
ARTICLE

Chemical bond analysis for the entire periodic table: Energy

Decomposition and Natural Orbitals for Chemical Valence in the

Four-Component Relativistic Framework

Diego Sorbelli,a,b Paola Belanzoni,a,c Loriano Storchi,d Olivia Bizzarri,c Beatrice

Bizzarri,a,c Edoardo Mosconic and Leonardo Belpassic

aDipartimento di Chimica, Biologia e Biotecnologie, Università degli Studi di Perugia, Via
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ABSTRACT

Chemical bonding is a ubiquitous concept in chemistry and it provides a common

basis for experimental and theoretical chemists to explain and predict the structure,

stability and reactivity of chemical species. Among others, the Energy Decomposi-

tion Analysis (EDA, also known as the Extended Transition State method) in combi-

nation with Natural Orbitals for Chemical Valence (EDA-NOCV) is a very powerful

tool for the analysis of the chemical bonds based on a charge and energy decomposi-

tion scheme within a common theoretical framework. While the approach has been

applied in a variety of chemical contexts, the current implementations of the EDA-

NOCV scheme include relativistic effects only at scalar level, so simply neglecting the

spin-orbit coupling effects and de facto limiting its applicability. In this work, we ex-

tend the EDA-NOCV method to the relativistic four-component Dirac-Kohn-Sham
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theory that variationally accounts for spin-orbit coupling. Its correctness and numer-

ical stability have been demonstrated in the case of simple molecular systems, where

the relativistic effects play a negligible role, by comparison with the implementation

available in the ADF modelling suite (using the non-relativistic Hamiltonian and

the scalar ZORA approximation). As an illustrative example we analyse the metal-

ethylene coordination bond in the group 6-element series (CO)5TM-C2H4, with TM

=Cr, Mo, W, Sg, where relativistic effects are likely to play an increasingly impor-

tant role as one moves down the group. The method provides a clear measure (also in

combination with the CD analysis) of the donation and back-donation components

in coordination bonds, even when relativistic effects, including spin-orbit coupling,

are crucial for understanding the chemical bond involving heavy and superheavy

atoms.
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1. Introduction

In recent decades, several approaches, mainly in theoretical chemistry, have been in-

troduced to analyse and characterise chemical bonding. These can be divided into two

main groups: i) methods mainly focusing on the decomposition of the binding energy

into ’chemically meaningful’ contributions[55–57, 67, 106] and ii) methods that mainly

focus on wave function or electron density analysis[3–5, 8, 11, 25, 27, 42, 45, 68, 86]. As

a matter of fact, a chemical bond is not a well-defined quantum mechanical observable

[87] and so it is not surprising that discussions about the nature of chemical bonds

typically lead to disputes and misunderstandings. So when designing, developing or

applying a theoretical method for analysing a chemical bond, it can be useful to recall
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Coulson’s perspective[26] which he expressed in a lecture in 1952: “Sometimes it seems

to me that a bond between two atoms has become so real, so tangible, so friendly, that

I can almost see it. And then I awake with a little shock: for a chemical bond is not a

real thing: it does not exist: no one has ever seen it, no- one ever can. It is a figment

of our own imagination...” and also “it is a most convenient fiction, which, as we have

seen, is convenient both to experimental and theoretical chemists”. If the fundamen-

tal theory of quantum mechanics does not help to design unambiguous definitions for

chemical bonds, we believe that an important criterion for assessing the validity of a

model for chemical bonds lies in its predictive ability within the chemical space. [87]

For a critical analysis of the most common bonding models, and the quantum mechan-

ical description of chemical bonds, we refer the reader to the comprehensive review by

Frenking et al. [105], which also includes a description of the main theoretical meth-

ods available today for bonding analysis. For an overview of the physical nature of

chemical bonding, including the latest computational approaches, we refer the reader

to a very recent collection of articles [34].

Among other methods available in the literature, energy decomposition analysis

(EDA), originally developed by Morokuma [57] and by Ziegler and Rauk [106] and

also known as the Extended Transition State Method (ETS), combined [62, 63] with

the original density partitioning method Natural Orbitals for the Chemical Valence

(NOCV) of Mitoraj and Michalak [64, 66] represents a very powerful method that

bridges the gap between elementary quantum mechanics and a conceptually simple

interpretation of the nature of chemical bonds. The method, known as EDA-NOCV

(or ETS-NOCV), has become an important tool for the analysis of bonds. Indeed,

it takes into account different types of physical interactions that contribute to the

experimentally observable bond dissociation energy. In particular, this approach is

able to decompose the orbital relaxation energy into NOCV pairwise contributions

that can be associated with a particular electronic deformation density. The latter can

be visualised to characterise the interaction. Furthermore, the NOCV distribution can

often be correlated with simple chemical concepts, such as for instance the Dewar-

Chatt-Duncanson (DCD) bonding model for coordination chemistry. For a detailed

and critical overview of the EDA-NOCV method, and its most common applications,
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we refer the interested reader to Ref. [104]

Some of us have shown that the rearrangement of electron density associated with

the NOCV orbitals pair can be analysed quantitatively by using the so-called charge-

displacement (CD) analysis[11]. The method, also known as NOCV/CD, [16, 18] is

based on the partial progressive integration of the rearrangement of electron density

that occurs during bond formation and is associated with the NOCV partitioning of

orbital relaxation. The resulting approach has been applied to quantify the donation

and back-donation components of the DCD model, which can be disentangled and

brought into very close correlation with experimental observations [2, 15, 17, 24].

The method has been also applied to molecular systems without symmetry con-

straints, [16, 46, 48, 61] including the analysis of the evolution of a chemical bond

between catalyst and substrate along the steps of a reaction pathway [16]. More re-

cently, the EDA-NOCV/CD method has helped us to elucidate the peculiar nature

of bonding in coinage metal-aluminyl complexes[92, 94, 95] and their reactivity with

carbon dioxide and other small molecules [93, 96, 97].

Despite its wide diffusion, the current implementations of the EDA-NOCV method

are limited to non-relativistic Hamiltonians or to include relativistic effects at scalar

level, typically using the scalar ZORA approximation, which simply overlooks the

spin-orbit coupling effects. However, it is widely recognised that spin-orbit coupling

can play an important role not only in spectroscopy, but also in chemical bond-

ing [21, 60, 87] and chemical reactivity. [31, 47, 49, 50, 75, 79, 85, 88] The development

of methods which are able to analyse the chemical bonds within a theoretical frame-

work which incorporates spin-orbit coupling effects is of high importance. Among oth-

ers, [41, 43, 74, 81, 103] the recent work of Senjen et al. [89] where the intrinsic atomic

and bond orbitals (IBOs) scheme has been generalised to fully relativistic applications

using complex and quaternion spinors as implemented in the DIRAC code [1, 82]

goes exactly in this direction. Some of us have extended the NOCV scheme to the

Dirac-Kohn-Sham module of the code BERTHA (and in its new Python API, Py-

BERTHA) and the approach has been successfully used (also in combination with the

CD analysis, NOCV/CD) to study chemical bonding and s-d hybridisation in Group 11

M-CN cyanides (M = Cu, Ag and Au) and in Group 11 MH−
2 dihydrides (M=Cu, Ag,
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Au, Rg)[91], superheavy elements interacting with metal clusters, and to characterise

weakly bound systems involving astatine [28, 29, 80]. Despite the quantitative measure

of the charge transfer (CT) involved upon a bond formation, the NOCV/CD approach,

is exclusively focused on the analysis of the rearrangement of the electron density and

gives no indication of the different energy terms that contribute to the total energy

of the bond. It therefore seems appropriate to extend the NOCV approach already

implemented in BERTHA [28] and combine it with EDA. This combined scheme of-

fers the possibility to obtain quantitative information about different energetic terms

contributing to the total interaction energy and to assign a well-defined energetic con-

tribution to the rearrangement of the electron density associated with a specific pair

of NOCV orbitals. In this paper we present the formalism and implementation of the

EDA-NOCV scheme in the context of the relativistic four-component DKS method,

where the spin-orbit coupling is variationally included. In Section 2 we recall the essen-

tial aspects of the EDA method, including the Extended Transition State method that

is used in combination with the NOCV theory (EDA-NOCV). We describe how the

scheme can be extended to the Dirac-Kohn-Sham theory as is currently implemented

in the DKS module of the BERTHA code[12, 78, 98, 99] taking advantage of the new

Python API. In section 3 we present first test calculations to validate the correctness

and numerical stability of our new implementation. An application is also reported

in order to illustrate the effective usefulness of the approach to analise the coordina-

tive bond in a consistent manner in the whole periodic table. In particular we have

investigated the metal-ethylene bond in the full set of the group 6 carbonyl complexes

(CO)5TM-C2H4, with TM =Cr, Mo, W and Sg (Seaborgium, element 106), where

relativistic effects become increasingly important. Some conclusions and perspectives

are drawn in the last Section.

5



2. Methodology

2.1. Energy Decomposition Analysis and Natural Orbital for the

Chemical Valence (EDA-NOCV)

We begin this Section with a brief overview of the EDA scheme[] in the version origi-

nally introduced by Morokuma [57] and successively by Ziegler and Rauk [106] at the

Hartree-Fock or Hartree-Fock-Slater level. In the literature, this scheme is also known

as the Extended Transition State (ETS) scheme, named after the original work of

Ziegler and Rauk [106]. An important impetus for the dissemination of EDA was its

development in the context of Kohn-Sham theory and its implementation in the ADF

code over many years [14]. More recently, the scheme has been combined with natu-

ral orbitals for chemical valence (EDA-NOCV) [65], where the Extended Transition

State method was used to decompose the orbital interaction energy in terms of well

defined contributions associated with specific NOCV deformation densities that can

be visualized and analised to characterize the interaction. For a detailed description,

we refer the reader to the original papers [14, 65, 106]. For the sake of clarity, in the

following summary of the EDA-NOCV scheme, we attempt to use a notation which is

as consistent as possible with that used by Frenking et al. in a recent review article

[104] and by Ziegler et al. in the seminal work on ETS-NOCV [65].

The fundamental idea of this energy partition scheme is the decomposition of the

total binding energy (∆E) between two fragments A and B as a sum of well-defined

terms. These terms can be defined by assigning intermediate states to the system in

the course of bond formation in a kind of stepwise mechanism. Each state can be

reached by applying a well-defined mathematical procedure that can be associated

with a physically meaningful entity.

