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Abstract. We propose a hybrid classical-quantum model to study the motion of electrons in ultra-

scaled confined nanostructures. The transport of charged particles, considered as one dimensional, is

described by a quantum effective mass model in the active zone coupled directly to a drift-diffusion

problem in the rest of the device. We explain how this hybrid model takes into account the peculiarities

due to the strong confinement and we present numerical simulations for a simplified carbon nanotube.

Résumé. Nous proposons un modèle hybride classique-quantique pour décrire le mouvement des

électrons dans des nanostructures très fortement confinées. Le transport des particules, consideré

unidimensionel, est décrit par un modèle quantique avec masse effective dans la zone active couplé à

un problème de dérive-diffusion dans le reste du domaine. Nous expliquons comment ce modèle hybride

prend en compte les spécificités de ce très fort confinement et nous présentons des résultats numériques

pour un nanotube de carbone simplifié.

Introduction

The extreme miniaturization reached by the electronic devices brings the necessity of using new models to
describe the electron transport, in order to predict their behavior, to access their performance limits and to
design new configurations. In ultra–scaled strongly confined structures (like nanowires and nanotubes), the
dimension of the transversal cross section is so thin that the transport of charged particles is confined in the one
dimensional (1D) longitudinal direction. When the cross–section diameter is below 3 nm, the strong confinement
affects the energy band structure and bulk material quantities cannot be used in the simulations. In particular,
the assumption of infinite periodic structure in the wire cross-section, which allows to derive the usual effective
mass theorem, is not reasonable anymore.

In [4], a quantum effective mass model has been derived by performing an asymptotic process which consists
in using an envelope function decomposition to obtain a new effective mass approximation (see [1] for 3D
periodic crystals). We consider an infinite wire defined in a physical domain R × ωǫ, where ǫ is the typical
spacing between lattice sites. As starting point, the transport is described by a scaled Schrödinger equation in
R × ωǫ containing a potential WL generated by the crystal lattice, fast oscillating in the scale defined by the
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crystal spacing, and a slowly varying potential V computed self-consistently through the resolution of a Poisson
equation in the whole domain. Since the 2D cross-section ωǫ comprises few ions, WL is considered periodic only
in the longitudinal x-direction, also called transport direction. The variable z of the transverse section can be
considered as fast variable, and it can be rescaled as z′ = z

ǫ . ω denotes the scaled cross-section. We assign to
our structure the following Bloch problem in the 3D cell U = (−ǫ/2, ǫ/2)× ω :















− ~
2

2me

∆χn +WLχn = Enχn,

χn(y, z′) = 0 on ∂ωz′ , χn ǫ-periodic in y,
∫

U
|χn|2dydz′ = 1,

(1)

where ~ is the reduced Planck constant, me is the electron mass and y denotes the transport variable in the cell.
This definition of the Bloch problem is peculiar to the strongly confined structure. First, the cell U comprises
the entire cross-section such that the Bloch functions depend on the device under consideration. Second, the
boundary conditions are representative of our problem since we consider the periodicity only in the transport
direction and we choose homogeneous Dirichlet conditions in the other directions in order to impose confinement.

The asymptotic process [4] brings into play some relevant averaged quantities, based on the Bloch functions,
which are incorporated into the quantum electron transport modeled by an infinite set of Schrödinger equations,
one for each band n. In particular, a nth band effective mass m∗

n is defined by

me

m∗
n

= 1 − 2~
2

me

∑

n′ 6=n

Pnn′Pn′n

En − En′

, where Pnn′ =

∫

U

∂yχn′(y, z′)χn(y, z′) dydz′. (2)

Also, an effective potential is given by

Vnn(x) =

∫

ω

V (x, ǫz′)gnn(z′) dz′, with gnn(z′) =

∫ ǫ/2

−ǫ/2

|χn(y, z′)|2 dy. (3)

The quantities gnn contains the atomistic information of the strongly confined cross-section. They allow to
make the link between the one dimensional transport direction and the three dimensional nanostructure.

In [7], a non-ballistic transport is considered where the evolution of charged particles is mainly driven by
collisions with phonons. The previous effective quantities are inserted in a novel drift-diffusion equation. Here,
we propose a hybrid classical-quantum approach. In a bounded domain (xL, xR)×ωǫ such that |xR−xL| >> ǫ, we
spatially couple the transport equations developed respectively in [4,7]. This hybrid model is mainly motivated
by two reasons. Quantum effects generally take place in a localized region. Moreover, our quantum model does
not include collisions of charged particles. We study here a gate all-around Field Effect Transistor (FET). It
contains an active zone sandwiched between two largely doped regions (Source and Drain) considered as electron
reservoirs. Thus, we use the quantum effective mass model [4] in the active zone (where quantum effects are
strong) and couple it to the drift-diffusion one [7] in the rest of the domain (since collisions with phonons play
an important role in reservoirs). Following the idea of [2], the coupling is made directly, getting an analytic
expression of the interface conditions (ICs) by writing the exact continuity of the current. In the following, we
describe this hybrid approach and we present numerical simulations for a simplified one wall carbon nanotube,
emphasizing the computational efficiency of this approach.

