya, Spain

z CNUCE - National Research Council (C.N.R.),Italy

imma@ima.udg.es,

isabel@lsi.upc.es

r.scopigno@cnuce.cnr.it

ABSTRACT

We present a 3D texture based Octree Volume Visualization algorithm that combines 3D texture

hardware and hierarchical representation of data sets to obtain multiresolution renderings of very

large data sets. The algortihm exploits advantages of both octree representation and 3D texture

hardware. The basis of the algorithm is to take advantage of nearly iso-valued areas of the volume

and regions of no interest to compute a more synthetical volume texture representation. A new

volume-texture assignation policy allows to exploit 3D texture volume visualization technique on

large data sets. The algorithm guarantees hight quality image for regions of maximal interest.

Keywords: 3D Textures,Volume Visualization, Octrees

1 INTRODUCTION

During the last years a lot of e�orts have been

undertaken to obtain real-time exploration of

volume data sets. Although the adoption of

hardware-enhanced approaches, such as 3D tex-

ture mapping, guarantees to obtain image quality

almost interactively, it seems that is di�cult to

exploit interactive rendering on very large data

sets.

3D texture mapping hardware has became the

fastest volume rendering method available on

high-end workstations. Based on the volumetric

data, loaded into the texture memory, the data

is rendered by compositing back to front 3D tex-

tured data polygons which slice and sample the

volumetric texture space. The approach is sim-

ple and yield high quality results, but is limited

by the amount of texture memory. The required

texture memory is proportional to the volume res-

olution and greater is the volume more di�cult is

to represent it. Some techniques have been pro-

posed to deal this situation. [Wilso94][Grzes98],

for example propose to partitionate the volume

into several appropiately sized bricks. Each brick

is treated independently, and the entire volume

rendering is obtained by the composition of all

the bricks contributions; [Srini97],[Tong99] pro-

pose to use a pre-processing in which empty re-

gions of the volume are identi�ed to avoid its rep-

resentation in the texture space.

However, despite all the improvements to exploit

the technique on large data sets, none of the re-

lated techniques can always guarantee the en-

terely volume representation in the texture mem-

ory. The assignation policy of one texel per voxel,

applied in all these methods, forces the volume

data to be smaller or of the same size of the avail-

able texture memory.

To overcome this problem (i.e. to guarantee the

enterely volume representation in texture space),

we propose to modify the common assignation,

texel-voxel, for a more synthethical one (i.e. less

than one texel per voxel), that bene�ts of nearly

homogeneous regions and areas of no interest of

the volume. Based on this new assignation rule,

we present a 3D texture based Octree Volume Vi-

sualization algorithm that combines 3D texture

hardware and hierarchical representation of vol-

ume data to obtain multiresolution renderings of

very large data sets. The algorithm exploits ad-

vantages of both octree representation and 3D

texture hardware.

The paper is structured as follows. In Section 2 a

brief description of background and related work

in 3D texture volume rendering is given. After a

description of the octree volume representation in

Section 3, we introduce in Section 4 the proposed

3D texture based volume visualization algorithm.

In Section 5 some results are given. Finally in sec-

tion 6 conclusions and future work are described.

2 BACKGROUND

The 3D texture based approach is a direct data vi-

sualization technique that takes advantage of spa-

tial coherence, being much faster than ray cast-

ing and obtaining almost the same quality images.

Unlike ray casting, where each image pixel is built

up ray by ray, the 3D texture based approach pro-

cesses a set of rays simultanouesly, using the 3D

texture as a voxel cache to store intermediate re-

sults.

This volumetric rendering technique can be de-

composed in two steps [Grzes98]:

1. Texture Definition. The volume geom-

etry is sampled to determine the set of vox-

els that will be cast to generate the tex-

ture. The texture is stored in texture mem-

ory and represents a RGB�-encoded view

of the 3D volume.

2. Volume Rendering. The rendering of

the volume is obtained through the compo-

sition of texture-mapped polygons into the

frame bu�er. This set of polygons slices and

samples the volumetric texture space. Be-

fore the composition a depth sorting step

determines the order in which they will be

composited.

