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Abstract: The objectives of this paper will be to discuss the issues related to the determination of the
limits of detection (LOD) in laser-induced breakdown spectroscopy (LIBS) analytical applications. The
derivation of the commonly used ‘3-sigma over slope’ rule and its evolution towards the new official
definition recently adopted by the International Union of Pure and Applied Chemistry (IUPAC) will
be illustrated. Methods for extending the calculation of the LOD to LIBS multivariate analysis will
also be discussed, using as an example the detection of Cu traces in cast iron samples by LIBS.
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1. Introduction

The limit of detection (LOD) of a given element/compound is a key parameter in
analytical chemistry, representing the lower concentration of a given element that an analytical
technique can detect with a reasonable certainty. The limit of detection depends on the matrix
in which the analyte is present but also on the specific experimental setup used for the analysis.
For this reason, the LOD is often used to compare the performances of different techniques, or
variations of the same technique, in terms of their analytical capability.

In this paper, we will discuss the issues related to the calculation of the LODs in
applications of the Laser-Induced Breakdown Spectroscopy (LIBS) technique [1]. LIBS is
a powerful spectroscopic technique which is based on the analysis of the light emitted
by a laser-induced plasma (LIP). One of its most interesting features is its ability to work
on untreated samples, which makes it particularly suited for in situ analysis [2–5]. In the
laboratory applications of LIBS, the possibility of working without solvents or gases is also
appreciated, as well as the short time needed for the analysis and the simplicity of the
experimental apparatus [6–10].

However, the same characteristics above described make sometimes problematic the
building of LIBS calibration curves of good quality. LIBS’s unique feature of not needing to
prepare a sample has as a counterpart the occurrence of strong matrix effects (the signal of
the analyte depends on the composition of the sample) [11], which may negatively affect
its sensitivity, as well as the trueness of the LIBS analytical results.

According to the current narrative, LIBS is characterized by high LODs for many of
the elements of interest (typically in the range of parts per million or higher). The LOD of
a given analyte is usually derived from a calibration curve, which reports the measured
signal as a function of the analyte concentration in suitable samples of known composition
(standards) [12,13]. To reduce matrix effects, it is necessary to build calibration curves using
standards of known composition, having the same matrix as the samples to be analyzed.

Depending on the application, the availability of suitable matrix-matched standards
may be limited. It is not uncommon to see LIBS calibration curves built with less than
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10 samples, sometimes characterized by concentrations of the analyte that are very different
from the concentrations of the unknown sample. In some cases, the change in the concen-
tration of the analyte among the standards may produce non-linearities in the calibration
curve [14]. Finding suitable blanks (reference samples where the analyte is absent) with the
same matrix of the samples to be analyzed can be problematic, too.

Besides that, it must be stressed that the growing use of multivariate analytical
tools [15] for the quantitative determination of samples’ composition calls for a reconsidera-
tion of the formulas traditionally used for the calculation of the LODs [16]. A similar effort is
needed for extending the calculation of LODs in the framework of standardless/calibration-
free analytical approaches [17,18].

Despite the abundant literature on the topic [14,16,19–24], LODs in Laser-Induced
Breakdown Spectroscopy (LIBS) are often miscalculated [1], leading to over-optimistic
estimations of the analytic capabilities of the technique. Moreover, as already mentioned,
the calculation of the LOD is usually limited to the case of univariate analysis, after the con-
struction of a suitable calibration curve [14]. At the best of our knowledge, the problem of
calculating the elemental LODs in multivariate analysis has not been previously discussed
within the framework of LIBS analysis.

The issues associated with the building of a calibration curve in LIBS have been exten-
sively discussed in the past [14,25,26]; as we have seen, the number of available standards is
usually small, and sometimes, it can be hard to obtain a suitable blank. Moreover, in many
LIBS applications, the analyte concentrations of interest are of the order of the percent or
higher, a condition that may produce non-negligible self-absorption effects [27,28]. These
effects can be easily compensated, but the impact of self-absorption can be subtle, introducing
non-linearities in the calibration curve that may not be easy to recognize.

In the next sections, we will discuss the derivation of the commonly used ‘3-sigma
over slope’ [29] rule for the determination of the LOD of a given analyte from a univariate
calibration curve and how this old definition, almost universally adopted in LIBS analysis,
should be modified to consider the results of recent research in the field. Subsequently, we
will discuss how the current definition of LOD in univariate calibration can be extended to
the case of multivariate analysis. Finally, we will introduce a simple practical method for
the estimation of the LOD in multivariate analysis, recently proposed by Oleneva et al. [23].

2. Materials and Methods

The practical case that we chose for exemplifying the different methods used for the
determination of the LOD using both univariate and multivariate approaches is the determi-
nation of copper concentration in cast iron (Fe-C-Si alloy, with carbon concentration between
1.8% and 4% and silicon concentration around 1–3%) samples. The ten cast iron standards
were provided by the Bundesanstalt für Materialforschung und -prüfung (BAM, Berlin,
Germany) to the participants to the LIBS proficiency test held in 2016 at the LIBS Conference
in Chamonix, France. The Cu concentration in the samples is reported in Table 1.

