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Abstract Many real-life signals and, in particular, in the space physics domain, exhibit variations across
different temporal scales. Hence, their statistical momenta may depend on the time scale at which the signal
is studied. To identify and quantify such variations, a time-frequency analysis has to be performed on these
signals. The dependence of the statistical properties of a signal fluctuation on the space and time scales
is the distinctive character of systems with nonlinear couplings among different modes. Hence, assessing
how the statistics of signal fluctuations vary with scale will be of help in understanding the corresponding
multiscale statistics of such dynamics. This paper presents a new multiscale data analysis technique, the
adaptive local iterative filtering (ALIF), which allows to describe the multiscale nature of the geophysical
signal studied better than via Fourier transform, and improves scale resolution with respect to discrete
wavelet transform. The example of geophysical signal, to which ALIF has been applied, is ionospheric radio
power scintillation on L band. ALIF appears to be a promising technique to study the small-scale structures
of radio scintillation due to ionospheric turbulence.

1. Introduction

Many signals in the space physics domain are nonstationary and they exhibit variations across different scales.
Such variations are determined by the complexity and nonlinearity of the system that generated them. As a
consequence their statistical momenta depend on time and/or space. To identify and quantify such variations,
a time-frequency analysis has to be performed on these signals. Clearly, the standard Fourier spectral analysis
cannot work in this context since it is not capable to capture nonstationarity. For this reason other techniques
have been used extensively in the last decades, like short time Fourier transform, continuous and discrete
wavelet transform, Wigner-Ville transform, and similar methods, which allow deriving a time-frequency anal-
ysis that capture such variations. However, all these methods suffer of either limited resolution, due to the
uncertainty principle studied by Cohen (2001), or interferences in the time-frequency plane (Flandrin, 1998)
and require some further processing of the representation. In this line of research some techniques have been
proposed in the last years, like the synchrosqueezed wavelet transform (Daubechies & Maes, 1996; Daubechies
et al., 2011), the short time Fourier Transform Synchrosqueezing (Thakur & Wu, 2011), etc. Another way to
overcome these limitations was proposed in 1998 by Huang and his research group at NASA who devel-
oped a new technique, first of its kind, called empirical mode decomposition (EMD) (Huang et al., 1998). The
key idea behind this method is a divide et impera approach, which allows overcoming the limitations in the
time-frequency representation. In fact, EMD first decomposes a signal into several intrinsic mode components
(IMCs), which are functions oscillating around zero, but not necessarily with constant frequencies. We point
out that in the literature the IMCs are called intrinsic mode functions (IMFs). However, to avoid confusions with
interplanetary magnetic field (IMF), we choose to rename them into IMCs. Then, it performs a time analysis on
each component separately. This approach allows eliminating the problems due to both the uncertainty prin-
ciple and the interferences. However, the EMD technique has proven to be unstable to small perturbations of
the initial data. To overcome this issue, Wu and Huang (2009) developed the ensemble empirical mode decom-
position (EEMD), where random perturbations with zero averages are artificially added to the original signal.
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Each perturbed signal is studied using the EMD algorithm. The outcome of the method is taken to be
the mean out of all the decompositions. Both EMD and EEMD lack a rigorous proof of their convergence.
Therefore, in the last years several research groups started working for the development of alternative tech-
niques for the decomposition of nonstationary signals. The algorithms developed so far belong to two groups:
(1) methods based on optimization and (2) methods based on iteration. Among the first group, we mention
the sparse time-frequency representation (Hou et al., 2009), the empirical wavelet transform (Gilles, 2013), and
the higher-order structure function technique (Uritsky et al., 2011). All these algorithms require the a priori
selection of a suitable basis for the decomposition. Methods based on iteration, instead, are only two: the EMD
(and the EEMD), and the iterative filtering (IF) technique (Cicone et al., 2016b, 2017; Lin et al., 2009) with its
generalization, the adaptive local iterative filtering (ALIF) (Cicone et al., 2016a). Unlike all the techniques based
on optimization, such methods do not require any initial assumption on the signal. Therefore, they produce
decompositions that are completely data driven. Furthermore, both IF and ALIF algorithm have a structure
which allows for a rigorous analysis of their convergence. In particular, for the IF method mild sufficient con-
ditions that ensure the convergence are known (Cicone et al., 2016a; Wang & Zhou, 2013). Whereas on the
convergence and stability analysis of the ALIF algorithm, only promising results exist (Cicone et al., 2016a).

This paper presents ALIF algorithm and the results obtained applying it, as an example, to artificial and real-life
ionospheric radio power scintillation signal.