The 3D texture approach is simple and yield high

quality results when the volume data set can be

enterely represented in texture memory. But, in

situations where the volume is larger than the tex-

ture memory the volume data has to be broken up

into smaller chunks called bricks [Grzes98]. Each

brick is processed independently. The entire vol-

ume visualization requires binding , loading and

swapping of all di�erent textures, a�ecting inter-

activity and image quality. This is the main draw-

back of the technique.

The use of 3D texture-mapping hardware for di-

rect volume rendering was �rst mentioned by

Akeley for the SGI Reality Engine [Akele93]. Cul-

lip and Neumann sketch two approaches and ap-

ply them to CT data obtaining the �rst pictures

based on this technique [Culli93]. Guan and Lipes

discuss hardware issues [Guan94]. Cabral, Cam

and Foran describe how to use texture mapping

hardware to accelerate numerical Radom trans-

forms [Cabra94]. Wilson et al in [Wilso94] present

an easy to implement method for direct volume

rendering that uses 3D texture maps. The paper

describes how most of programming of previous

methods can be eliminated by the use of graph-

ics library procedures to perform texture space

transformations. In [Gelde96] a shading model is

incorporated to this method.

[Srini97], [Tong99] presents some improvements

to deal large data sets. In [Srini97] an octree is

proposed to skip empty regions of the volume.

In [Tong99] a preprocessing step is presented to

select the volume data that contains object voxels

to ensure that only these regions will be loaded

in texture memory. In these methods the �nal

texture representation of the volume assign one

texel per voxel, thus for large data sets texture

memory limitation is still a problem.

octree cut
ni

nj

Figure 1: The triangle represents the pyra-

mid that indicates a complete resolution

set. The solid line represents leaves of the

octree. The octree is a subset of the pyra-

mid that completely spans the volume.

3 THE OCTREE REPRESENTATION

An octree is a multi-resolution data representa-

tion structure used to reorganize volume data

for easy identi�cation of interesting regions. Oc-

trees have been used previously for volume ren-

dering, e.g. [Levoy90] [Laur91][Wilhe92], often

with the objective to avoid the evaluation of

non-interesting regions and to optimize rendering

speed.

The octree construction always requires a crite-

ria to determine when a region of the volume is

important or not. This criteria goes from the

simplest that evalutes the presence or absence of

data, to the more so�sticated in which the vari-

ation of internal samples values with respect to

the samples of the vertices is evaluated to detect

homogeneous zones. Once this criteria has been

de�ned, leaf nodes are identi�ed as those with

maximal degree of satisfaction of the evaluated

criteria. We call this degree of satisfaction the

error of the node. In this paper, we consider that

the octree (OT) representation of a given volume

dataset has been obtained in a pre-processing step

in which homogeneous zones have been identi�ed,

and the error of each one of the nodes is known

[Boada99].

A cut on the octree is a set of nodes such that,

for each possible root-leaf path, one and only one

of its nodes is contained in the cut (see �gure 1).

The cut gives a multi-resolution representation of

the volume as a set of nodes of di�erent sizes and

with di�erent associated errors upper to the one

considered in the leaf OT nodes. No redundant

data is stored in the cut, and all the voxels are

represented with more or less accuracy by one of

its nodes.

In [Boada99] we present an algorithm to select an

optimal OT cut. It is optimal in the sense that

the enterely cut can be represented in the avali-

able texture memory. The user �xes the desired

degree of interactivity and the regions of maximal

interest. The algorithm provides the nodes of the

cut and the level of resolution that must be used

for their representation in order to optimize the

image quality.

To describe the 3D texture based octree visualiza-

tion algorithm we consider that all the required

information of the cut is known.

4 THE 3D-TEXTURE BASED OC-

TREE VISUALIZATION

The visualization algorithm can be applied for the

rendering of any cut of the octree. We consider

that it is applied to a C cut of the octree, where

C = fn0; :::; nlg. The rendering process, following
the description of the technique given in section

2, is decomposed in two steps: the representation

of the cut in texture memory and the cut render-

ing. Next subsections gives all the details of these

steps.

4.1 OT Cut Representation in Texture

Space

The OT cut representation in texture space is ob-

tained from the representation of each one of its

nodes in an independent texture. Given a node

of C two situations are possible :

ni

Figure 2: Given a node ni of one of the pos-

sible cuts on the OT of �gure 1, we show the

corresponding subtree; because ni is not a

leaf node, di�erent texture representations

can be chosed according to the depth of the

subtree rooted in ni

� The node is a leaf (see node nj in �gure 1).