The samples were provided to the LIBS proficiency test participants in the form of
powder or small chips. For the analysis, the samples were placed on double tape on a
glass substrate.

The LIBS spectra were acquired using the micro-Modì instrument by Marwan In-
struments, Pisa [30–32]. The instrument is equipped with a double-pulse laser, emitting
two collinear pulses of about 20 mJ each in 20 ns Full-Width at Half Maximum (FWHM),
delayed by 1 microsecond; the laser pulses are focused on the sample by a Zeiss Axio
microscope. The laser spot on the sample had a diameter of about 50 µm; the irradiance on
the sample was, thus, of about 50 GW/cm2 per pulse. The laser-induced plasma emission
is collected by an optical fiber, placed at about 1 cm from the laser spot, at an angle of about
45 degrees with the vertical axis, and analyzed by a wideband Avantes Avaspec-2048-2
USB spectrometer covering the spectral range between 190 and 900 nm (0.1 nm resolution
from 190 to 450 nm, 0.3 nm resolution from 450 to 900 nm, for a total of 3745 spectral points)
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with a delay of 1 microsecond after the second pulse. The acquisition time is 2 milliseconds
(time-integrated measurement).

Table 1. Cu concentration in the samples.

Sample Cu (w%)

S1 6.29

S2 0.1

S3 0.0256

S4 0.548

S5 0.0303

S6 0.2445

S7 1.231

S8 0.1276

S9 0.150

S10 0.150

For each sample, ten spectra were acquired at 12 different points, for a total of
120 spectra per sample. The instrument was manually refocused on the sample surface
at each point. The LIBS spectra were independently saved for each point of analysis and
each sample. The dataset of 1200 spectra, each one corresponding to 3745 wavelengths,
was analyzed using the Matlab® software (version R2022a). Although the laser was
carefully refocused on each point of analysis, the LIBS signal was still affected by the
irregularity of the sample surface, which produced large fluctuations in the intensity of
the spectra. With the aim of removing the outlier spectra, as a preliminary treatment
the spectra with integral intensities larger or smaller by a factor of two with respect to
the integral of the average spectrum of the same sample were removed from the dataset
(typically around 10% of the 120 spectra). Subsequently, each of the remaining spectra
was normalized to its integral intensity, to compensate for the effect of the fluctuations
of the ablated mass from shot to shot, due to the fluctuations of the laser energy and the
changes in the laser-sample coupling.

3. Results
3.1. Calculation of LOD from Univariate Calibration Curve

The currently accepted operative definition of the LOD identifies this quantity as the
minimum concentration of the analyte that can be detected, “controlling the risks” [22]
of false positives (fluctuation of the blank signal mistaken for analyte signal) and false
negatives (signal of the analyte mistaken for a fluctuation of the blank) (see Figure 1).
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Figure 1. Schematic representation of the histogram of the signal from the blank (gray) and from
a sample (red). The red region is the probability of false negatives (PFN), the gray region is the
probability of false positives (PFP).
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Assuming a Gaussian distribution of the signal of the blank and the sample, with the
same variance σ, the signal mean intensity at the LOD corresponding to a given probability
of false positives PFP and false negatives PFN can be written as:

ILOD =
(

er f c−1(PFP) + er f c−1(PFN)
)

σ (1)

where er f c−1(x) is the inverse of the complementary error function (1—integral of the
Gaussian function from –∞ to x). In most cases, for the calculation of the ILOD, the
two probabilities of false positives and false negatives are assumed to be equal to a reason-
ably low value P. In that case:

ILOD = 2 er f c−1(P) σ (2)

In LIBS, the calculation of the Limit of Detection of an analyte is almost universally
performed, exploiting the traditional IUPAC (now obsolete) definition [13]:

LOD =
3σ

b
(3)

where σ is the standard deviation of the LIBS signal of a sample with zero concentration
of the analyte (blank) and b is the slope of the calibration curve (sensitivity). The LOD
defined in Equation (3) is interpreted as the minimum concentration of the analyte that can
be safely distinguished from the blank, being characterized by a signal (ILOD = b × LOD)
equal to three times the standard deviation of the signal of the blank σ.

Comparing definition (3) with (1), we see that the probability of false positives (as-
sumed equal to the probability of false negatives, as in (2)) is P = er f c(3/2) = 7.7%.

We have already anticipated that the definition (3) has been modified by IUPAC. The
new definition for the LOD of a given element in a univariate calibration is:

LOD =

3.3 σy/x

√
1 + C2

∑(Ci−C)
2

b
(4)

where:

σy/x = ∑

√(
Ii − Îi

)2

N
(5)

where N represents the number of points in the calibration curve [22]. The term σy/x is
an estimate of the deviation of the signals Ii with respect to the value predicted by the
calibration curve Îi at that concentration, under the hypothesis of homoscedasticity (equal
variance) of the signals close to the LOD. Ci are the concentrations of the standards and C is

the average of these concentrations. The term C2

∑(Ci−C)
2 represent the leverage for the blank

sample. The higher the leverage, the higher would be the fluctuations of the intercept of
the calibration curve, which reflects the uncertainty of the signals.