2. Adaptive Local Iterative Filtering

We start presenting EMD algorithm and its structure. Then we show how ALIF stems from it.

The EMD method (Huang et al., 1998), is based on the so-called sifting process. Starting with the given signal
s(t), the method computes a moving average as the local average between an upper and lower envelopes of
s(t). Huang and his collaborators proposed to use cubic splines connecting maxima and minima of the signal
to compute the two envelopes. If  is defined to be the operator capturing the moving average of s(t), then
(s)(t)=s(t) −(s)(t) is an operator capturing the fluctuation part of the signal. The process can be iterated
many times considering the fluctuation part as a new signal. Therefore, the first IMC produced by the sifting
process is given by

g(EMD)
1 (t) = lim

n→∞
1,n

(
sn

)
(t) (1)

where sn(t)=1,n−1(sn−1)(t), s1(t)= s(t), and the subscripts in  stand for the IMC number and the step in the
iterative process.

Here the limit is reached at a finite step N ∈ N if the moving average 1,N(sN)(t) is zero everywhere.

The second IMC is obtained by reapplying the previously defined iterative process to the remainder r(t) =
s(t) − g1(t).

In the same way all the subsequent IMCs can be produced. In particular,

g(EMD)
k (t) = lim

n→∞
k,n(rn)(t) (2)

where rn(t)=k,n−1(rn−1)(t) and r1(t) = r(t),which is the remainder s(t)−g(EMD)
1 (t)−…−g(EMD)

k−1 (t). The iterative
process stops when r(t) = s(t) − g(EMD)

1 (t) − g(EMD)
2 (t) − … − g(EMD)

m (t) becomes a trend signal, which means it
has at most one local maximum or minimum. The original signal is decomposed as

s(t) =
m∑

j=1

g(EMD)
j (t) + r(t). (3)

This method is simple and intuitive, however, as explained in section 1, it has been proven to be unstable
in presence of noise due to cubic splines that are used repeatedly in the iterations (Wu & Huang, 2009).
Such instability has been overcome with the development of the EEMD algorithm by Wu and Huang (2009).
However, despite the proven usefulness of the EEMD method, its mathematical understanding is still very
sketchy, and it is still unclear if there will be any improvement in this direction in the upcoming future.

For this reason, Lin et al. (2009) proposed IF method that has been recently further developed into ALIF (Cicone
et al., 2016a).
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The key idea in both methods is to use the same algorithm framework as the original EMD, but to compute the
moving average of a signal s(t), in a different way: as the local integral of s(t)weighted using any low-pass filter/
mask h(t)

n (x) compactly supported on [−ln(t), ln(t)], where ln(t) is called the mask length which varies with t.
As an example we can consider h(t)

n (x) = a(t)
n (x), which is the double ramp given by

a(t)
n (x) =

l(t)n − |x|
(l(t)n )2

, x ∈ [−l(t)n , l(t)n ]. (4)

In Cicone et al. (2016a) the authors suggest to use as a mask in ALIF the so-called Fokker-Planck filters, which
have the nice properties of being compactly supported and infinitely smooth on the entire real line. Following
their suggestion, for all the decomposition produced with ALIF and shown in this work, we use a Fokker-Planck
filter with 𝛼=0.005 and 𝛽 =0.09. For further details on this kind of filters we refer the interested reader to
Cicone et al. (2016a).

The pseudocode of ALIF is given in Algorithm 1.

As for the EMD technique, two operators can be defined: one capturing the moving average of the signal
under study, hn ,ln

(s)(t) = ∫ ln(t)
−ln(t)

s(t + x)h(t)
n (x)dx, and the other doing the same for its fluctuation part,

hn ,ln
(s)(t)=s(t) −hn ,ln

(s)(t). The kth IMC, k ∈ N, is given by the limit

g(ALIF)
k (t) = lim

n→∞
hn ,ln

(r)(t) (5)

where r(t)=s(t) − g(ALIF)
1 (t) − g(ALIF)

2 (t) −… − g(ALIF)
k−1 (t).

In practical applications of Algorithm 1, n is not allowed to go to infinity; instead, a stopping criterion is used.
First g(ALIF)

1,n =1,n(s) is defined, where1,n denotes the operator used in the nth step of the first inner while loop.
We define then

SD ∶=
‖g(ALIF)

1,n − g(ALIF)
1,n−1‖2

‖g(ALIF)
1,n−1‖2

. (6)

As suggested in Huang et al. (1998) and Lin et al. (2009), the process can be stopped when the value SD reaches
a certain threshold or a limit on the maximal number of iterations for each inner while loop can be introduced.