At first the total binding energy (∆E) is split into two main components, ∆Eprep

and ∆Eint:

∆E = ∆Eprep + ∆Eint (1)

∆Eprep is the energy required to bring the fragments A and B from their equilibrium
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geometry, at their ground electronic configuration, to the geometry they acquire in

the compound AB in their valence electronic configuration. Instead, ∆Eint is the in-

stantaneous interaction energy between the two fragments in the molecule. The latter

quantity is in turn divided into three terms:

∆Eint = ∆Eelstat + ∆EPauli + ∆Eorb (2)

where ∆Eelstat is the electrostatic interaction, ∆EPauli is called the Pauli term and

∆Eorb is the orbital interaction term.

Step 0

−→−→ρ0A ⇐ Ψ0
A

ρ0B ⇐ Ψ0
B

E[ρ0A] + E[ρ0B ]
∆Eprep

Step 1

−→−→ρA ⇐ ΨA

ρB ⇐ ΨB

E[ρA] + E[ρB ]

Step 2

−→−→ρA + ρB ⇐ ΨAΨB

E[ρA + ρB ]

∆Eelstat

+

∆E0
XC

Step 3

ρ0 ⇐ Â(ΨAΨB)

E[ρ0]

∆ẼPauli

−→−→ ρAB ⇐ ΨAB

E[ρAB ]

∆Eorb

∆E = ∆Eprep + ∆Eelstat + ∆E0
XC + ∆ẼPauli︸ ︷︷ ︸
∆EPauli

+∆Eorb

∆E

Figure 1. Graphycal stepwise representation of EDA, see text for details.

The graphical illustration of the individual steps at the basis of EDA can be visual-

ized in Figure 1. Initially, the system switches from state 0, which is characterised by

the isolated and non-interacting fragments (infinite spatial distance) with well-defined

Kohn-Sham determinants (Ψ0
A and Ψ0

B) and electron densities (ρ0A and ρ0B). In the first

step, the fragments are distorted into the geometry (ΨA and ΨB) they possess in the fi-

nal adduct. The energy increases by an amount that corresponds to the definition of the

preparation energy mentioned above, ∆Eprep = E[ρA] +E[ρB]−E[ρ0A]−E[ρ0B]. In the
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second step, the distorted fragments are moved from infinite distance to their final po-

sition, which they occupy in the complex, without changing their densities (ρA and ρB)

and orbitals. The associated change in energy is now given by E[ρA+ρB]−E[ρA]−E[ρB]

which can be easily written as (see Appendix A)

E[ρA + ρB] − E[ρA] − E[ρB] = ∆Eelstat + ∆E0
XC . (3)

∆Eelstat represents the classical electrostatic interaction between the unperturbed

charge distributions (ρA and ρB) of the prepared fragments when they are brought

together at their final positions. The resulting total density is a simple superposition

of the fragment densities, and its explicit expression is given by

∆Eelstat = −
∑

i∈{A}

∫
ZiρB(r)

|Ri − r| dr −
∑

i∈{B}

∫
ZiρA(r)

|Ri − r|dr +

+
∑

i∈{A}
j∈{B}

ZiZj

|Rj −Ri|
+

∫ ∫
(ρA(r1)ρB(r2))

|r1 − r2|
dr1dr2,

where the first two terms represent the Coulomb interaction between the charges of

the nuclei of fragment A (and B) and the one-electron density of fragment B (and

A). Instead, the third term is the classical electrostatic repulsion between the nuclei.

Finally, the last term is the Coulomb repulsion between the one-electron densities

associated with the two isolated fragments (ρA and ρB). For the neutral fragments,

∆Eelstat is typically attractive because of a charge penetration that may occur between

the two fragments. The term ∆E0
XC in Eq.3, defined as EXC [ρA + ρB] − EXC [ρA] −

EXC [ρB], represents the corresponding change in the Kohn-Sham exchange correlation

energy. The electrostatic energy enters the first term of the EDA, see Eq. 2. In this

second step, the total energy E[ρA + ρB] and the total electron density (ρA + ρB)

are associated with a wave function that is the simple product (ΨAΨB) of the non-

interacting Kohn-Sham determinants of fragments A and B. This product, of course,

does not have the correct asymmetry property required by quantum mechanics for a

fermionic system.
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In the third step, an energy change occurs due to the transition from ΨAΨB to the

wave function Ψ0 = NÂ[ΨAΨB] (with an associated electron density ρ0), which obeys

the Pauli principle by explicit antisymmetrisation (Â operator) and renormalisation (N

constant) of the product of the fragments wavefunctions. This is typically carried out

via a simple orthonormalisation procedure of the occupied orbitals of the fragments.

This step is associated with an energy increase of the system (∆ẼPauli) that is defined

as:

∆ẼPauli = E[ρ0] − E[ρA + ρB] (4)

It is important to note that the term ∆ẼPauli we have just defined is not exactly

the same that appears in the EDA partitioning of Eq.2. In fact, it is common in the

literature to sum ∆ẼPauli and ∆E0
XC to obtain the total Pauli or ”exchange repulsion”

term ∆EPauli

∆EPauli = ∆ẼPauli + ∆E0
XC . (5)

The reason for such choice seems to be related[65] with the fact that the positive and

destabilising term ∆ẼPauli is dominant over ∆E0
XC . This definition is used for instance

in the EDA implementation of the ADF program. For the present authors, however,

this choice contains a certain degree of arbitrariness, so, for the sake of clarity, we

will report both the entire Pauli term (∆EPauli) and also the two constituting terms

(∆̃EPauli and ∆E0
XC), separately.

Finally, the last term of Eq. 2 is called the orbital interaction energy ∆Eorb. It is

calculated in the fourth (and last) step of the EDA scheme. Here, one allows Ψ0 to relax

to the fully converged Kohn-Sham determinant ΨAB (the associated density is denoted

as ρ). ∆Eorb accounts for the chemical contribution of the interaction including electron

pair, charge transfer (e.g. HOMO-LUMO interactions) and polarisation (mixing of

empty/occupied orbitals on one fragment due to the presence of another fragment). It

is evident that polarisation and charge transfer energy stabilization between fragments

cannot be separated and both contribute to the ∆Eorb.
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All energy contributions in the EDA partitioning scheme have well-defined math-

ematical definitions, but we have to recognise that none of them is an observable,

although they sum to the experimentally measurable bond dissociation energy (see

Eq. 1 and Eq. 2). Furthermore, the attentive reader will no doubt have noticed a the-

oretical issue when we use EDA within the Kohn-Sham framework. In particular, in

step 2 of the EDA scheme, the system has an energy that has been defined as a func-

tional of a density given by the sum of the density of the fragments (this sum appears

in E[ρA + ρB] and also in ∆E0
XC = EXC [ρA + ρB] − EXC [ρA] − EXC [ρB]) which is

not N-representable. Thus, it is not clear which exchange-correlation contribution is

describing. This has already been discussed in details by Bickelhaupt and Baerends at

pag. 11 of Ref.[14]. The basic conclusion is that the exchange-correlation contribution

is typically small with respect to the other terms of the interaction (kinetic and po-

tential energy), thus one may be confident that E0
XC gives a reasonable representation

of the exchange-correlation energy also in this intermediate step. Therefor, its use has

been pragmatically accepted in the literature. Based on the transition state method,

Ziegler and Rauk showed, in their seminal paper on ETS [106], that one can write

approximated expressions for the energy difference associated with a well-defined re-

arrangement of the electron density. In particular, it can be shown that for the orbital

interaction ∆Eorb the following expression is valid

∆Eorb = E[ρ] − E[ρ0]

=
∑

µ,ν

∆DµνFµν [ρTorb] +O(∆D3)

where ∆Dµν are the matrix elements of the ∆D = DAB −D0 matrix, defined as

the difference of the density matrices associated with the full relaxed density of

the adduct (ρ(r) =
∑

µ,ν ∆DAB
µν χ

∗
µ(r)χν(r), step 4) and with the orthonormalized

density matrix (ρ0(r) =
∑

µ,ν ∆D0
µ,νχ

∗
µ(r)χν(r), step 3). Fµν [ρTorb] are the matrix

elements of the Kohn-Sham operator associated with the transition state density,

ρTorb = 1/2(ρ0(r) + ρAB(r)). The basic idea is to expand the energy of both the

final state (E[ρf ]) and the initial state (E[ρi]) in a Taylor series with respect to

a common origin, E[ρT ], which is the energy associated with the average density
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(ρT = 1/2(ρf + ρi)). For the reader convenience, we give the derivation of the formula

for the orbital interaction energy corrected to O(∆D2) and also the formulae derived

by Ziegler and corrected to O(∆D4) (see Appendix B). The use of the extended tran-

sition state density in combination with the NOCV method was proposed by Ziegler et

al. in 2009[65] and represents the key idea of the EDA-NOCV method. This method al-

lows for the splitting of the orbital interaction energy into pairwise contributions based

on the NOCV partitioning of the associated electron density rearrangement (step 4).

It provides a consistent energy/charge partitioning scheme where the different chem-

ical contributions to the orbital relaxation can be easily identified by visualising the

associated deformation density and quantified by providing the corresponding energy

contributions.

In the NOCV scheme the deformation density associated with the orbital relaxation

in step 4, can be brought into a diagonal form in terms of NOCVs:

∆ρ
′
(r) = ρ(r) − ρ0(r) =

∑

k

vk
(
|ϕk|2 − |ϕ−k|2

)
=

∑

k

∆ρ
′

k(r) (6)

where k, a positive integer, numbers the NOCV pairs in descending order of vk (vk >

0).

The NOCVs orbitals, ϕ±k, are defined as the eigenfunctions of the so-called ’valence

operator’ of the valence theory of Nalewajski and Mrozek [69–71], which, with respect

to the occupied spin orbitals of the molecule (ϕAB
i ) and of the promolecule (ϕ0i ), is

defined as

V̂ =
∑

i

(
|ϕAB

i ⟩⟨ϕAB
i | − |ϕ0i ⟩⟨ϕ0i |

)
. (7)

The NOCVs have the special property that they can be grouped into pairs of comple-

mentary orbitals (ϕk, ϕ−k) corresponding to eigenvalues with the same absolute value

but opposite sign (for the algebraic properties of NOCVs, see Ref. [77]). The spectral
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representation of V̂ is given by

V̂ =
∑

k

±vk|ϕ±k⟩⟨ϕ±k| (8)

From the definition of the operator V̂ , it is clear that k ranges from 1 to the number

of occupied spin orbitals. Moreover, it is important to note that only a small subset of

the NOCV pairs correspond to values of vk that are significantly different from zero.

This means that only a few NOCVs are important for describing the rearrangement of

electron density due to the bond formation. Supposing that the basis set {χi} for the

adduct (AB) is obtained by joining the basis sets of the two fragments (A and B), this

leads to a simple algebraic formulation in which the chemical-valence operator can be

written as follows

V̂ =
∑

µν

∆Dµν |χ∗
µ⟩⟨χν | (9)

where ∆Dµν are the elements of the density matrix (∆D = D −D0) defined above.