In this case, we consider that all relevant in-

formation of the subvolume represented by

this node can be obtained from the samples

distributed over the vertices of the node (ex-

ternal samples). This is the information we

will represent in texture memory.

� The node is not a leaf (see node ni in �gure

1). In this situation, the volume informa-

tion of the node is represented by the sub-

tree rooted in ni. To store this information

in the texture several options are possible.

These options vary from the �nest represen-

tation, that is a grid 2kx2kx2k with k the

depth of the deepest descendent of node ni,

to the coarser, obtained from the children of

the node (see �gure 2). The selected repre-

sentation determines the samples that will

be considered for the representation of the

node in the texture space. To select which

is the best representation of the node a user

�xed criteria based on the node's degree of

interest, or node's degree of homogeneity,

or node's error, could be applied.

In particular, if the selected level for the

representation is q the region covered by ni
is represented by the set of all external sam-

ples of descendent nodes of ni that are at

level q.

It could be concluded that the assignation of one

texel per voxel, will be applied only when the

node of the cut is represented by minimal division

nodes (i.e. voxels). In all other situations, the

assignation policy will assign a more synthethical

data size to texture size correspondence. Based

on this new assignation rule, the representation of

the cut in texture memory can be selected in such

a way that the enterely cut could be represented

in texture memory. This situation is considered

in the optimal cut, optimal because all the volume

is represented in the available texture space.

4.1.1 From Samples to Texels

Once the set of samples that will represent the

node's volume are selected we have to represent

them in texture memory. Di�erently of classical

methods, in which the application of a transfer

function and/or a look-up-table maps voxel �eld

values to the RGB� texel values, we apply an

opacity correction when a subsampled represen-

tation of the node is stored. In the following we

describe how this opacity correction factor is ob-

tained.

Following [Levoy90], the accumulated opacity

�out of a volume element can be expressed as

�out = �+ �in(1� �) (1)

where � is the opacity of the volume element

and �in is the entering opacity to this element.

The �out value depends directly on the number

of samples that are considered. The higher is the

resolution of the representation the better are the

results. Thus, the best representation will be ob-

tained when the node is represented by minimal

division nodes (i.e. the classical assignation of

one texel per voxel).

In �gure 3, the (a) representation is the best, it

is de�ned at voxel level. But, if (b), or (c) has to

represent the same area of the volume it should

be desiderable the di�erence �a � �b, or �a � �c

, to be minimal. To reduce this di�erence (i.e.

to obtain images very similar to the one we ob-

tain using the higher resolution representation),

we propose to apply an opacity correction factor

represented as �c to the samples of the subsam-

pled representation.

To compute the opacity correction factor we

analise the two situations of �gure 4 in which,

for simplicity, only the �rst samples of a ray from

(a) and another from (b) representations of �g-

ure 3 are evaluated. These samples are compos-

ited in back-to-front order, where �0, �1 and �2

(a) (b) (c)

Figure 3: Possible representations of a vol-

ume node. The higher is the resolution the

better are the results.

represents opacities of s0; s1 and s2 respectively.

Applying equation (1),we obtain that the accu-

mulated opacity in each situation is

�a = �2 + �1(1� �2) + �0(1� �1)(1� �2) (2)

and,

�b = �2 + �0(1� �2) (3)

respectively. As both situations represent the

same area of the volume, the �a � �b di�erence

has to be minimal. To reduce this di�erence we

apply the opacity correction at �0 in the coarser

representation. To determine the �c value an ap-

proximation of �1 for the coarser representation

is required. As this approximation depends on

the criteria applied for the octree construction we

consider two possible situations, and we describe

how the �c is obtained in each one.

(i) The �rst situation consider that the applied

criteria for the octree construction consid-

ers a node homogeneuous when all the sam-

ples are equal. Under this criteria we can

substitute in equation (2) �1 for �0, and

we obtain that �0 has to be substituted for

�0+�0(1��0) in equation (3) to obtain the

minimal di�erence between representations

(�a � �b). In this situation

�c = �0(1� �0)

In general, if the di�erence between the

higher resolution representation and the se-

lected one is n (i.e. there are n� 1 samples

between the two represented samples) and

thus the represented samples are �0 and

�n + 1 the �0 has to be substituted for

�0 � (1� �0)((1� �0)
n)

(ii) The second situation is when the applied

criteria for the octree construction consid-

ers a node homogeneous when internal sam-

ples can be obtained by interpolation of the

external ones. Under this criteria we can

substitute in equation (2) �1 for
�2��0

2
, and

we obtain that the minimal �a � �b is ob-

tained when �0 is substituted for �0(1+�2)

in equation (3).