The mask length ln(t) selection is a crucial step in ALIF. The key idea is to let the algorithm automatically select
ln(t) simply based on local information of the signal under study, for instance, the relative distance between
subsequent extrema of the signal. In doing so, the method becomes nonlinear. In fact, given two signals s1

and s2, which we assume to have the same number N ∈ N of IMCs in their decomposition, in general, IMCs1
+

IMCs2
≠ IMCs1+s2

. The number of IMCs in IMCs1+s2
could even differ from N.

If the mask length ln(t) is kept constant over t, the method reduces to the so-called IF algorithm and the
moving average computation reduces to the convolution of the signal with the chosen filter.

The IF method has been proven to be a priori convergent under mild conditions on the chosen filter and
its limit value is given by an explicit formula for both the continuous and the discrete case in one- and
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Table 1
Comparisons of Alternative Techniques for the Time-Frequency Analysis of a Nonstationary Signal

Fourier Wavelet EEMD ALIF

Basis selection a priori a priori a posteriori adaptive a posteriori adaptive

Frequency convolution over global domain, convolution over global domain, differentiation over local domain, differentiation over local domain,

uncertainty uncertainty certainty certainty

Nonlinearity no no yes yes

Nonstationarity standard, no; short time, yes yes yes yes

Feature extraction no discrete, no; continuous, yes yes yes

Theoretical base complete mathematical theory complete mathematical theory empirical partial mathematical theory

Fast algorithm yes yes no yes

higher-dimensional settings (Cicone et al., 2016a, 2017; Lin et al., 2009; Wang & Zhou, 2013). As shown by
Cicone et al. (2016a), IF is also stable under perturbations. The a priori convergence and stability of its gen-
eralization, ALIF, is still an open problem in Mathematics. However, ALIF can be already used to decompose
general nonstationary and nonlinear signals. In fact, its stability and convergence can be always and easily
certified a posteriori every time the algorithm is applied to decompose a signal. In Table 1, we summarize the
main features of ALIF compared with other well-known techniques: Fourier, Wavelets, and EEMD. It is clear
from this table that ALIF inherits all the good properties of the previously developed methods summarizing
them in a single technique, but adding a very important feature: the mathematical background lying below.

3. Discrete Wavelet Transform: A Telegraphic Resume

Discrete wavelet transform (DWT) is a well-known, widely adopted technique (Mallat, 1998; Van den Berg,
1999). In this technique, time series are decomposed along orthonormal functions fl,𝜏 (t) with scale l and
“centered” in t = 𝜏 . The DWT coefficient

cl,𝜏 = ∫I
wdet (t) f ∗l,𝜏 (t)dt (7)

describes the contribution of the scale l to the signal wdet around t=𝜏 along the time interval I (Farge, 1992).
In turn, the signal wdet (t) reads

wdet (t) =
∑

l,𝜏

cl,𝜏 fl,𝜏 (t) , (8)

as long as the set fl,𝜏 is an orthonormal basis in L2 (I,C),
(

fl′ ,𝜏′ , fl,𝜏

)
= 𝛿l,l′𝛿𝜏,𝜏′ : the decomposition hence sep-

arates wdet (t) into linearly independent components. This orthogonality condition can only be matched as

lm = L
2m , m ∈ N, (9)

being L the total length of the interval I. The mth scale in the set (9) has 2m points 𝜏m,1, … , 𝜏m,2m in which
the 2m basis elements flm ,𝜏 are centered: for example, there will be two 𝜏 ’s for l1, four 𝜏 ’s for l2, eight 𝜏 ’s for l3,

and so on. This kind of basis
{

fl1 ,𝜏1,1
, fl1 ,𝜏1,2

, fl2 ,𝜏2,1
, fl2 ,𝜏2,2

, fl2 ,𝜏2,3
, fl2 ,𝜏2,4

,… , flm ,𝜏m,1
,… , flm ,𝜏m,2m , ...

}
is referred to as

dyadic basis. Clearly, the higher is m, the shorter is lm: in data analysis the highest possible m corresponds to
lmin = 2Δt, being Δt the sampling time.

In practice, the total l contribution to wdet (t) can be defined as

g(DWT)
l (t) =

∑
𝜏

cl,𝜏 fl,𝜏 (t) . (10)

4. Example of Application: Artificial Signal

We start by applying the proposed ALIF method to an artificial signal, perturbed with red noise, and we com-
pare the resulting decomposition with the ones obtained by EEMD and DWT. We also compare the time
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Figure 1. Artificial signal under study. (a) Artificial signal generated as
superposition of seven highly nonstationary IMCs; (b) end noise of 20
dB; (c) artificial signal perturbed with red noise of 20 dB.

frequency analysis which follows from the ALIF decomposition with the ones
produced by using short time Fourier transform (STFT) (Cohen, 1995) and
continuous wavelet transform (CWT) (Daubechies, 1990).