In this algebraic solution, the NOCV orbitals (ϕk) in Eq. 8 are given by

ϕk =
∑

µ

zi,kχµ (10)

where zi,k are obtained by the solution of the generalised eigenvalue problem,

V zk = vk S zk, (11)

where V is the matrix representation of the chemical-valence operator defined as

V = S∆DS (12)

and S is the overlap matrix. The NOCVs can be constructed by diagonalising the

matrix representation of the ’valence operator’ to ensure that the normalisation con-
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dition is satisfied. It is interesting that comparing different representations of V̂ , we

can easily derive a simple partition of the one-particle deformation density matrix,

∆D, associated with the NOCVs pairs (ϕ±k):

V̂ =
∑

µν

∆Dµν |χµ⟩⟨χν |

=
∑

k

±vk|ϕ±k⟩⟨ϕ±k|

=
∑

k

∑

µν

vk(z∗µ,kzν,k − z∗µ,−kzν,−k)|χµ⟩⟨χν |

=
∑

µν

(
∑

k

∆Dk
µν)|χµ⟩⟨χν |

where we define ∆D
(k)
µ,nu = νk(z∗µ,kzν,k − z∗µ,−kzν,−k). The sum of ∆D

(k)
µ,ν over k clearly

gives ∆Dµν .

The rearrangement of the electron density associated with the k-th NOCVs pair can

be determined via the corresponding contribution to the one-electron density matrix,

∆D
(k)
µ,ν

∆ρk(r) = vk
(
|ϕk|2 − |ϕ−k|2

)
(13)

= vk
∑

µν

(z∗µ,kzν,k − z∗µ,−kzν,−k)χ∗
µ(r)χν(r) (14)

=
∑

µν

∆D(k)
µν χ

∗
µ(r)χν(r). (15)

The partition of ∆Dµν into the contribution associated with the NOCV pairs

(∆D
(k)
µν ) can be directly applied to the partition of the total orbital interaction en-

13



ergy:

∆Eorb = E[ρ] − E[ρ0]

=
∑

µ,ν

∆DµνFµν [ρTorb] +O(∆D3)

=
∑

k

∑

µ,ν

∆D(k)
µν Fµν [ρTorb] +O(∆D3)

=
∑

k

Ek +O(∆D3),

where Ek =
∑

µ,ν ∆D
(k)
µν Fµν [ρTorb]. The NOCV scheme applied in combination with the

transition state method provides an unambiguous procedure to partition the total or-

bital energy in contributions (Ek) associated with the specific charge rearrangements

(∆ρk(r)). We note that the error that arises when one uses the transition state method

is very small, or negligible, in most of the cases. An even more accurate formula (cor-

rected up to O(∆D4)) has already been presented [106], where Fµν [ρTorb] is replaced by

2/3(Fµν [ρTorb]+1/6Fµν [ρ0]+1/6Fµν [ρ]). However, for most applications, this correction

is usually negligible. For the sake of completeness, in Appendix B, we present the basic

derivations of the transition state formula and some numerical tests for an illustrative

molecular system considered in this paper have been presented in SI.

2.2. Implementation of the EDA-NOCV scheme within

Dirac-Kohn-Sham module of BERTHA

The EDA-NOCV method has been implemented within the Dirac-Kohn-Sham (DKS)

module of the BERTHA code and in particular taking advantage of its Python

API, PyBERTHA. The basic theory of the DKS method and its implementation in

BERTHA has been described in detail in Refs. [12, 13], including interesting details

of our memory open-ended implementation code development based on OpenMP [22]

and the description of our Python API framework, PyBERTHA [13]. Below we will

briefly summarise the most important aspects of the DKS formalism and approxi-

mations as currently implemented in BERTHA, which are of some relevance for the
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implementation of the EDA-NOCV scheme. In atomic units, and including only the

longitudinal electrostatic potential, the DKS equation implemented in BERTHA is

{cα · p + βc2 + v(l)(r)}Ψi(r) = εiΨi(r), (16)

where c is the speed of light in vacuum, p is the electron momentum,

α =


 0 σ

σ 0


 and β =


 I 0

0 −I


 (17)

where σ = (σx, σy, σz), σq is a 2 × 2 Pauli spin matrix and I is a 2 × 2 identity

matrix.

A four-spinor solution of Eq. (16) is of the form

Ψi(r) =




ψ
(1)
i (r)

ψ
(2)
i (r)

ψ
(3)
i (r)

ψ
(4)
i (r)




(18)

and the total relativistic charge-density is a scalar function, as in non-relativistic con-

text, and can be readily evaluated as the scalar product of 4-component spinors ac-

cording to

ρ(r) =
∑

a

Ψa(r)†Ψa(r) (19)

where the sum extends only over the occupied positive-energy bound states (elec-

tronic states). The longitudinal interaction term, v(l)(r), is represented by a diagonal

operator borrowed from non-relativistic theory and made up of a nuclear potential

term vN(r), a Coulomb interaction term v
(l)
H [ρ(r)] and the exchange-correlation term

v
(l)
XC[ρ(r)]. We mention that the Breit interaction contributes to the transverse part of

the Hartree interaction and it is not considered here. In the present implementation of

BERTHA we use exchange-correlation functionals and associated potentials depending
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only on the electron density, rather than on the relativistic four-current, and pragmat-

ically non-relativistic density functionals are used that were not explicitly designed

for use in relativistic calculations. BERTHA is currently interfaced with the LIBXC

library, which provides a portable, well tested and reliable set of exchange and correla-

tion functionals that are used by several non-relativistic DFT codes. LDA, GGA and

meta-GGA type exchange-correlation functionals can be used in what is called the

”density-only” approximation[54], which means that the exchange-correlation func-

tional depends only on the electron density, its gradient (in the case of GGA) and not

on other variables such as spin density or magnetization[54], which may also be used

to reparametrize the exchange-correlation potential.

The spinor solution of Eq. 16 is expressed as a linear combination of G-spinor basis

functions [51] (MT
µ (r) with T = L, S):

Ψi(r) =




∑N
µ=1 c

(L)
µi M

(L)
µ (r)

∑N
µ=1 c

(S)
µi M

(S)
µ (r)


 (20)

where L and S refer to the so-called “large” and “small” component, respectively,

and the c
(T )
µi are expansion coefficients to be determined. The collective index µ works

as a tag for the set of parameters (coordinates of the local origin and exponent, fine-

structure quantum number and magnetic quantum number) completely characterizing

the Gaussian-based two-component objects MT
µ (r)[51].

The matrix representation of the DKS operator in the G-spinor basis is given by

HDKS =


V

(LL) +mc2S(LL) cΠ(LS)

cΠ(SL) V (SS) −mc2S(SS)


 (21)

where V (TT ) = v(TT ) + J (TT ) + K(TT ), with T = L, S.

The eigenvalue equation is

16



HDKS


c

(L)

c(S)


 = E


S

(LL) 0

0 S(SS)




c

(L)

c(S)


 (22)

where c(T ) are the spinor expansion vectors of Eq. 20. The HDKS matrix is defined

in terms of v(TT ),J (TT ),K(TT ),S(TT ), and Π(TT ′) matrices, being respectively the

basis representation of the nuclear, Coulomb, and exchange-correlation potential, the

overlap matrix, and the matrix of the kinetic operator. The nuclear charges have been

modeled by a finite Gaussian distribution [102]. The resulting matrix elements are

defined by

v(TT )
µν =

∫
vN (r)ρ(TT )

µν (r)dr (23)

J (TT )
µν =

∫
v
(l)
H [ρ(r)]ρ(TT )

µν (r)dr (24)

K(TT )
µν =

∫
v(l)xc [ρ(r)]ρ(TT )

µν (r)dr (25)

S(TT )
µν =

∫
ρ(TT )
µν (r)dr (26)

ΠTT ′

µν =

∫
M (T )†

µ (r)(σ · p)M (T ′)
ν (r)dr. (27)

The terms ρ
(TT )
µν (r) are the G-spinor overlap densities:

ρ(TT )
µν (r) = M (T )†

µ (r)M (T )
ν (r) (28)

These are expressed as finite superpositions, of standard Hermite Gaussian-type func-

tions (HGTFs) (see, e.g., Ref. 83) which allows to use stardard techniques for the

analytical evaluation of the two-electron repulsion integrals. The HDKS matrix de-

pends on ρ(r) in v
(l)
xc [ρ(r)] and v

(l)
H [ρ(r)], through the canonical spinors obtained by

its diagonalization. Thus, the solutions c(T ) are solved self-consistently.
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The total electron density is obtained according to

ρ(r) =
∑

T

∑

µ,ν

D(TT )
µν ρ(TT )

µν (r) (29)

where D
(TT )
µν , with T = L, S, are the diagonal blocks of the density matrix, D, defined

as

D =


D

(LL) D(LS)

D(SL) D(SS)


 (30)

The four blocks are defined as follows

D(TT ′)
µν =

∑

a

c
(T )∗
µi c

(T ′)
νi (31)

with TT ′ = LL,LS, SL, SS and the the sum runs over the occupied positive-energy

states.

The total energy of the electronic system is given as a functional of ρ(r) and D

Etot[D] = Tr(DHDKS) − 1/2Tr(DJ) + E(l)
xc [ρ(r)] − Tr(DK) (32)

We have previously implemented the NOCV density partitioning within BERTHA

using the new Python API PyBERTHA, which has provided a convenient framework

to lower the barrier to developments in relativistic quantum chemistry. Here, we have

used a similar strategy, so that all the quantities required for the implementation of

the EDA-NOCV scheme are made available on the Python side as NumPy arrays that

can be processed efficiently. In particular, we developed a Python function based on

the berthamod module of PyBERTHA that, for a given density matrix (D), furnishes

the corresponding Dirac-Kohn-Sham matrix (HDKS [D]) and energy Etot[D]. These

are the sole procedures required for the implementation of the EDA-NOCV scheme.

The procedure is summarized as following. In step 1 of the EDA scheme, we need

the DKS energies and densities of the isolated fragments A and B, which are obtained
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by two separate SCF calculations of fragments A and B. These fragments are assigned

to the respective eigenvector matrices

CA =


c

(L)
A

c
(S)
A


 CB =


c

(L)
B

c
(S)
B


 (33)

where the dimensions of CA and CB are Nocc
A ·NdimA and Nocc

B ·NdimB, respectively,

with Nocc
A(B) being the number of occupied positive energy states (i.e., electrons) of the

system A(B) and NdimA(B) the dimension of the G-spinor basis set for the system

A(B). The corresponding density matrices are easily built as DA = CAC
†
A and DB =

CBC
†
B and are available as NumPy arrays.