In general if the di�erence between the

higher resolution representation and the se-

lected one is n, to determine the �0 value

we have to consider that �i =
(n�i)�0+�n

n
.

The accumulated opacity on a sample can

be obtained as T�i = �i + (1 � �i)T�i�1 ,

thus the opacity correction in this situation

will be obtained from the di�erence between

Tn-T0.

(a) (b)

S2

SoSo
S2

S 1

Figure 4: The composition of the �rst sam-

ples of the ray. In (a) three samples are

composited and in (b) only two

The complexity of the computation of the �c

value depends on the criteria applied for the oc-

tree construction.

4.1.2 Texture Restrictions

Two restrictions have to be considered. The �rst

one, is imposed by hardware and forces texture

data loaded in texture memory to be packed into

a rectangular parallelepiped, each dimension con-

strained to be a power of two 1.The second one

has to be accomplished to guarantee image qual-

ity. To avoid artifacts between adjacent nodes in

the �nal image, each texture node has to share

its boundary with its neighboring texture nodes.

Driven by these restrictions, if ni is a k level node

of the OT cut and q is the level we will use to

represented it, k � q we consider that the re-

gion covered by ni can be represent by a voxel

set composed of all external samples which de-

limits q level cells in the subtree of ni. Thus,

(2(q�k) + 1)3 texels are required to represent

the node. As we have to store neighbor infor-

mation we de�ne a (2(q�k) + 2)3 texture, using

(2(q�k) + 2)3 � (2(q�k) + 1)3 texels to store it. If

q = k the texture is (21 + 2)3.

1OpenGL supports a border option that allows textures

to be (2n + 2)

4.2 OT Cut Rendering

The OT cut rendering, which only considers or-

thographic projections, is based on an iterative

application of the node visualization function

which computes the contribution of each node to

the �nal image. The composition order of the

nodes is obtained directly from a back-to-front

octree traversal, driven by the viewing direction.

4.2.1 Node Visualization Function

The function is based on the [Gelde96] algorithm;

all texture space transformations and clipping

plane performace are implemented using graph-

ics library procedures

To describe the function we consider that it is

applied to the node ni of the cut. The texture

representation of this node is Ti, and the number

of polygons np that will be composited to obtain

the �nal node's contribution to the image depends

on the resolution of the texture. The number of

planes used for the rendering coincides with the

number of planes used to obtain the sampled rep-

resentation of the node.

(b) (c)

(d) (e)

(f) (g)

bounding node
(a)

volume
node

Figure 5: This illustrates an orthographic

projection of two 3D bounding-node, the

�rst in the original orientation (a) and the

second one rotated (d). Neighbor node is

correct positioned by a set of transforma-

tions, (b)(e) and (f).

The function can be decomposed in the following

steps:

1. Bounding node definition. A bounding

cube centered on the center of the node ni is

de�ned. We call it bni, bounding node. The

corresponding polygons npi to be rendered

form series of slices through bni, parallel to

the xy face. Texture coordinates will be

assigned to corners of these polygons in such

a way that they interpolate into the texture-

space Ti of this node when they are within

the node.

If ln is the lenght of the node's edge, the cor-

ners of the bn are (+
�

lbn
2
;+
�

lbn
2
;+
�

lbn
2
), where

lbn = ln �
p
3

2. Clipping Planes activation.The set of

npi polygons to be rendered always remains

parallel to the projection plane, and extend

to the bounding node. The node's volume

is represented in Ti and rotates into bni ac-

cording to the viewing direction (see �gure

5(a)(d)) . To guarantee that only the vol-

ume information represented in the texture

will contribute to the �nal image (i.e. ex-

ternal areas of the node contained in bni
are eliminated) a set of clipping planes is

de�ned. The clipping planes are positioned

according the viewing direction at each one

of the node's volume faces.