Figure 1c shows the artificial signal under study, which is generated as
superposition of seven highly nonstationary IMCs (Figure 1a), plus red noise
(Figure 1b), in order to mimic a real-life intermittent GNSS signal, described in
section 5. The shape of the seven modes of the ground truth was chosen using
the following AM-FM model: we fixed the frequency to a constant value and
let the amplitude vary randomly, ensuring at the same time the single-mode
statistics to resemble the reference GPS signal. Concerning the red noise
(Figure 1b), we used the Zhivomirov Matlab function that generated a
sequence of Brownian samples (Manolakis & Ingle, 2011). Using the signal-to-
noise ratio formula SNRdB = 20 log10

𝜎(signal)
𝜎(noise)

, valid for finitely supported sam-
pled signals and where 𝜎 stands for standard deviation, we set the level of
noise to 20 dB. This is a worst case analysis since, in real-life GNSS signals, the
level of noise is at most around 20 dB (Kintner et al., 2009). We point out
that the choice of a red noise perturbation of the artificial signal is, from the
point of view of the ability of the algorithm to handle such signal, arbitrary.
It is interesting to note that ALIF can manage any kind of noise. For instance,
Cicone et al. (2016a) show that ALIF works well also in presence of heavy white
noise (up to −10 dB). We decompose the proposed artificial signal using the
ALIF algorithm described in section 2, the DWT summarized in the previous
section, and the EEMD (Wu & Huang, 2009). The parameters chosen for the
EEMD decompositions are as follows: the ratio between the standard devia-
tion of the added noise and that of the signal was set to 0.2; the number of
ensemble members was set to 100; the number of expected IMCs was set to 8.

Figure 2 shows the decomposition obtained using ALIF with constant mask
length (black lines) superimposed to the components that constitutes the

artificial signal (red lines). Figures 3 and 4 show the EEMD and DWT decomposition (black lines), respectively
compared to the components of the artificial signal (red lines). The comparison between the IMCs and the
ground truth components have been made frequency by frequency (i.e., scale by scale). It is evident that the
ALIF method properly decomposes the given signal reproducing exactly the components of the ground truth
with a one-to-one correspondence, as visible from each panel of Figure 2. On the contrary, in the EEMD decom-
position some IMCs components do not have a clear corresponding ground truth component (we compare
them with a zero signal). The second and the third EEMD IMCs, instead, correspond with the first ground
truth component (the algorithm is simply splitting it into two parts), respectively. Finally, concerning the DWT,
the components correspond roughly to ground truth ones and many of them to the very same ground truth
components. In particular, in Figure 4, we compare the first three DWT components with the first ground com-
ponent, the fourth and fifth DWT components with the second and third ground truth ones, the sixth and
seventh both with the fourth, the eighth and ninth with the fifth, the tenth with the sixth, the eleventh and
twelfth both with the seventh, and the thirteenth with a zero signal. From this example it is clear how ALIF is
capable to separate in a meaningful way a highly nonstationary signal, even in presence of noise, whereas the
other two methods encounter problems. In particular, both the EEMD and the DWT produce, in this example,
components that cannot be directly associated with a ground truth one. This means that there is not the
desired one-to-one correspondence between components of the ground truth and components of the EEMD/
DWT decomposition. Another approach used in the analysis of a nonstationary signal is the calculation of the
so-called time-frequency representation. This can be done with many techniques. The most well-known ones
are the STFT and the CWT. In Figure 5 we compare such time-frequency representations with the outcome of
a frequency analysis performed on each ALIF IMCs component separately. Figure 5a shows the STFT and the
CWT (Figure 5b) time-frequency representation of the signal. Figure 5c displays the instantaneous frequen-
cies over time of each ALIF IMC component computed using the new definition of instantaneous frequency
proposed in Cicone et al. (2016a, equation 34). This new definition has the advantage to be completely local,
whereas the standard method, based on the so-called Hilbert Transform (Huang et al., 1998), is not since it
relies on an integration over the entire time domain.
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Figure 2. Superposition of the decomposition produced using ALIF with constant mask length (black) and the ground
truth (red). Panels from top to bottom show the IMCs from highest to lower frequency, respectively, for both red and
black lines.

From these plots it is evident that both STFT and CWT suffer from limited resolution due to the uncertainty
principle studied by Cohen in 2001. Whereas, ALIF achieves a better accuracy since it first decomposes a
nonstationary signal into a few simple components and then performs a component by component analysis.