In step 2, we need to construct the density matrix associated with the two non-

interacting fragments. We construct the matrix C+ whose columns contain the coef-

ficients representing in the basis set the spinors belonging to the isolated fragments

(c
(T )
A and c

(T )
B for fragments A and B, respectively). The column index runs over the

occupied spinors of the isolated fragments and ranges from 1 to Nocc
A + Nocc

B . Each

column is internally ordered according to the definition of the G-spinor basis set as

implemented in BERTHA, so that the coefficients are divided into two groups: those

belonging to the large component (T = L) and those belonging to the small component

(T = S). In other words, C+ is constructed by assembling together the sub-matrices

c
(L)
A , c

(L)
B , c

(S)
A , and c

(S)
B with an equal number of zero matrices as follows:

C+ =




c
(L)
A 0

0 c
(L)
B

c
(S)
A 0

0 c
(S)
B




(34)

The associated density matrix is obtained as matrices product D+ = C+C
†
+. The

latter defines also the one-electron density associated at this state that is ρA + ρB =
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∑
T

∑
µ,ν D

+(TT )
µν ρ

(TT )
µν (r). The corresponding total energy is evaluated using the func-

tional in Eq. 32, where ρA + ρB and D+ is used instead of ρ and D, respectively.

In step 3, the new orthonormalised orbitals c0(T ) are defined via the Löwdin or-

thonormalisation procedure given by

c0(T ) = c
(T )
+ O

−1/2
+ (35)

where O+ is the orbital spinor overlap matrix

O+ = C†
+SC+. (36)

The associated density matrix is given by D0 = C0(C0)† and the orthonormal electron

density is

ρ0(r) =
∑

T

∑

µ,ν

D0(TT )
µν ρ(TT )

µν (r) (37)

Now, the total energy is evaluated using again Eq.32, where ρ0 and D0 are used instead

of ρ and D, respectively. The last step is the total orbital interaction (∆Eorb) which is

given by the difference between the fully converged DKS solution and the calculation

using the unrelaxed orthonormalised electron density ∆Eorb = E[D] − E[D0]. Using

the NOCV spinors definition, ∆Eorb can be easily partitioned in analogy with the non-

relativistic case described in the previous section and the NOCVs can be determined

with the same strategy already implemented in PyBERTHA [13]. The four-component

generalisation of the chemical valence operator is simple and given by

V̂ =
∑

i

(
|ΨAB

i ⟩⟨ΨAB
i | − |Ψ0

i ⟩⟨Ψ0
i |
)

(38)

where |ΨAB
i ⟩ and |Ψ0

i ⟩ are the spinors being occupied in the DKS determinant of

abduct and promolecule, respectively. The eigenstates of this operator are the rela-

20



tivistic NOCVs and are clearly four-component vectors

V̂Φk = νkΦk (39)

which, just as in the non-relativistic context, allow to put ∆ρ into a diagonal form. In

an algebraic approximation the NOCVs are the solutions of the generalised eigenvalue

problem,

V zk = vkSzk (40)

where the matrix representation of the chemical-valence operator in the context of

DKS is defined as

V = S∆DS (41)

where ∆D is DAB −D0 and S is the G-spinor overlap matrix given above in Eq.26.

Explicitly,

V =


S

(LL)∆D(LL)S(LL) S(LL)∆D(LS)S(ss)

S(SS)∆D(SL)S(LL) S(SS)∆D(SS)S(SS)


 (42)

where ∆D(TT ′) = D(TT ′) −D0(TT ′).

∆D can be partitioned into contributions associated with the k-th NOCV-pairs

where ∆D =
∑

k ∆D(k) with ∆D(k) = vk(zkz
†
k − z−kz

†
−k). Explicitly, ∆D(k) is

defined as

∆D(k) = vk


∆D(k)(LL) ∆D(k)(LS)

∆D(k)(SL) ∆D(k)(SS)


 (43)

where ∆D(k)(TT
′
) = vk(zTk (zT

′

k )† − zT−k(zT
′

−k)†).

Thus, analogously to the non-relativistic or two-components framework described

in the previous section, the electron density change relate with the orbital relaxation
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can be portioned in sum of contributions associated at the k-th NOCV pair defined

as:

∆ρk(r) =
∑

T

∑

µν

∆D(k)(TT )
µν ρ(TT )

µν (r) (44)

The total orbital energy can be also partitioned as following

∆Eorb = E[ρ] − E[ρ0]

=
∑

µ,ν

∆DµνH
DKS
µν [ρTorb] +O(∆D3)

=
∑

k

∑

µ,ν

∆Dk
µνH

DKS
µν [ρTorb] +O(∆D3)

=
∑

k

Ek +O(∆D3) (45)

with Ek ∼ ∑
µ,ν ∆Dk

µνH
DKS
µν [ρTorb], and ρT = 1/2(ρ + ρ0). It is worth noting that

while only the diagonal blocks (∆DLL and ∆DSS) of ∆D contribute in Eq.44 to

the definition of ∆ρk(r), all blocks (∆DLL,∆DLS ,∆DSL,∆DSS) are now required to

define the energetic contribution, Ek.

We mention that in our implementation of the EDA-NOCV scheme we have used

some basic features of our new BERTHA Python API, PyBERTHA (and its associated

module pyberthamod, which is licensed under GPLv3, see Ref. 59, for additional

and technical details see also Refs. 13, 30, 100). The developed Python programme

py eda nocv.py in which we have implemented the EDA-NOCV scheme we have

just described and the related python modules are freely available under the GPLv3

licence at Ref. 59. A data-set collection of computational results including numerical

data, parameters and job input instructions used to obtain the results of Section 3 are

available and can be freely accessed via the Zenodo repository, see Ref.[9].

3. Results and discussion

As we have mentioned above, we have tested the validity of our new implementation

on two simple cases: i) hydrogen bond in water dimer and ii) coordination bond in the
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Ag+-alkyne system, where relativity effects (and in particular the spin-orbit coupling)

are assumed to play a negligible or marginal role. After giving all relevant compu-

tational details in Section 3.1, we will present our results in comparison with those

obtained using the ADF Modelling Suite [6]. We then apply the EDA-NOCV scheme

on a series of complexes of group 6 elements, namely (CO)5TM-C2H4, with TM =Cr,

Mo, W, Sg, where the relativistic effects play an increasingly important role going

down the group.

We will demonstrate the effective ability of the EDA-NOCV method, extended to

the full four-component DKS framework, to provide a detailed picture of the bonding

and a quantitative measure (also in combination with the CD analysis) of the donation

and back-donation components of coordination bonds, even when relativistic effects

and spin-orbit coupling are crucial for describing the chemical bonding when heavy

and superheavy atoms are involved.

3.1. Computational details

All calculations were carried out using the Dirac-Kohn-Sham method as implemented

in the code BERTHA (with its new Python API, PyBERTHA)[12, 13, 100]. Density

fitting techniques, which require auxiliary basis sets, are employed in order to speed-up

the calculations [10, 13]. In all cases, the EDA-NOCV analysis was carried out using

reference fragments with even numbers of electrons. A finite charge distribution model

is used for the nuclei.[76]

In the case of the water dimer, we have used a large component uncontracting the

Dunning’s double- and triple-ζ quality basis sets[33] (denoted aug-cc-pvdz and aug-

cc-pvtz and available on the Basis Set Exchange Site[84]). The large component of

the basis set for Ag (28s20p13d7f3g), C and H for the calculation of Ag+-ethyne was

generated by uncontraction of Dyall’s basis sets of double and triple ζ-quality (aae2z

and aae3z) [35–38, 40] which have been expanded with the corresponding polarisation

and correlation functions. Also included in these basis sets are diffuse functions for

the s, p and d elements optimised for the anion or extrapolated from neighbouring

elements where the anion is unbound or weakly bound.[39]

For the complexes of group 6 elements (CO)5TM-C2H4, with TM =Cr, Mo, W,
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Sg, we have used large component basis functions of Dyall’s triple ζ-quality basis

sets (aae3z) for all atoms as available in the Zenodo repository [39]. This basis set

corresponds to a large component of 33s30p21d14f7g2h functions for the Sg atom. In

all cases, the corresponding small component basis was generated using the restricted

kinetic balance relation.[52]

For the elements H, C, O and Ag, accurate auxiliary basis sets were generated us-

ing a simple procedure derived from available DGauss Coulomb fitting [84] basis sets

(referred to as dgauss-a1-dftjfit and available at Ref.[84]). We recall here that we use

Hermite Gaussian Type Functions (HGTFs) as fitting functions grouped into sets with

the same exponents (an analogous scheme is used in the non-relativistic DFT code De-

Mon [58]). Due to the variational nature of the density fitting procedure, we achieved

a fitting basis of high accuracy by simply shifting the angular momentum of all defini-

tions of the dgauss-Coulomb fitting upwards by two units. For illustration, we give the

dimensions of the Ag atom auxiliary basis set, which consists of (10s,8p,8d,5f,5g). The

BP86 functional, defined as the Becke 1988 (B88) exchange [7] plus Perdew 1986 for

the correlation (PB86)[73], have been used. All calculations were performed within the

framework of the so-called ”density-only” DKS,[54]. An energy convergence criterion

of 10−8 Hartree was applied to the total energy. Finally, the geometries of all analysed

systems are given in SI. These were obtained by full geometry optimisations at the

BP86/TZ2P level using the ADF code with the ZORA scalar Hamiltonian [6].