1. Presentation of the hybrid strategy

We present here the hybrid strategy to couple, spatially in the transport direction, the Schrödinger system
with the drift-diffusion one. We assume that the transport domain (xL, xR) is decomposed into a quantum zone
ωQ = (x1, x2), with xL < x1 < x2 < xR and a classical zone ωC = (xL, xR)\ωQ. At this point, we assume that
the electrostatic potential V is given (and consequently also the effective potentials Vnn).
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1.1. The classical regions

We consider the following stationary drift-diffusion model [7] on the disconnected domain ωC

d

dx
JC(x) = 0, with JC(x) = −µ(x) ∂xϕ(x) F

(

Vs(x) − ϕ(x)
)

, (4)

with Dirichlet boundary conditions (imposed under the hypothesis of quasi-neutrality). ϕ is the unknown
quasi-fermi energy, µ is an electron mobility coefficient and Vs is an effective potential defined by

Vs(x) = −kBT lnZ(x) with Z(x) =
+∞
∑

n=1

e−
(

En+Vnn(x)
)

/(kBT ),

where kB is the Boltzmann constant and T is the lattice temperature. In this work, we consider the Boltzmann
statistics, so that F is expressed by F (s) = nie

−s/(kBT ), where ni is the intrinsic density. In view of self-
consistent computations, we also define, from the surface density F (Vs −ϕ), a charge density for each nth band
(see [7] for details)

Nn
C(x) = F

(

Vs(x) − ϕ(x)
) e−

(

En+Vnn(x)
)

/(kBT )

Z(x)
, x ∈ ωC . (5)

Finally, the two classical regions are connected by the conditions JC(x1) = JC(x2) = h(ϕ(x1)) − h(ϕ(x2)),
with h a real-valued and monotonously increasing function which will be determined by the quantum current
expression.

1.2. The quantum region

For each nth band and for each wave vector k, we consider the following scattering states Schrödinger
equation [4] on the quantum domain x ∈ ωQ

− ~
2

2m∗
n

∂xxψ
k
n(x) + Vnn(x)ψk

n(x) = En,kψ
k
n(x), with En,k =

{

E1
n,k = ~

2k2

2m∗

n

+ Vnn(x1) if k > 0,

E2
n,k = ~

2k2

2m∗

n

+ Vnn(x2) if k < 0.
(6)

Transparent Boundary Conditions (TBCs) [3,4] are used to complete the system. Next, the 1D density carried
by the nth band is given superimposing the densities of states injected from Source and Drain, that is

Nn
Q(x) =

∫

R

φn(k)|ψk
n(x)|2dk, x ∈ ωQ, (7)

where φn(k) is a given distribution function, expressed in term of the quasi-fermi energy variable at boundaries

φn(k) =







fn

(

En + E1
n,k − ϕ(x1)

)

if k > 0,

fn

(

En + E2
n,k − ϕ(x2)

)

if k < 0.

In the case of the Boltzmann statistics that we consider here, fn is defined by fn(s) = ni~√
2πkBTm∗

n

e−s/(kBT ).

Finally, we can prove that the current density is constant on ωQ and it is defined by

JQ =
+∞
∑

n=1

Jn
Q, with Jn

Q =
q~

m∗
n

∫ +∞

0

kTn(k)f(En + E1
n,k)

(

eϕ(x1)/(kBT ) − eϕ(x2)/(kBT )
)

dk, (8)

where Jn
Q is the nth band current density and Tn(k) the transmission coefficients. The term containing ϕ enters

as a multiplication factor. This is crucial to write the ICs in an explicit way, as we shall see in the next section.
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1.3. The interface conditions

Following the idea of [2], we build the ICs by preserving the continuity of the total current between the classical
and the quantum domains. For the Boltzmann statistics, we immediately see that the quantum current can be
written as the difference of an increasing function h of the quasi-fermi energy variable ϕ at the boundaries x1

and x2, as announced in Section 1.1. Then, the explicit expression of h is given by

h(ϕ) = Θ−1eϕ/(kBT ), where Θ−1 =

+∞
∑

n=1

q~

m∗
n

∫ +∞

0

f(En + E1
n,k)kTn(k)dk (9)

is a positive number. Consequently, we obtain the final ICs

JC(x1) = JC(x2) =: JC and eϕ(x1)/(kBT ) − eϕ(x2)/(kBT ) = ΘJC . (10)

1.4. The self-consistent computations

The charge density of the hybrid model in the nth band Nn
1D is defined by Nn

1D(x) = Nn
Q(x) for x ∈ ωQ and

Nn
1D(x) = Nn

C(x) for x ∈ ωC . As explained in [4, 7], the transformation from the one dimensional transport
direction to the entire nanowire is done by the quantities gnn (3). It leads to

ρ(x, z) =

+∞
∑

n=1

Nn
1D(x)gnn(

z

ǫ
) (x, z) ∈ (xL, xR) × ωǫ. (11)

The peculiarity comes in the combination of the confinement information of the cross-section with the one
dimensional transport density. To take into account many particle effects, we consider self-consistent computa-
tions. So, we couple the transport equations with the following Poisson equation for the electrostatic potential
VP

−∇
(

ǫr(z)∇VP (x, z)
)

=
q

ǫ0

(

ND(x, z) − ρ(x, z)
)

, (x, z) ∈ (xL, xR) × ωǫ, (12)

where ǫ0 is the permittivity in vacuum, ǫr the relative permittivity and ND the prescribed doping density.
Then, V in (3) is given by V = −qVP .