In Figure 6 we report the distribution of statistical moments at different scales for the artificial signal decom-
posed with ALIF, DWT, and EEMD, with and without red noise. From this analysis it is clear that ALIF is able
to decompose the signal into meaningful components better than EEMD and DWT, even in presence of
red noise.

5. Example of Application: Ionospheric Scintillation

To provide an example of ALIF application in the space physics domain, we consider the ionospheric radio
power scintillation on L band. In particular, we focused on scintillation experienced by Global Navigation Satel-
lite System (GNSS) signals when received at ground. Specifically, time series of raw power present features
common to many space physics signals, such as nonstationarity, scale-dependent statistics, intermittency,
and non-Gaussianity.
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Figure 3. Superposition of the decomposition produced using EEMD (black) and the ground truth (red). Panels from top
to bottom show the IMCs from highest to lower frequency, respectively, for both red and black lines.

Ionospheric radio scintillation is both a problem and an opportunity: on the one hand, it poses a threat on GNSS-
reliant services, because it may cause the loss of lock of the signal or degradation in positioning accuracy; on
the other hand, the properties of the turbulent ionospheric medium may be inferred by studying the scin-
tillation occurrence and characteristics (Grzesiak & Wernik, 2012; Wernik et al., 1990; Wernik & Grzesiak, 2011).

Being a consequence of ionospheric turbulence, scintillation depends considerably on what determines
plasma turbulence and radio propagation; hence, it is very variable with magnetic local time and satellite and
receiver location. Scintillation also depends on the satellite-receiver-ionosphere relative geometry, on satel-
lite zenith angle, and on the propagation angle with respect to the magnetic field (Aarons, 1982, 1983; Basu
& Basu, 1985; Kersley et al., 1988; MacDougall, 1990a, 1990b).

A key aspect of radio scintillation is its scale-dependent behavior. In fact, if the signal is observed with differ-
ent time resolution, it shows different statistical properties, depending on the small-scale properties of the
ionospheric medium, as plasma turbulence occurs (Materassi et al., 2005; Materassi & Mitchell, 2007).

In general, the ionospheric diffraction index n should be described as the sum of a smooth background n0, to
which the whole n reduces when gradients and dynamics are negligible, and an irregular term 𝛿n describing
small-scale fluctuations (Wernik et al., 2007):

n
(

x⃗, t
)
= n0

(
x⃗, t

)
+ 𝛿n

(
x⃗, t

)
. (11)
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Figure 4. Superposition of the decomposition produced using DWT (black) and the ground truth (red). In each column,
panels from top to bottom show the DWT components from highest to lower frequency, respectively, for both red and
black lines.

Local quantities determining 𝛿n show multifractal properties (Yordanova et al., 2004) that depend both on the
position x⃗ and the time t, and are driven by the general conditions (De Michelis et al., 2015). Such properties
are handed down to the irregular, highly varying, and apparently random diffraction patterns of electromag-
netic waves that cross the ionosphere, i.e., radio scintillation, that may be regarded as the signature of plasma
turbulence left on the radio signal. However, it should be nontrivial to read the multiscale properties of 𝛿n out
of the multiscale properties of scintillation time series (Materassi et al., 2005).

Multiscale properties discussed in the following are treated as probabilistic, as done in the turbulence literature
(Frisch, 1995; Materassi & Consolini, 2008).

The power of a ionospheric scintillation is the radio scintillation observed on the time series w (t) of the power

collected by the ground receiver where w ∝ |||E⃗|||
2
, being E⃗ the electric field of the incident wave. Since this
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Figure 5. Time-frequency representation using (a) STFT and (b) CWT.
(c) The instantaneous frequencies over time of the IMCs produced
by ALIF.

field is an exponential of a linear functional of the diffraction index n = n0+𝛿n
(Yeh & Liu, 1982)

E⃗ = E⃗0 ⋅ exp((n0)) ⋅ exp((𝛿n)), (12)

then the decomposition of the w (t) in low-frequency trend w0 (t) and high-
frequency fluctuations wdet (t) is a factorization (Van Dierendonck et al., 1993).

w (t) = w0 (t) ⋅ wdet (t) , (13)

where w0 ∝ exp((n0)) and wdet ∝ exp((𝛿n)) (Materassi & Mitchell, 2007).
The parameter w0 includes the variability of w of geometric origin, i.e., variable
satellite-receiver distance. The series w0 (t) is obtained by low-pass filtering
w (t) (Materassi et al., 2009)

w0 (t) = wf<ffilter
(t) ,

so that the “detrended” signal reads

wdet (t) =
w (t)

wf<ffilter
(t)