3.2. Validation on hydrogen and coordination bonding: water dimer and

Ag+-C2H2

The focus of this section is to prove the correctness of our new implementation. For this

very reason, we start with a simple molecular system, the water dimer, for which rel-

ativistic effects are negligible, and compare our numerical results with those obtained

using the EDA-NOCV implementation available in the ADF package. As interact-

ing fragments for the analysis we choose the two water molecules. The results have

been carried out with different basis sets of increasing size and are reported in Ta-

ble 1. In the ADF code, we have used the TZ2P and QZ4P Slater- type set from the

ADF library[101]. Both the total interaction energy and all other interaction energy
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Table 1. EDA-NOCV results of the water dimer obtained using ADF and

PyBERTHA. Energies are in kcal/mol. In PyBERTHA we use uncontracted

G-spinor basis set obtained from the aug-cc-pVDZ and aug-cc-pVTZ basis
set(referred as AVDZ and AVTZ, see text for further details). In parenthesis

the eigenvalues associated with a particular NOCV pairs are reported.
ADF BERTHA

Basis set TZP QZ4P AVDZ AVTZ
∆Eint -4.66 -4.35 -4.46 -4.33

∆ẼPauli - - 14.10 13.93
∆E0

XC - - -5.07 -5.08
∆EPauli 8.58 8.98 9.03 8.85
∆Eelstat -8.63 -8.87 -9.28 -8.99
∆Eorb -4.66 -4.46 -4.20 -4.20
∆E1 -3.85 (0.1369) -3.82 (0.1368) -3.54(0.1321) -3.61(0.1328)
∆E2 -0.37 (0.0393) -0.22 (0.0310) -0.23(0.0307) -0.19(0.0300)
∆E3 -0.11 (0.0217) -0.15 (0.0270) -0.15(0.0264) -0.14(0.0260)
∆E4 -0.06 (0.0191) -0.11 (0.0234) -0.10(0.0251) -0.10(0.0252)
∆E5 -0.07 (0.0166) -0.07 (0.0177) -0.08(0.0178) -0.07(0.0176)
∆E6 -0.08 (0.0143) -0.05 (0.0153) -0.06(0.0161) -0.06(0.0155)

terms (∆EPauli, ∆EElect and ∆Eorb) show a very good agreement between the two

implementations. In particular, when we consider the values obtained with the most

accurate basis sets (namely, QZ4P for ADF and AVTZ in BERTHA) we found al-

most identical numerical values, differences between the two implementations always

less than 0.2 kcal/mol. A very satisfactory agreement is found also for all separated

energy components (∆Ek) which split the orbital interaction and are associated with

NOCV pairs and for also the numerical values of the related eigenvalues (reported in

parentheses also in the table). 1

In Table 2 we present a numerical comparison for the Ag+-ethyne complex as an

example of coordination bond (Ag+ and alkyne are the interacting fragments). In

particular, we report the EDA-NOCV analysis using both ADF (at ZORA scalar and

non-relativistic Hamiltonian levels and using the QZ4P Slater basis set) and our new

implementation in BERTHA using Dyall’s triple ζ basis set. We can expect that the

effect of spin-orbit coupling is negligible here (∆Eint evaluated using ZORA-Spin Orbit

Hamiltonian in ADF is of -39.33 kcal/mol) and that the system can be described well

by including the relativistic effects at scalar level . All data obtained using the Zora

Scalar Hamiltonian in ADF agree with those obtained with BERTHA at 4-component

DKS level. We have also carried out the analysis by increasing the speed of light

1Note that the number of NOCV pairs is equal to the number (N) of occupied spin orbitals, which is twenty

in the case of the water dimer. For closed-shell systems, the α and β spin orbitals provide exactly the same

contribution, which is implicitly accounted for in the ADF implementation by doubling the eigenvalue and by
denoting the NOCV pairs from 1 to the number of spatial orbitals (N/2), avoiding any reference to spin. In

BERTHA these degenerate contributions appear naturally as Kramers pairs, which for simplicity are summed

up for direct comparison with the ADF results.
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Table 2. EDA-NOCV results of the Ag+-alkyne system obtained using ADF at ZORA

scalar and non relativistic (n.r.) level and PyBERTHA using two different speed of light

c. Energies are in kcal/mol. In PyBERTHA we use uncontracted G-spinor basis set
obtained from the Dyall’s triple-ζ basis set while in ADF the Slater QZ4P has been

used. In parenthesis the eigenvalues associated with the NOCV deformation densities
are reported.

ADF BERTHA

ZORA Scalar n.r. c=137.036 c=13703.6

∆Eint -39.23 -31.2 -39.31 -31.20

∆ẼPauli - - 83.94 84.50
∆E0

XC - - -29.13 -28.43
∆EPauli 54.57 55.83 54.82 56.07
∆Eelstat -53.54 -52.88 -53.56 -52.90
∆Eorb -40.26 -34.21 -40.57 -34.37
∆E1 -24.27 (0.5011) -19.25 (0.4246) -24.37(0.5020) -19.27(0.4254)
∆E2 -7.09 (0.2479) -6.59 (0.2284) -7.22(0.2513) -6.67(0.2306)
∆E3 -3.53 (0.1326) -3.47 (0.1308) -3.56(0.1337) -3.49(0.1315)
∆E4 -2.58 (0.1008) -2.37 (0.0937) -2.58(0.1015) -2.36(0.0943)

in BERTHA by 2 orders of magnitude (i.e. c = 13703.6 a.u.) to approach the non-

relativistic limit and we found a satisfactory agreement with the non-relativistic results

of ADF (labelled as n.r. in the Table). Summarising, all the results obtained with the

EDA-NOCV implementation of the ADF and those obtained using BERTHA are in

very good agreement. Thus, the small differences are within the numerical variation

due to the inequalities in the basis sets employed. This makes us confident that our

implementation is both numerically stable and correct.

Before concluding this Section, it is interesting to point out that the term ∆E0
XC ,

usually combined with ∆ẼPauli to give the total Pauli term (∆EPauli) is far from

being negligible ( ∆E0
XC is about 30-40% of ∆ẼPauli for both hydrogen and coor-

dination bonds) and it is actually a significant fraction of ∆EPauli. This interesting

finding deserves further investigation, particularly because it is often overlooked in the

literature.

3.3. Complexes of group 6 elements (CO)5TM-C2H4, with TM=Cr, Mo,

W and Sg.

The coordination bonding of ethylene to transition metals (TM) has been extensively

studied, and the bonding is generally described using the DCD bonding model men-

tioned earlier [19, 23, 32, 44]. The interaction between the metal and ethylene results

from the σ-donation of electron charge from the occupied orbitals of ethylene to the
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Table 3. EDA-NOCV results for the (CO)5TM-C2H4 complexes with TM=Cr, Mo,

W and Sg. Energy values in kcal/mol. Data obtained at DKS level using BERTHA in
combination with Dyall’s aae3Z basis set, see text for details. Charge transfer (CT) in

electrons are extracted from the charge-displacement analysis, values of CD function at

the isodensity boundary (see text for details). Negative (positive) value corresponds to
an electron charge transfer in the direction going from the metal (ethylene) fragment to

the ethylene (metal) fragment.
(CO)5TM-C2H4

Cr(CO)5-C2H4 Mo(CO)5-C2H4 W(CO)5-C2H4 Sg(CO)5-C2H4

∆Eint -29.43 -28.34 -34.72 -33.30

∆ẼPauli 128.72 115.10 141.58 147.56
∆E0

XC -46.65 -41.25 -43.56 -48.42
∆EPauli 82.07 73.85 98.02 99.13
∆Eelstat -57.98 -55.30 -75.04 -74.11
∆Eorb -53.52 -46.89 -57.70 -58.33
∆E1 -21.93(0.5746) -20.02(0.5604) -25.50(0.6201) -26.47(0.6349)
∆E2 -25.78(0.5495) -21.54(0.4723) -25.67(0.4996) -25.30(0.4937)
∆E3 -1.76(0.1059) -1.39(0.0987) -1.60(0.1135) -1.76(0.1107)
∆E4 -1.58(0.0919) -1.42(0.0870) -1.79(0.0968) -1.66(0.0917)

CTtot -0.030 -0.0427 -0.053 -0.038
CT1 -0.244 -0.234 -0.260 -0.231
CT2 0.226 0.200 0.211 0.193
CT3 -0.007 -0.010 -0.009 -0.008
CT4 0.004 0.008 0.009 0.007

empty metal orbitals, and by a π-back-donation from the occupied orbitals of the

metal to the empty orbitals of ethylene (see Ref. [19] and the references therein for a

detailed discussion of DCD model).

The bonding situation between ethylene and group 6 metal carbonily complexes

(CO)5TM-C2H4 (TM =Cr, Mo and W) was previously investigated by Frenking et

al. [72] using EDA including scalar relativistic effects within ZORA approximation.

Here we extend the series to the 7th period and analyse alkene-metal bonding in the

entire series of group 6 (CO)5TM-C2H4 complexes including the superheavy element

Sg (Z=106). For completeness we also report the results for the whole series obtained

using the ZORA scalar Hamiltonian in SI (Table S)

The results of our analysis are given in Table 3 for all complexes. The Table also lists

the CT values determined with the NOCV/CD approach. As an illustrative example

we show in Figure 2, here for the Sg(CO)5-C2H4 system, the total electron density

rearrangement (∆ρ) that occurs in the bond formation between the metal fragment

(CO)5Sg and ethylene, and the most significant NOCVs pair decomposition (∆ρk,

with k = 1, 2, 3, 4). In the Figure are reported the isosurface plots together with the

corresponding CD functions (see Section 3.1), which provide quantitative information

about the charge shift that actually occurs during bond formation. Similar results are
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reported for the lighter homologoues in the SI (see Figures S1, S2, S3 for Cr, Mo and

W, respectively).

The numerical data show an interaction energy that follows the trend Mo ¡ Cr ¡ Sg

¡W with the superheavy element Sg interaction energy only slightly smaller (less than 2

kcal/mol) than the one of W. The overall picture that emerges from our analysis is that

the metal-ethylene bonding has a very similar character along the group. As already

observed by Frenking et al. for Mo, Cr and W, the metal-substrate bond appears to be

more electrostatic rather than covalent, although the orbital energy is an important

attractive component of the interaction (the ratio ∆Eelstat/∆Eorb is always greater

than one, i.e. 1.08, 1.18, 1.30 and 1.27 for Cr, Mo, W and Sg, respectively).

A more stringent comparison between W and Sg shows that not only the total

interaction energy is very similar (-34.7 kcal/mol and -33.3 kcal/mol for W and Sg, re-

spectively), but also all the other energy contributions (∆EPauli, ∆Eelstat and ∆Eorb)

appear to have very similar numerical values, which differ by less than 2 kcal/mol.

These systems exhibit also the largest orbital interaction (-57.7 and -58.3 kcal/mol

for W and Sg, respectively) among the series. The NOCVs decomposition of the to-

tal orbital interaction (∆Eorb) clearly shows that there are two main contributions

of comparable strength (∆E1 and ∆E2). The reader can easily understand the in-

terpretive power of the EDA-NOCV approach, which can associate these stabilising

contributions with respect to the corresponding NOCV electron density deformations.

In particular, here we can easily identify the character of these two components (∆E1

and ∆E2) thanks to the simple visual inspection of the isodensity-surface plots of the

associated deformation densities (see ∆ρ1 and ∆ρ2 for the specific case of Sg in Figure

2). The analysis for the other systems is reported in the SI.