3. Node's Positionment. Once the clipped

polygons that represent the volume node are

computed, we determine where they have

to be projected. The position of these poly-

gons is �xed by the node's octree position

and by the viewing direction. These pa-

rameters determine the set of geometrical

transformations to be done.

A �rst geometrical transformation deter-

mines the position of the bni according to

the OT position (see �gure 5(b)(e)). A new

orientation requires a rotation of the tex-

ture space, keeping bni stationary. This ro-

tation is done independently for each node

according to the viewing direction. To

maintain continuity between nodes, a sec-

ond transformation is applied (see �gure

5(f)). This transformation translates the

bounding node.

4. Texture Mapping. Finally, texture coor-

dinates are assigned to the transformed and

clipped polygons in such a way that they in-

terpolate into the texture-space when they

are within the node. All mathematics to

generate texture coordinates are based on

[Gelde96].

Once these steps are applied we obtain the �nal

Ii contribution to the image.(see �gure 5(c)(g)).

5 RESULTS

The algorithm has been implemented and applied

to several cuts of an octree representation of a CT

head volume data model of 128 � 128 � 128. The
cuts were rendered on a SGI 02 computer system.

The �rst rendering, see �gure 7, corresponds to

a cut composed by 8 nodes of 64*64*64. All the

nodes have been represented at the higher res-

olution and have been rendered with the same

number of polygons. In this situation the im-

age quality o�ered by the proposed algorithm is

the same as the one obtained when the volume

is rendered with the [Gelde96] algorithm where a

unique texture of 128�128�128 has been de�ned,

see �gure 6.

This �rst rendering (�gure 7) shows that pre-

cission errors that could appear in node's po-

sitionment (see 4.2.1 (3)) are not perceptible if

the neighbor bounding nodes are represented at

the same resolution, and rendered with the same

number of polygons.

Figure 6: Image of 128x128x128 CT model

rendered by [Gelde96] algorithm.

Figure 7: A cut of the CT head octree, com-

posed by 8 nodes of 64x64x64 rendered by

the proposed algorithm

To evaluate the image quality o�ered by the al-

gorithm when it is applied on a cut in which the

nodes have been represented in texture space at

di�erent resolutions, we have selected a region of

maximal interest, see �gure 8(a). For this par-

ticular situation the rendered cut is composed

by 6 nodes of 64*64*64 voxels and 16 nodes of

32*32*32 (see �gure 8(b)). The texture resolu-

tion of each node is set according the degree of

interest of the node. In this example, only the

marked nodes of �gure 8(b) are represented at

higher resolution (i.e. 32x32x32 texels). While

textures that represent all other nodes are ob-

tained from a subsampling of the node. In next

tables we represent the resolution of the volume

covered by the node (voxel resolution) and the

resolution of the texture representation (texture

resolution) that have been de�ned to obtain the

renderings of �gure 10 and �gure 11 respectevely.

To compute the required texture memory it is

necessary to add to the node's texture space the

boundary texels.

number voxel texture

nodes resolution resolution

6 64x64x64 32x32x32

8 32x32x32 32x32x32

8 32x32x32 16x16x16

Figure 10 Texture space 491.520

Boundary texels 105.392

number voxel texture

nodes resolution resolution

6 64x64x64 16x16x16

8 32x32x32 32x32x32

8 32x32x32 8x8x8

Figure 11 Texture space 290.816

Boundary texels 66.608

Of course, the image quality of regions of no in-

terest is not comparable to the rendering that we

obtain when these regions are rendered at higher

resolution (see �gure 9). But we have to consider

the bene�ts of this new representation in terms

of texture space. For �gure 9 2.097.152 texels are

required, in front of the 592.912 texels required

for �gure10 and the 357.424 texels required for

�gure11. It can be seen that savings are about

70% per cent and thus interactive rendering times

are possible to obtain images of accepted quality.

32 voxels3

voxels64
3

(a) (b)

Figure 8: (a)The region of maximal inter-

est is selected.(b) The cut of the octree is

selected according the region of interest.