. (14)

The frequency ffilter has been selected as described in Materassi et al. (2009).
Time scales in wdet (t) correspond to space scales in 𝛿n, according to the inter-
play between the plasma evolution and the satellite motion (Rino, 1979a,
1979b; Yeh & Liu, 1982). Then, the temporal characteristics of wdet (t)at different
time scales are studied to investigate the space multiscale statistical properties
of 𝛿n

(
x⃗
)

. It is worth noting that there exists an intrinsic time variability of
plasma in 𝛿n. The key assumption is that this takes place on times longer than
the satellite scan, during which the medium does not change its local proper-
ties. In practice, the time dependence in wdet(t) just results out of the motion
of the satellite across the nonhomogenous medium.

In order to study its multiscale proprieties (Wernik, 1997), wdet (t) is decomposed along functions gl (t) each of
which shows a characteristic scale of variability l (multiscale decomposition). The statistics of the values gl (t) for
the different scales l’s, referred to as statistical multiscale properties of wdet, can be analyzed by evaluating: the
variance 𝜎 (l), the skewness S (l), the kurtosis excess Kex (l) = K (l)−3, the relative energy 𝜖rel, and the Shannon
information entropy I (l). The first three parameters are the second, the third, and the fourth moment of the
probability distribution p(gl) of gl(t), respectively. The 𝜖rel is the ratio between the square L2 modulus of gl (t)
and the total energy of the signal, that is,

𝜖rel (l) =
∫I
||gl (t)||2 dt

∫I
||wdet (t)||2 dt

. (15)

The Shannon information I (l) is defined as follows:

I (l) = −
∑
{gl}

p
(

gl

)
log2 p

(
gl

)
. (16)

These parameters give an idea of how the statistics of the signal varies with the scale considered (Strumik &
Macek, 2008). In particular, Kex (l) indicates how rare fluctuations are abundant at different l’s: if Kex (l) increases
as l gets smaller and smaller, the signal is defined as intermittent (Frisch, 1995). The 𝜖rel gives a measure of how
“energetically strong” the l component is in the sum (16). I (l)measures the “degree of randomness” attributed
to the l component of the signal.
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Figure 6. Multiscale statistics obtained by means of ALIF, DWT, and EEMD, with and without red noise.

5.1. Scintillation Event Analysis
Data are collected via GPS ionospheric scintillation monitor receiver (GISTM; Van Dierendonck et al., 1993)
located in San Miguel de Tucumán, Argentina (26.9∘S, 294.6∘E) (Alfonsi et al., 2013). The GISTM is able to
sample data at 50 Hz. The selected data segment refers to the following interval (named JM): 12 March 2011;
UT = 00:00.0–00:13.0 (LT = UT − 3), extracted during the recovery phase of a moderate geomagnetic storm
that occurred between 10 and 16 March 2011. JM is characterized by two clearly different regimes: low (JL) and
high (JH) intermittency. JL and JH have been analyzed jointly (JM) and separately, highlighting their different
statistical proprieties as a function of the time scales. JL corresponds to 00:00.0 < UT < 00:05.46 time interval,
JH corresponds to 00:06.0 < UT < 00:11.46 time interval, while JM corresponds to 00:02.0 < UT < 00:12.09 time
interval. To obtain the detrended signal, the highest frequency ffilter in (14) not altering the variance of the
f -filtered signal has been chosen. This yields the statistics of the detrended signal frequency independent and
removes the effects of large-scale variability caused by the relative geometry/motion between the satellite
and the ionosphere (Materassi & Mitchell, 2007; Materassi et al., 2009).

The signal decomposition was made by applying both ALIF and DWT. It is important to remind here that
differently from DWT, ALIF does not require signals with length exactly equal to a power of 2. Furthermore,
since the signal is sampled at 50 Hz, the sampling time is Δt = 2 × 10−2 s, and in the DWT lm = 2mlmin, where
the smallest possible scale is lmin =2Δt=0.04 s.
5.1.1. Interval JM

Figure 7a shows the raw power along the following time interval: 12 March 2011, UT = 00:02.0–00:12.9.
Apparently, the signal presents an onset of intermittency at t0 =≃ 210 s. Left panels (Figure 7b) and right
panels (Figure 7c) show the statistical parameters as a function of the scale, evaluated by means of ALIF,
with constant mask length and DWT, respectively. Both methods show that the signal energy is distributed
according to different statistics at different scales; the signal fluctuations show different probability density
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Figure 7. Multiscale statistical analysis along the time interval corresponding to JM interval (UT = 00:02.0–00:12.9).
(a) Raw power behavior as a function of time (black dashed line represents the time t0 at which the signal changes its
intermittency characteristics); (b and c) Multiscale statistical analysis by means of ALIF and DWT methods, respectively.
In each box, from top to bottom, relative energy, standard deviation, skewness, excess of kurtosis, and Shannon
information behaviors as functions of the scale l have been represented.