Despite the fact that total electron density rearrangement (∆ρ ) shows a very com-

plex pattern of charge accumulation (blue isosurface) and charge depletion (red isosur-

face), the NOCV pair deformation densities can be clearly characterised. In particular,

∆ρ1 is characterised by depletion at the site of the metal fragment with an evident

accumulation on ethylene. Clearly, this represents the backdonation component with

a charge flux going from the metal fragment to the unoccupied in-plane π orbitals of

ethylene. The second deformation density (∆ρ2) is inversely characterised by charge
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depletion at the ethylene site and charge accumulation at the metal fragment and it

can be seen as the finger print of the donation component of the DCD model. Note

that the accumulation of electron density is not confined to the metal, but involves

also the CO ligands with a pattern of charge rearrangements that depends on the

specific position of the CO ligand in the fragment. In the panel b) of Figure 2, we also

show the NOCV-CD analysis for the Sg complex. Recall that at a given point along

a chosen axis (here the axis that joins the metal center with the CC bond mid point

of ethylene), z, a positive value of the CD function corresponds to a flow of electrons

from the right to the left; in our case from ethylene to the metal fragment. Conversely,

a negative value of the CD function corresponds to a flow in the opposite direction,

i.e. from the metal Sg to the ethylene fragment.

A reasonable measure of the charge transfer (CT) between the ethylene and the Sg

fragment can be easily determined by setting a plausible boundary to separate the

fragments within the complex. Our standard choice is the z point where equal-valued

isodensity surfaces of the isolated fragments become tangent[11, 15, 20]. The vertical

black line in the figure marks this ”isodensity boundary”. Thus, using the NOCV/CD

analysis, we can also give a quantitative picture of the basic binding modes in term

of CT associated with the components of the DCD bonding model while represent

a complementary information of the EDA-NOCV energy partition. The overall CD

function clearly results mainly from the metal to ethylene back-donation component

(labelled as ∆ρ1, red curve in the diagrams), which is large and negative and a second

component (labelled ∆ρ2, the blue line and the blue dashed line, respectively) which

is positive and clearly quantifies the ligand to metal donation. Quantitatively, the CT

associated at the backdonation (CT=-0.23 e) is larger, in absolute value, than that

related with the donation component (CT=0.19 e). Such pattern is common among

all complexes. Our EDA-NOCV analysis (and NOCV-CD) shows that the W and Sg

complexes have both the largest orbital interaction with very similar NOCVs energy

components and associated CTs. Our analysis shows that in this series of complexes

Sg possesses a bond with ethylene which is very similar to that of W and characterized

by similar DCD components (donation and back-donation) that are even larger than

those of the lighter homologues. The Sg-ethylene bond is characterized by a signifi-
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cant back-donation component both in terms of the large energy stabilization (∆E1 =

-26.5 kcal/mol, see Table3 ) and CT (-0.23 e, see Table3 and Figure2). This finding is

somewhat unexpected on the basis of a recent theoretical analysis[53] in hexacarbonyl

complexes of Mo, W and Sg, where the slightly lower interaction energy of Sg com-

pared to W was mainly attributed to a weaker metal to CO backdonation in Sg(CO)6

than in W(CO)6. It is clear that systematic studies on different complexes, including,

for instance, SgO2Cl2 and SgO2(OH)2 which were also experimentally studied, are

mandatory to gain a more detailed picture of the bonding properties of Sg.

4. Conclusions

In the present work we have extended the EDA-NOCV method to the relativistic four-

component DKS framework. This method allows us to analise a chemical bond in terms

of well-defined energy components (∆Eint = ∆Eelstat + ∆EPauli + ∆Eorb). It provides

a consistent energy/charge splitting scheme, where the different contributions to the

orbital relaxation can be easily identified by visualising the associated deformation

density and quantified by providing the corresponding stabilization energies. Thanks

to this new implementation, the approach can be now applied to the analysis of the

chemical bond in molecular systems containing heavy and super-heavy atoms in which

the relativistic effects, including spin-orbit coupling, need to be considered at the

highest level of accuracy.

This new implementation has been carried out in the framework of the DKS theory,

and it has been validated by comparing the results with those obtained using the

EDA-NOCV implemented in the ADF package. The benchmark study was successfully

performed with different basis sets for selected systems where relativistic effects are not

expected to play a significant role. Finally, we have carried out a systematic analysis of

the metal-ethylene coordination bond in the group 6-element series (CO)5TM-C2H4,

with TM= Cr, Mo, W and Sg, where relativistic effects are likely to play an increasingly

important role as one moves down the group. In particular, we have shown that the

EDA-NOCV method, in combination with charge displacement analysis, used in the

framework of four-component relativistic calculations, is able to identify the donation
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and back-donation charge fluxes of the Dewar-Chatt-Duncanson bonding model, which

is ubiquitous in coordination chemistry. Our analysis shows that the Sg complex has

both very similar EDA-NOCV energetic partition and DCD components (donation

and back-donation) to those of the W complex and even larger than those of the

lighter homologues.

We believe that the methodology presented in this work, together with other ad-

vances in the field, [41, 43, 74, 81, 103] may be useful to rationalise the effect of

relativity, including spin-orbit coupling, on bonding, reactivity and experimental ob-

servations in molecules containing heavy and superheavy elements.
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Appendix A. Demonstration that the energy difference

E[ρA + ρB] − E[ρA] − E[ρB] is given by the sum of ∆Eelstat

and ∆E0
XC .

Here we explicitly show that the energy difference between the energy associated with

the system obtained using the unmodified electronic densities of the fragments put

at their final position in the adduct (E[ρA + ρB]) and that of the isolated fragments

(E[ρA] and E[ρB]) is given by the sum of the electrostatic interaction (∆Eelstat) plus

an exchange-correlation term (∆E0
XC).
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We start with the explicit definition of E[ρA + ρB] in Eq. A1

E[ρA + ρB] = TA+B −
∑

a∈{A,B}

∫
va(r)(ρA(r) + ρB(r))dr +

+
1

2

∫ ∫
(ρA(r1) + ρB(r1))(ρA(r2) + ρB(r2))

|r1 − r2|
dr1dr2 + EXC [ρA + ρB] +(A1)

+
∑

i>j
i,j∈{A,B}

ZiZj

|Ri −Rj |

where TA+B is the kinetic energy term, va(r) is the attractive electron-nuclei Coulomb

potential for the whole system, the third term is the electronic Coulomb repulsion,

EXC [ρA + ρB] is the exchange-correlation energy contribution and finally there is the

total nuclei-nuclei Coulomb repulsion term. Now, because the orbitals (or spinors) of

the two fragments are not allowed to relax in this step of the EDA scheme (see also

Fig. 1 in the manuscript), we can easily recognise that the kinetic term TA+B is given

by the sum of the kinetic energy of the two separated fragments (TA and TB). If we

expand Eq. A1, gathering togethar those terms that are exclusively associated to one

fragment (A or B), and add and subtract the associated exchange-correlation energy

terms (EXC [ρA] and EXC [ρB]), we arrive at the following equation

E[ρA + ρB] = TA −
∑

a∈{A}

∫
va(r)(ρA(r))dr +

1

2

∫ ∫
ρA(r1)ρA(r2)

|r1 − r2|
dr1dr2+

+
∑

i>j
i,j∈{A}

ZiZj

|Ri −Rj |
+ EXC [ρA]+





E[ρA]

+ TB −
∑

a∈{B}

∫
va(r)(ρB(r))dr +

1

2

∫ ∫
ρB(r1)ρA(r2)

|r1 − r2|
dr1dr2+

+
∑

i>j
i,j∈{B}

ZiZj

|Ri −Rj |
+ EXC [ρB]−





E[ρB]

−
∑

a∈{A}

∫
va(r)(ρB(r))dr −

∑

a∈{B}

∫
va(r)(ρA(r))dr +

∑

i∈{A}
j∈{B}

ZiZj

|Rj −Ri|
+

+

∫ ∫
(ρA(r1)ρB(r2))

|r1 − r2|
dr1dr2 + EXC [ρA + ρB] − EXC [ρA] − EXC [ρB]





∆Eelstat

+

∆E0
XC

where the first five terms correspond to the definition of the energy of the isolated
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fragment A (E[ρA]) and the following five sum up to the energy of the isolated fragment

B (E[ρB]). Finally, we write the desire energy difference as

E[ρA + ρB] − E[ρA] − E[ρB] = ∆Eelstat + ∆E0
XC (A2)

where

∆Eelstat =
∑

a∈{A}

∫
va(r)(ρB(r))dr−

∑

a∈{B}

∫
va(r)(ρA(r))dr+

∑

i∈{A}
j∈{B}

ZiZj

|Rj −Ri|
+

∫ ∫
(ρA(r1)ρB(r2))

|r1 − r2|
dr1dr2

(A3)

defines the electrostatic term of EDA and the term ∆E0
XC identifies an exchange-

correlation contribution

∆E0
XC = EXC [ρA + ρB] − EXC [ρA] − EXC [ρB]

which, as pointed out the the main text, is typically included in the Pauli term.

Appendix B. Formalism of Transition State (TS) method

The Transition State (TS) formalism was introduced by Slater in the early seventies

with the aim to estimate the ionization energy and electronic transitions. [90] Its name

may generate a certain confusion for a chemist beacuse it recalls the idea of transtion

state theory, however the method is actually a simple scheme to evaluate the energy

difference between two states expanding in series their energies around a fictisiuos

one (called transition state) settled in between. The method has been extended by

Tom Ziegler and A. Rauk to evaluate the bonding energy within the contex of the

Hartree-Fock-Slater method[106].

In the following we derive the basis equations, mainly following the original work

of Ziegler[106], using only a slighthly different notation (based on one electron density

matrix) to be consinstent with the notation used in this work. As mentioned above, the

basic idea is to expand in a Taylor series the energy of both the final state (E[ρf ]) and
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the initial state (E[ρi] respect a common origin, E[ρT ], which is the energy associated

with a system with the average density (ρT = 1/2(ρf + ρi). Analogous to the Taylor

expansion of multi-variables function f(x1, ..., xN ) around the point (xT1 , ..., x
T
N ):

f(x1, ...xN ) = f(xT1 , ..., x
T
N )+

N∑

i=1

(
∂f(x1, ..., xN )

∂xi

)

(xT
1 ,...,x

T
N )

(x1−xT1 , ..., xN−xTN )+ ....

(B1)

here we expand the Kohn-Sham (or Dirar-Kohn-Sham) energy

EKS [ρ] = Tr(Dh) +
1

2
Tr(DJ [D]) + Exc[ρ] (B2)

with respect to the one electron density matrix elements Dkl where ρ(r) =
∑

k,lDklχ
∗
k(r)χl(r). For the pourpose of the derivation it is usefull to recall that the

partial derivative of the Kohn-Sham energy respect the density matrix elements (Dij)

is given by

∂E[ρ]

∂Dij
= hij + Jij +

∫
δExc[ρ]

δρ(r)︸ ︷︷ ︸
vxc[ρ](r)

∂ρ(r)

∂Dij
dr (B3)

= hij + J [ρ]ij + V XC [ρ]ij (B4)

= F [ρ]ij (B5)

where F [ρ]ij is the elements of the Kohn-Sham matrix associated with the density, ρ(r).