Figure 9: The CT head rendered with a

128 � 128 � 128 texture. (2.097.152 texels

are required)

Figure 10: A cut of the CT head octree in

which only the region of maximal interest

is rendered at higher resolution. The repre-

sentation of no interesting nodes is obtained

from a subsampling. (592.912 texels are re-

quired)

Figure 11: A cut of the CT head octree in

which only the region of maximal interest

is rendered at higher resolution. The repre-

sentation of no interesting nodes is obtained

from a subsampling. (357.424 texels are re-

quired)

6 CONCLUSIONS AND FUTURE

WORK

We have presented a 3D texture based Octree Vol-

ume Visualization algorithm that combines 3D

texture hardware and hierarchical representation

of data sets to obtain multiresolution renderings.

The basis of the algorithm is a new rule that takes

advantage of iso-valued areas of the volume or re-

gions of no interest, and modi�es the classical tex-

ture volume representation for a more synthetical

one. This new assignation policy improve the use

of 3D texture memory and optimize the explota-

tion of 3D texture based visualization on large

data sets.

Given an octree representation of the original

data set, one cut of this octree is selected. Each

node of the cut is represented in texture memory

at one determined accuracy according the degree

of homogeneity and the degree of interest of the

node. Once all the nodes of the cut are repre-

sented in texture space a rendering function is ap-

plied to each one to obtain the �nal image. The

algorithm guarantees at regions of maximal in-

terest the image quality o�ered by classical 3D

texture algorithm [Gelde96].

In this �rst stage of our work we have prioritized

the evalution of image quality in front of render-

ing speed, nevertheless, interactive times are ob-

tained. In our future work some other strategies

to improve image quality will be investigated, dif-

ferent policies to speed up the rendering time. We

will also work on the extension of the algorithm

for perspective projections.

REFERENCES

[Akele93] Kurt Akeley, Reality Engine Graphics,

Computer Graphics (ACM Siggraph Proceed-

ings), 27:109-116,1993.

[Boada99] I.Boada,I.Navazo,R.Scopigno, An In-

teractive 3D Texture Based Volume Visual-

ization Using an Octree based Multiresolu-

tion Representation.Technical Report(IIiA99-

16-RR). Girona University (Institut d'Infor-

matica i Aplicacions)

[Cabra94] Brian Cabral, Nancy Cam and Jim

Foran, Accelerated Volume Rendering and To-

mographic Reconstruction using Texture Map-

ping Hardware, In ACM Symposium on Vol-

ume Visualization,pp. 91- 98 Washington, D.C.

October 1994

[Culli93] T.J.Cullip, U. Neumman. Accelerating

volume Reconstruction with 3D texture hard-

ware. Technical Report TR93-027, University

of North Carolina, Chapell Hill, 1993.

[Guan94] Sheng-Yih Guan and Richard Lipes.

Innovative Volume rendering using 3D Texture

Mapping. In Image Capture, Formatting and

Display.SPIE 2164, 1994

[Grzes98] R. Grzeszczuk, C.Henn,

and R.Yagel.Advanced Geometric Techniques

for Ray Casting Volumes. Course Notes. SIG-

GRAPH '98. ACM July 1998.

[Levoy90] Marc Levoy.A hybrid ray-

tracer for rendering polygon and volume data.

IEEE Computer Graphics and Applications,10

(2):33-40, March 1990.

[Laur91] David Laur and Pat Hanrahan. Hierar-

chical Splatting: A progressive re�nement algo-

rithm for volume rendering. Computer Graph-

ics (ACM Siggraph Proceedings), 25 (4):285-

288, July 1991.

[Srini97] Rajagopalan Srinivasan, Shiaofen Fang,

Su Huang. Volume Rendering by Template-

Based Octree Projection. Workshop Euro-

graphics 97. Visualization in Scienti�c Com-

puting.

[Tong99] Xin Tong, Wenping Wang, Waiwan

Tsang, Zesheng Tang. E�ciently Rendering

Large Volume Data Using Texture mapping

Hardware. Data Visualization '99 (in press).

[Wilhe92] Jane Wilhems, Allen Van Gelder. Oc-

trees for Faster Isosurface generattion. ACM

Transactions on Graphics, 11(3):201-297, July

1992.

[Wilso94] Orion Wilson, Allen Van Gelder, Jane

Wilhems.Direct Volume rendering via 3D tex-

tures. Technical Report UCSC-CRL-94-19,

University of California, Santa Cruz, June 1994

[Gelde96] Allen Van Gelder, Kwansik Kim. Di-

rect Volume rendering with shading via 3D

textures. Symposium on Volume Visualization

1996, pp 23-30.