functions (PDFs) and information entropy content at different scales. In particular, it is relevant to see that the
signal fluctuations are clearly not normally distributed (as evident from K(l) − 3) in the scale ranges 0.1–10 s.
Different results are obtained for the skewness S. ALIF with constant mask length (which boils down to IF) is
intended to produce modes (IMC) characterized by skewness values as close as possible to zero. SDWT shows
positive values as expected from the detrending technique adopted (Materassi & Mitchell, 2007). However,
both methods did not highlight any clear scale dependence of the skewness.
5.1.2. Interval JL

Figure 8a shows the low intermittency interval JL of the signal. The signal aspect does not suggest any clear evi-
dence of scale dependence of fluctuation statistics. In fact, the values of K(l) − 3, evaluated by both methods,
fluctuate around zero, indicating an approximately Gaussian nature of this kind of signal independent of the
scale. As a confirmation of statistical l homogeneity, I(l) shows an almost monotonically slow increase from
I(l) = 5 to I(l) = 6 for both ALIF, with constant mask length and DWT. A different behavior has been obtained
for 𝜖rel, which presents decreasing values for 0.04 s < l < 0.4 s. For scales greater than 0.4 s, the energy shows
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Figure 8. Multiscale statistical analysis along the time interval corresponding to the JL interval (00:00.0 < UT < 00:05.46).
(a) Raw power behavior as a function of time; (b and c) Multiscale statistical analysis by means of ALIF and DWT
methods, respectively. In each box, from top to bottom, relative energy, standard deviation, skewness, excess of
kurtosis, and Shannon information behaviors as functions of the scale l have been represented.

very low values. The parameter 𝜎 shows the same behavior as 𝜖rel for both ALIF and DWT. Both methods did
not highlight any clear scale dependence of the skewness.
5.1.3. Interval JH

Figure 9a shows the more intermittent interval JH of the signal. A visual inspection suggests the appearance of
larger fluctuations at scales higher with respect to the JL interval. This is confirmed by the higher-energy values
at scale between 1 and 30 s evaluated by both ALIF, with constant mask length (Figure 9b), and DWT (Figure 9c)
methods. The same behavior has been obtained for 𝜎, showing almost constant values for 0.04< l < 1 s and
higher values for l > 2 s. In addition, either KALIF or KDWT shows clear peaks at l ∼ 0.3 s, l ∼ 1.6 s and l ∼ 8 s.
The results obtained for the kurtosis are accompanied by the Shannon entropy behavior (I), which shows
valleys corresponding to the K − 3 peaks. Also in this interval, both methods did not highlight any clear scale
dependence of the skewness.
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Figure 9. Multiscale statistical analysis along the time interval corresponding to the JH interval (00:06.0 < UT < 00:11.46).
(a) Raw power behavior as a function of time; (b and c) Multiscale statistical analysis by means of ALIF and DWT
methods, respectively. In each box, from top to bottom, relative energy, standard deviation, skewness, excess of
kurtosis, and Shannon information behaviors as functions of the scale l have been represented.

6. Discussion and Conclusions

This paper presents a new data analysis technique, the ALIF, which generalizes the IF method (Lin et al., 2009).
The novelty introduced by ALIF is the capability of decomposing any kind of signal, in particular, nonstationary
ones, into a few simple components called IMCs. Compared with standard techniques for nonstationary signals,
like Wavelet transform or STFT, this method allows deriving sharper time-frequency representations and more
detailed statistical proprieties of a signal. In the special case of constant mask length, ALIF reduces to IF, whose
stability and convergence can be a priori guaranteed. For this reason, we preferred to show in the current
paper examples of decomposition by IF. However, we underline that ALIF allows currently for an a posteriori
stability and convergence analysis, which can be directly derived from the decomposition of a given signal.
Furthermore, necessary and sufficient conditions for the a priori stability and convergence of ALIF are currently
under investigation. In this work we tested ALIF with constant mask length against ionospheric radio power
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scintillation in GNSS signal, which we decomposed and then analyzed from a statistical point of view. To detail
ALIF performance, we compare its outcomes with those obtained using the classical DWT. Regarding the test
example, we observe that when a signal is scale filtered, it is possible to see that its statistical proprieties
depend on scale, and this dependence is different for signals with different intermittency. ALIF, with constant
mask length, and DWT, in general, give consistent results about the behavior of the statistical properties as
functions of the scale in different intermittency conditions. Both methods are able to distinguish between
scales at which the signal appears more similar to Gaussian noise and those at which the signal is more
complex and properly turbulent, that is, intermittent. In fact, the ability of both methods to decompose a
nonstationary signal locally in time allows to produce an analysis much richer than a simple power versus fre-
quency inspection as in the Fourier analysis. As an example, in the analysis of segments JM and JH, the Shannon
entropy shows a valley around the scales of leptokurtic signal (0.1< l<3 s). According to definition (16), in this
interval there is decrease of disorder in the signal. This suggests the appearance of localized structures due to
turbulence (Ebeling, 1989; Klimontovich, 1995, 1996).