2. Numerical simulations

2.1. Modeled device

To test the capability of the model to describe the electron transport in an ultra-scaled confined structure,
we study a very simplified case (see Fig.1), that is a one–wall carbon nanotube with a cross-section made of
12 atoms disposed on a squared frame, surrounded by one atom layer of dielectric. The transport problem is
solved for a gate-all-around FET with channel length equal to 10 nm doped with a donor concentration equal to
N−

D = 1021 m−3, with Source and Drain regions 10 nm long, largely doped (N+
D = 1026 m−3). The cross-section

edge (≈ 2 nm) is tiny compared to the longitudinal length equals to 30 nm.

2.2. Algorithm

The first step is the resolution of the Bloch problem (1). It provides En, m∗
n (2) and gnn (3) for each nth

band and it is computed only once for a given device. The potential WL is chosen as in [8]. The second step is
the resolution of the coupled Schrödinger drift-diffusion Poisson system, where the physical quantities computed
in the previous step are included. First, we consider the whole system at thermal equilibrium (for zero applied
Drain-Source voltage VDS). Next, we solve it when a VDS is applied, incrementing the voltage by steps of 0.02
V. Finally, we repeat the procedure for different gate voltage VG.
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Figure 1. Longitudinal (left) and transversal (right) sections of the simplified carbon nanotube.

To treat the strong nonlinearity between the density and the potential equations, we use a Gummel iterative
method [5,6]. At each Gummel iteration, we make the following steps. For a given V , we compute the potentials
Vnn (3). Next, we solve the 1D Schrödinger equations for each n and k (6) on ωQ. We obtain the wave functions
ψk

n and thus the transmission coefficients Tn(k). It allows to compute Θ (9). Solving, by means of mixed
finite elements, the equation (4) on ωC with the ICs (10), we obtain ϕ and thus the classical densities Nn

C (5).
Moreover, ϕ in x1 and x2 allows to determine the quantum densities Nn

Q (7). Finally, we compute ρ (11) and

the 3D Poisson equation (12), modified according to the Gummel algorithm, gives the new potential V .

2.3. Numerical results

In order to compare the hybrid approach with the quantum one, we run our Fortran90 code on the same
machine and for the same device data than in [4]. The only difference are the blocks relative to the transport
strategy. The hybrid method is computationally more efficient in the sense that, to reach convergence at
equilibrium, it needs 6 Gummel iterations (instead of 12 for the quantum one). Also, in average, a single
iteration is faster since the resolution of the large number of Schrödinger equations (obviously more expensive
than the resolution of the single drift-diffusion equation) is done on a shorter domain.

Moreover, the hybrid approach allows to perform computation for large VG, while the Gummel method breaks
for VG ≥ 0 with the quantum model, due to the lack of quasi-neutrality at the boundary, which induces a wrong
behavior of V . In Fig.2, we present V (left) and ρ (right) integrated over the 2D cross section, for different VDS

and for a fixed VG = −0.1 V (top) or VG = 0.05 V (bottom). Variations at x = 5 and 25 nm are due to the
gate and variations at x = 10 and 20 nm are due to the doping. The interfaces are placed at x = 10 and 20 nm
and we point out that there the density is discontinuous for large VDS (the ICs being built to preserve only the
current continuity). This brings flexibility to the system and the Gummel algorithm reaches convergence.

Fig.3 (left) represents a 2D slice of ρ in logarithmic scale along the transport direction. Comparing the
thermal equilibrium figure (top) with the one for VDS = 0.2 V (bottom), we observe a channel formation in
correspondence to each nucleus and the electron motion from Source to Drain. In Fig.3 (right), we present the
Current-Voltage curves for various VG. As expected, the current in the FET increases with VG. We observe
the two typical regimes: an ohmic regime for small VDS and a quasi-saturation regime for larger VDS . This
saturation regime is established for larger VDS when VG increases. All these observations are in accordance with
the behavior of conventional FETs. We conclude that our computationally efficient hybrid model is qualitatively
able to capture the transport of electron in ultra-scaled confined nanostructures, even for a very simplified device.
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Figure 2. 1D potential energies (eV) (left) and 1D densities (m−3) (right) for different VDS ,
with VG = −0.1 V (top) and VG = 0.05 V (bottom).
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