Expanding the energy of both the final state (EKS [ρf ]) and the initial state (EKS [ρi])

with respect a common stransition state energy (EKS [ρT ]) which corresponds to the

energy of a fictisiuos electronic state associated with the everaged density (ρT = 1
2(ρf−

ρi) we have that energies of the two states can be written in terms of the elements of
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the matrix ∆D as follows

EKS [ρf ] = EKS [ρT ] +
∑

kl

(
∂E[ρ]

∂Dkl

)

ρT

(Df
kl −DT

kl) +

+
1

2

∑

klij

(
∂2E[ρ]

∂Dkl∂Dij

)

ρT

(Df
kl −DT

kl)(D
f
ij −DT

ij) +O(∆D3)

= EKS [ρT ] +
∑

kl

F [ρT ]kl(
1

2
∆Dkl) +

1

2

(
∂2E[ρ]

∂Dkl∂Dij

)

ρT

(
1

2
∆Dkl)(

1

2
∆Dij) +O(∆D3)

EKS [ρi] = EKS [ρT ] +
∑

kl

(
∂E[ρ]

∂Dkl

)

ρT

(Di
kl −DT

kl) +

+
1

2

∑

klij

(
∂2E[ρ]

∂Dkl∂Dij

)

ρT

(Di
kl −DT

kl)(D
i
ij −DT

ij) +O(∆D3)

= EKS [ρT ] +
∑

kl

F [ρT ]kl(−
1

2
∆Dkl) +

1

2

(
∂2E[ρ]

∂Dkl∂Dij

)

ρT

(−1

2
∆Dkl)(−

1

2
∆Dij) +O(∆D3)

In the above expressions, DT
kl are equal to 1

2(Df
kl − Di

kl). The second order term in

both expansions above cancel out in the energy difference (EKS [ρf ] − EKS [ρi]) and

ones obtains an expression which is correct up to the second order and formally linear

in ∆D.

EKS [ρf ] − EKS [ρi] =
∑

kl

F [ρT ]kl(∆Dkl) +O(∆D3) + .. = Tr(F [ρT ]∆D +O(∆D3)

(B6)

In their seminal work, Ziegler and Rauk went a step further, deriving even the third

order correction showing also this term can be written throught an expression which

is formally linear in ∆D. This can be easily showed considereing the third order con-

tribution (∆E(∆D3))

∆E(∆D3) =
1

3!

1

4

∑

ij,kl,mn

(
∂3E[ρ]

∂Dkl∂Dmn∂Dij

)

ρT

∆Dkl∆Dmn∆Dij (B7)

and using ∂E[ρ]
∂Dij

= F [ρ]ij to write

∆E(∆D3) =
1

3!

1

4

∑

ij


 ∑

kl,mn

(
∂2F [ρ]ij
∂Dkl∂Dmn

)

ρT

∆Dkl∆Dmn


∆Dij (B8)
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The term in parenthesis in Eq.B8 can be evaluated expanding both F[ρf ]ij and F[ρi]ij

in Taylor series around F[ρT ]ij

F [ρf ]ij = F [ρT ]ij +
∑

kl

(
∂F [ρ]

∂Dkl

)

ρT

(
1

2
∆Dkl) +

∑

kl,mn

1

2

(
∂2F [ρ]

∂Dkl∂Dmn

)

ρT

(
1

2
∆Dkl)(

1

2
∆Dmn)

F [ρi]ij = F [ρT ]ij +
∑

kl

(
∂F [ρ]

∂Dkl

)

ρT

(−1

2
∆Dkl) +

∑

kl,mn

1

2

(
∂2F [ρ]

∂Dkl∂Dmn

)

ρT

(−1

2
∆Dkl)(−

1

2
∆Dmn)

and by summing term by term we obtain

F [ρf ]ij + F [ρi]ij = 2F [ρT ]ij +
1

4

∑

kl,mn

(
∂2F [ρ]

∂Dkl∂Dmn

)

ρT

∆Dkl∆Dmn (B9)

(B10)

and rearranging one arrives at Eq. B11

∑

kl,mn

(
∂2F [ρ]ij
∂Dkl∂Dmn

)

ρT

∆Dkl∆Dmn = 4(F [ρf ]ij + F [ρi]ij − 2F [ρT ]ij) (B11)

Using this result, the expression originally derived by Ziegler and Rauk and corrected

up to the fourth order in ∆D is given by

EKS [ρf ] − EKS [ρi] =
∑

ij

F [ρT ]ij(∆Dij) +
1

24

∑

ij

∑

kl,mn

(
∂2F [ρ]ij
∂Dkl∂Dmn

)

ρT

∆Dkl∆Dmn∆Dij

=
∑

ij

F [ρT ]ij(∆Dij) +
1

24

∑

ij

(4(F [ρf ]ij + F [ρi]ij − 2F [ρT ]ij)∆Dij

=
∑

ij

(
2

3
F [ρT ]ij +

1

6
F [ρf ]ij +

1

6
F [ρi]ij

)
∆Dij +O(∆D5) (B12)

and is formally linear in ∆D. As already pointed out in the main text, the possibility

of write the energy difference (EKS [ρf ] − EKS [ρi]) using formula (see Eq. B6 and

Eq. B12), formally linear in ∆Dij , is crucial in order to use the partitioning scheme

based on the NOCV method.

Before concluding we mention that the energy difference EKS [ρf ]−EKS [ρi] can be

written with an expression which is formally linear in ∆D up to an infinity order. van
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Leeuwen and Baerends showed that it be obtained as a path integral along a path in

the space of densities that connects the initial and final densities. A suitable path of

the parameter α, from ρi(α = 0) to ρf (α = 1) with ρ(α) is a parametric function of α

(e. g. ρf (α) = ρi + α∆ρ). More precisely its explicit form is

EKS [ρf ] − EKS [ρi] =
∑

ij

∆Dij

∫ 1

0
F [ρ(α)]dα (B13)

In practice the α integral can be done very accurately by some Gauss numerical inte-

gration method over the [0,1] interval but it is rarely necessary to go beyond the mid

point or the Simpson rule. Noteworthy, the expression of TS method of Eq. B6 can

be obtained using mid point integral approximation over the α parameter in Eq.B13

while while its integration using Simpson rule gives exactly the expression derived by

Ziegler and Rauk and shown above in Eq. B12.
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M. Swart, D. Swerhone, G. te Velde, V. Tognetti, P. Vernooijs, L. Versluis, L. Visscher,

O. Visser, F. Wang, T. A. Wesolowski, E. M. van Wezenbeek, G. Wiesenekker, S. K.

Wolff, T. K. Woo, and A. L. Yakovlev. ADF2017, SCM, Theoretical Chemistry, Vrije

Universiteit, Amsterdam, The Netherlands. http://www.scm.com.

[7] A. D. Becke. Density-functional exchange-energy approximation with correct. Phys. Rev.

A, 38:3098–3100, Sep 1988. . URL http://link.aps.org/doi/10.1103/PhysRevA.38.

3098.

[8] A. D. Becke and K. E. Edgecombe. A simple measure of electron localization in atomic

and molecular systems. J. Chem. Phys., 92(9):5397, 1990.

[9] L. Belpassi and L. Storchi. Data set for chemical bond analysis for the entire peri-

odic table: Energy decomposition and natural orbitals for chemical valence in the four-

38

http://dx.doi.org/10.1039/C5DT02183A
http://dx.doi.org/10.1039/C5DT02183A
http://scitation.aip.org/content/aip/journal/jcp/46/9/10.1063/1.1841222
http://scitation.aip.org/content/aip/journal/jcp/46/9/10.1063/1.1841222
http://scitation.aip.org/content/aip/journal/jcp/47/9/10.1063/1.1712404
http://scitation.aip.org/content/aip/journal/jcp/47/9/10.1063/1.1712404
http://www.scm.com
http://link.aps.org/doi/10.1103/PhysRevA.38.3098
http://link.aps.org/doi/10.1103/PhysRevA.38.3098


component relativistic framework, June 2023. Data set available at DOI: 10.5281/zen-

odo.8083284.

[10] L. Belpassi, F. Tarantelli, A. Sgamellotti, and H. M. Quiney. Electron density fitting for

the Coulomb problem in relativistic density-functional theory. J. Chem. Phys., 124(12):

124104, 2006. . URL http://scitation.aip.org/content/aip/journal/jcp/124/

12/10.1063/1.2179420.

[11] L. Belpassi, I. Infante, F. Tarantelli, and L. Visscher. The chemical bond between Au(I)

and the noble gases. comparative study of NgAuF and NgAu+ (Ng = Ar, Kr, Xe) by

density functional and coupled cluster methods. J. Am. Chem. Soc., 130(3):1048–1060,

2008. . URL http://pubs.acs.org/doi/abs/10.1021/ja0772647.

[12] L. Belpassi, L. Storchi, H. M. Quiney, and F. Tarantelli. Recent advances and perspec-

tives in four-component Dirac-Kohn-Sham calculations. Phys. Chem. Chem. Phys., 13:

12368–12394, 2011. . URL http://dx.doi.org/10.1039/C1CP20569B.

[13] L. Belpassi, M. De Santis, H. M. Quiney, F. Tarantelli, and L. Storchi. BERTHA:

Implementation of a four-component Dirac–Kohn–Sham relativistic framework. The

Journal of Chemical Physics, 152(16):164118, apr 2020. ISSN 0021-9606. . URL http:

//aip.scitation.org/doi/10.1063/5.0002831.

[14] F. M. Bickelhaupt and E. J. Baerends. Kohn-Sham Density Functional Theory: Pre-

dicting and Understanding Chemistry, pages 1–86. John Wiley & Sons, Ltd, 2000.

ISBN 9780470125922. . URL https://onlinelibrary.wiley.com/doi/abs/10.1002/

9780470125922.ch1.

[15] G. Bistoni, L. Belpassi, and F. Tarantelli. Disentanglement of donation and back-

donation effects on experimental observables: A case study of gold-ethyne complexes.

Angew. Chem. Int. Ed., 52(44):11599–11602, 2013. ISSN 1521-3773. . URL http:

//dx.doi.org/10.1002/anie.201305505.

[16] G. Bistoni, S. Rampino, F. Tarantelli, and L. Belpassi. Charge-displacement analysis via

natural orbitals for chemical valence: Charge transfer effects in coordination chemistry.

J. Chem. Phys., 142(8):084112, 2015. . URL http://scitation.aip.org/content/

aip/journal/jcp/142/8/10.1063/1.4908537.

[17] G. Bistoni, P. Belanzoni, L. Belpassi, and F. Tarantelli. π activation of alkynes in

homogeneous and heterogeneous gold catalysis. J. Phys. Chem. A, pages 5239–5246,

2016.

[18] G. Bistoni, L. Belpassi, and F. Tarantelli. Advances in charge displacement analysis. J.