On the other hand, ALIF, with constant mask length, and DWT show some meaningful differences. In particular,
they sample intrinsically different scales, as ALIF scales assortment is richer than the diadic one of DWT. As an
example, it highlights peaks of kurtosis K (l) at scales that are not visible by DWT, especially in the most turbu-
lent/mixed segments of the signal. This makes ALIF stronger in detecting intermittency intervals. Conversely,
the signal energy and the standard deviation are distributed by ALIF on a wider number of modes fixing their
maxima at different values with respect to DWT. However, in DWT the signal is decomposed into independent
components, being the functions fl,𝜏 orthogonal to each other, whereas ALIF method, as for EMD technique,
does not produce orthogonal components. Nevertheless, since the so-called IMCs are produced by subse-
quent subtraction from the given signal of the previously computed IMCs, they are independent from a
statistical point of view.

ALIF is a technique able to separate a signal into different IMCs, according to their scales. Concerning the
physical meaningfulness of the IMCs, the statistical significance of ALIF revests a crucial role. In fact, Flandrin
et al. (2004), Flandrin and Goncalv’es (2004), and Wu and Huang (2004, 2005) investigated how the noise
can be separated satisfactorily from information on a certain data set. On the other hand, Ghil et al. (2002)
applied a Monte Carlo statistical significance test to SSA (singular spectrum analysis), MEM (maximum entropy
method), and MTM (multitaper method) techniques in order to establish how these methods could provide
reliable results. Regarding ALIF, the development of a proper statistical test will be treated in a forthcoming
paper, where several data sets will be analyzed.

Concerning the skewness, ALIF method is designed to extract modes (IMCs) whose envelopes, that is, the
curves connecting its maxima and minima, are symmetric with respect to the horizontal axis. Therefore,
ideally, the skewness should be constantly zero for every scale. Anyway, the iterative method requires ide-
ally infinitely many steps to produce each IMC. In practice, in the computation, a stopping criterion is used to
allow to discontinue the calculations usually after a few steps. This explains why the produced modes are not
perfectly symmetric and, hence, also the reason why the skewness ends up to be not always zero. However, it
can be observed that it is always possible to use the skewness values to adjust the stopping criterion in order
to improve the quality of the decomposition.

Furthermore, it can be pointed out that the ALIF algorithm can be also used as a detrending technique, since
it allows to separate the oscillatory parts of signal from its trend.

In conclusion ALIF method with constant mask length allows to describe, better than DWT, the multiscale
nature of a signal. In the ionospheric scintillation case, this may lead to clarify the relationship between the
small-scale time scale structure in the signal and the turbulence in the medium.

On the other hand, ALIF with variable mask length, even though still under study from a theoretical point
of view, appears to be, by itself, a promising and more performing technique for the decomposition of
nonstationary and nonlinear signals.

From a scientific point of view, the ability of ALIF to efficiently separate the different scales is useful to make a
scale-by-scale comparison among solar wind (SW), magnetosphere, and ionosphere. This can be used to build
new models of the SW-magnetosphere-ionosphere coupling (through multiscale coupling). In addition, ALIF
allows evaluating how the SW turbulence is translated into ionospheric turbulence.
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Another potential field of application is the identification of peculiar oscillation modes (e.g., on ionospheric/
magnetospheric plasma density, magnetospheric sudden impulses) that switch on when an external forcing
(e.g., SW) is present on a given system (Piersanti et al., 2012, 2017; Piersanti & Villante, 2016; Vellante et al.,
2014; Villante & Piersanti, 2008, 2009). This follows from the capability of ALIF in disentangling regular from
irregular variations on a given signal.

All these features make ALIF a promising tool to support the development of new space weather models
and/or tools able to infer the magnetospheric/ionospheric behavior from direct SW observations.
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