39

http://scitation.aip.org/content/aip/journal/jcp/124/12/10.1063/1.2179420
http://scitation.aip.org/content/aip/journal/jcp/124/12/10.1063/1.2179420
http://pubs.acs.org/doi/abs/10.1021/ja0772647
http://dx.doi.org/10.1039/C1CP20569B
http://aip.scitation.org/doi/10.1063/5.0002831
http://aip.scitation.org/doi/10.1063/5.0002831
https://onlinelibrary.wiley.com/doi/abs/10.1002/9780470125922.ch1
https://onlinelibrary.wiley.com/doi/abs/10.1002/9780470125922.ch1
http://dx.doi.org/10.1002/anie.201305505
http://dx.doi.org/10.1002/anie.201305505
http://scitation.aip.org/content/aip/journal/jcp/142/8/10.1063/1.4908537
http://scitation.aip.org/content/aip/journal/jcp/142/8/10.1063/1.4908537


Chem. Theory Comput., 12(3):1236–1244, 2016. . URL http://dx.doi.org/10.1021/

acs.jctc.5b01166.

[19] G. Bistoni, S. Rampino, N. Scafuri, G. Ciancaleoni, D. Zuccaccia, L. Belpassi, and

F. Tarantelli. How π back-donation quantitatively controls the co stretching response in

classical and non-classical metal carbonyl complexes. Chem. Sci., 7:1174–1184, 2016. .

URL http://dx.doi.org/10.1039/C5SC02971F.

[20] D. Cappelletti, E. Ronca, L. Belpassi, F. Tarantelli, and F. Pirani. Revealing charge-

transfer effects in gas-phase water chemistry. Accounts Chem. Res., 45(9):1571–1580,

2012. . URL http://dx.doi.org/10.1021/ar3000635.

[21] J. Champion, M. Seydou, A. Sabatie-Gogova, E. Renault, G. Montavon, and N. Gal-

land. Assessment of an effective quasirelativistic methodology designed to study astatine

chemistry in aqueous solution. Phys. Chem. Chem. Phys., 13:14984–14992, 2011. . URL

http://dx.doi.org/10.1039/C1CP20512A.

[22] R. Chandra, L. Dagum, D. Kohr, R. Menon, D. Maydan, and J. McDonald. Parallel

programming in OpenMP. Morgan kaufmann, 2001.

[23] J. Chatt and L. A. Duncanson. Olefin co-ordination compounds. part iii. infra-red

spectra and structure: Attempted preparation of acetylene complexes. J. Chem. Soc.,

pages 2939–2942, 1953. .

[24] G. Ciancaleoni, L. Biasiolo, G. Bistoni, A. Macchioni, F. Tarantelli, D. Zuccaccia, and

L. Belpassi. Selectively measuring π back-donation in gold (i) complexes by nmr spec-

troscopy. Chem. Eur. J., 21(6):2467–2473, 2015.

[25] P. Coppens and M. B. Hall, editors. Electron distributions and the chemical bond. Plenum

Press, New York, USA, 1982.

[26] C. A. Coulson. The contributions of wave mechanics to chemistry (resumed). J. Chem.

Soc., page 2069, 1955.

[27] S. Dapprich and G. Frenking. Investigation of donor-acceptor interactions: A charge

decomposition analysis using fragment molecular orbitals. J. Phys. Chem., 99(23):9352,

1995.

[28] M. De Santis, S. Rampino, H. M. Quiney, L. Belpassi, and L. Storchi. Charge-

displacement analysis via natural orbitals for chemical valence in the four-component

relativistic framework. Journal of chemical theory and computation, 14(3):1286–1296,

2018.

[29] M. De Santis, S. Rampino, L. Storchi, L. Belpassi, and F. Tarantelli. The chemical

40

http://dx.doi.org/10.1021/acs.jctc.5b01166
http://dx.doi.org/10.1021/acs.jctc.5b01166
http://dx.doi.org/10.1039/C5SC02971F
http://dx.doi.org/10.1021/ar3000635
http://dx.doi.org/10.1039/C1CP20512A


bond and s–d hybridization in coinage metal (i) cyanides. Inorganic Chemistry, 58(17):

11716–11729, 2019.

[30] M. De Santis, L. Storchi, L. Belpassi, H. M. Quiney, and F. Tarantelli. Pyberthart: A

relativistic real-time four-component tddft implementation using prototyping techniques

based on python. J. Chem. Theory Comput., 16(4):2410–2429, 2020. .

[31] T. B. Demissie, B. D. Garabato, K. Ruud, and P. M. Kozlowski. Mercury methylation

by cobalt corrinoids: Relativistic effects dictate the reaction mechanism. Angew. Chem.

Int. Ed., 55(38):11503–11506, 2016. ISSN 1521-3773. . URL http://dx.doi.org/10.

1002/anie.201606001.

[32] M. J. S. Dewar. A review of π complex theory. Bull. Soc. Chim. Fr., 18:C71–79, 1951.

[33] T. H. Dunning. Gaussian basis sets for use in correlated molecular calculations. I. The

atoms boron through neon and hydrogen. The Journal of Chemical Physics, 90(2):1007–

1023, jan 1989. ISSN 0021-9606. . URL http://aip.scitation.org/doi/10.1063/1.

456153.

[34] T. H. Dunning, M. S. Gordon, and S. S. Xantheas. The nature of the chemical bond.

The Journal of Chemical Physics, 158(13):130401, 2023. . URL https://doi.org/10.

1063/5.0148500.

[35] K. G. Dyall. Relativistic and nonrelativistic finite nucleus optimized triple-zeta basis

sets for the 4p, 5p and 6p elements. Theor. Chem. Acc., 108(6):335–340, 2002. ISSN

1432-881X. . URL http://dx.doi.org/10.1007/s00214-002-0388-0. Basis sets are

available from the Dirac web site, http://dirac.chem.sdu.dk.

[36] K. G. Dyall. Relativistic double-zeta, triple-zeta, and quadruple-zeta basis sets for the

5d elements Hf-Hg. Theor. Chem. Acc., 112(5-6):403–409, 2004. ISSN 1432-881X. .

URL http://dx.doi.org/10.1007/s00214-004-0607-y. Basis sets are available from

the Dirac web site, http://dirac.chem.sdu.dk.

[37] K. G. Dyall. Relativistic Quadruple-Zeta and Revised Triple-Zeta and Double-Zeta Basis

Sets for the 4p, 5p, and 6p Elements. Theor. Chem. Acc., 115(5):441–447, 2006. ISSN

1432-881X. . URL http://dx.doi.org/10.1007/s00214-006-0126-0.

[38] K. G. Dyall. Relativistic double-zeta, triple-zeta, and quadruple-zeta basis sets for the

4s, 5s, 6s, and 7s elements. J. Phys. Chem. A, 113(45):12638–12644, 2009. .

[39] K. G. Dyall. Dyall dz, tz, and qz basis sets for relativistic electronic structure calcula-

tions, 2023. aae2z and aae3z basis set available at DOI: 10.5281/zenodo.7574628.

[40] K. G. Dyall and A. S. Gomes. Revised relativistic basis sets for the 5d elements Hf-Hg.

41

http://dx.doi.org/10.1002/anie.201606001
http://dx.doi.org/10.1002/anie.201606001
http://aip.scitation.org/doi/10.1063/1.456153
http://aip.scitation.org/doi/10.1063/1.456153
https://doi.org/10.1063/5.0148500
https://doi.org/10.1063/5.0148500
http://dx.doi.org/10.1007/s00214-002-0388-0
http://dx.doi.org/10.1007/s00214-004-0607-y
http://dx.doi.org/10.1007/s00214-006-0126-0


Theor. Chem. Acc., 125(1-2):97–100, 2010. ISSN 1432-881X. . URL http://dx.doi.

org/10.1007/s00214-009-0717-7. Basis sets are available from the Dirac web site,

http://dirac.chem.sdu.dk.

[41] G. Eickerling, R. Mastalerz, V. Herz, W. Scherer, H.-J. Himmel, and M. Reiher. Rela-

tivistic effects on the topology of the electron density. J. Chem. Theory Comput., 3(6):

2182–2197, 2007. URL http://dx.doi.org/10.1021/ct7001573.

[42] C. Esterhuysen and G. Frenking. The nature of the chemical bond revisited. an energy

partitioning analysis of diatomic molecules e2 (e=n-bi, f-i), co and bf. Theor. Chem.

Acc., 111(2-6):381, 2004.

[43] K. Faegri and T. Saue. Diatomic molecules between very heavy elements of group 13 and

group 17: A study of relativistic effects on bonding. J. Chem. Phys., 115(6):2456–2464,

2001. .

[44] G. Frenking. Understanding the nature of the bonding in transition metal complexes:

from dewar’s molecular orbital model to an energy partitioning analysis of the metal–

ligand bond. J. Organom. Chem., 635(1):9–23, 2001.
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[74] J. Pilmè, E. Renault, F. Bassal, M. Amaouch, G. Montavon, and N. Galland. Qtaim

44

http://dx.doi.org/10.1002/qua.560510403
http://dx.doi.org/10.1002/qua.560510403
http://dx.doi.org/10.1007/BF01112985
http://dx.doi.org/10.1002/(SICI)1097-461X(1997)61:3<589::AID-QUA28>3.0.CO;2-2
http://dx.doi.org/10.1002/(SICI)1097-461X(1997)61:3<589::AID-QUA28>3.0.CO;2-2
https://link.aps.org/doi/10.1103/PhysRevB.33.8822
https://link.aps.org/doi/10.1103/PhysRevB.33.8822


analysis in the context of quasirelativistic quantum calculations. J. Chem. Theory Com-

put., 10(11):4830–4841, 2014. .

[75] P. Pyykko. Relativistic effects in structural chemistry. Chem. Rev., 88(3):563–594, 1988.

[76] H. M. Quiney and P. Belanzoni. Relativistic density functional theory using Gaussian

basis sets. J. Chem. Phys., 117(12):5550–5563, 2002. . URL http://scitation.aip.

org/content/aip/journal/jcp/117/12/10.1063/1.1502245.
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Figure 2. NOCV-CD analysis for the Sg-ethylene bond in the (CO)5Sg-C2H4 complex. a) Contribution to the
total deformation density, ∆ρ, of the four most significant NOCV-pairs (∆ρ1, ∆ρ2, ∆ρ3 and ∆ρ4,).Isodensity

surfaces (±0.0014 e a.u.−3) for ∆ρ. Red surfaces identify charge depletion areas, blue surfaces identify charge

accumulation areas. b) CD curves. The vertical line marks the boundary between the (CO)5Sg and the alkene
fragment (see text for details). The dots on the axis mark the z coordinate of the atoms.
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