The new IUPAC definition differs from (4) in two aspects. Firstly, the probability of
false positives/false negatives is set to 5%, instead of 7.7%. Therefore, the factor of 3 in
Equation (3) becomes 3.3 in (4). Moreover, as already pointed out forty years ago by Long
and Winefordner [24], for the calculation of the LOD, the average LIBS signal of the blank is
assumed to be zero. Consequently, the uncertainty on the intercept of the calibration curve
cannot be neglected in the calculation of the σ of the signals. In fact, if I = ILIBS − a, for
calculating the standard deviation of the signal, the uncertainty on the calibration curve
intercept σa must be considered, too:

σ ∼=
√

σ2
LIBS + σ2

a (6)
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The new IUPAC definition considers this effect, taking into account the leverage of
the calibration curve at zero concentration. The concentration of the analyte at the LOD is
assumed to be close enough to zero to consider the standard deviation of its signal equal to
the one of the blank (hypothesis used for deriving Equation (2) from Equation (1)).

It must be stressed that the (reasonable) hypotheses leading to the new definition of
the LOD can be easily made less strict, considering for example a Student t-distribution
instead of a Gaussian, if the number of measurements is low or considering the possibility
of having different standard deviations for the blank and for the sample at the LOD.

3.2. LOD of Cu in Cast Iron from Univariate Calibration

For determining the LOD of copper in cast iron using a univariate approach, we
firstly built the corresponding calibration curve. We focused on the narrow spectral interval
comprised between 324.4 nm and 328 nm, where the two most intense Cu I emission lines
(peaks at 324.75 and 327.40 nm) are visible (see Figure 2).
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For building a univariate calibration curve for Cu, we defined the LIBS signal as
the sum of the areas of the two copper lines (red zones in Figure 3). The background
(corresponding to zero analyte signal) was estimated from the gray area in Figure 3.

Plotting the LIBS signal versus the concentration of the samples, we obtain the calibra-
tion curve shown in Figure 4.

It should be noted that in LIBS, the signal should be ideally proportional to the number
concentration of the analyte, which is different from the weight concentration [9]. However,
in our case, the evident non-linearity of the calibration curve must be attributed to the effect
of the self-absorption of the Cu line emission [27]. For the determination of the LOD of Cu
in our experimental conditions, we will, thus, limit the range of the calibration curve to the
linear region comprised between zero (background signal) and 0.55 w%, thus eliminating
the two samples at concentration higher than 1 w% (see Figure 5).
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In this range, the relation between Cu signal and concentration in weight is substan-
tially linear and it is, therefore, possible to define the LOD of the analyte. Note that the
calibration curve does not reach zero at zero copper concentration. This is also evident
from Figure 1, where the Cu line at 324.75 nm seems to be observable even in the spectra
of the S3 and S5 samples, which have very low copper concentrations (0.02% and 0.03%,
respectively). This is probably due to the interference of some (weak) iron line emitted at a
close wavelength, but does not represent a problem for the calculation of the LOD, as soon
as the uncertainty on the value of the offset is taken into account.

By applying the formula reported in Equation (4), in our experimental conditions,
we obtain an LOD for Cu in cast iron equal to about 0.35 w% (0.2 w% according to the
old IUPAC definition, Equation (4)). However, some caution must be taken when inter-
preting this result; observing directly the intensity distribution of the blank (estimated as
the background signal of sample with the lower Cu concentration in the calibration set)
and of sample S9, whose Cu concentration is about one half of the estimated LOD, we
observe that the Gaussian fittings of the two intensity distributions overlap well above
the 5% confidence limit, but the two distributions of the blank and of the signal do not
overlap at all (and thus, Cu at this concentration can be discriminated from the blank
with 100% probability, see Figure 6).

This is because the distribution of the LIBS signal of the sample is strongly asymmetric
towards the higher intensities, and thus, the approximation of having a Gaussian distri-
bution does not apply (the standard deviation of the signal is also larger than the one of
the background/blank). This effect has been studied a few years ago by Klus et al., which
demonstrated that the statistical distribution of the LIBS line intensities in some cases is
better described by a General Extreme Value Distribution (GEVD) curve, rather than by a
Gaussian curve [33]. The asymmetry of the LIBS intensity distribution can be also due to
the spectral selection procedure used for eliminating the outliers in the measurement.
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At lower Cu concentrations (S5 sample, for example, having a Cu concentration of
0.03 w%), we observe, instead, a substantial overlapping of the intensity distributions. In
this case, the distribution of the signal is more symmetric and can be fitted, although not
perfectly, with a Gaussian curve (see Figure 7).
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3.3. LOD of Cu in Cast Iron from Multivariate Calibration

In ref. [31], studying the same samples here described, the authors have demonstrated
the substantial improvement in the analytical performances of the LIBS technique that
can be obtained using a multivariate approach, instead of limiting the analysis to a single
predictor of the concentration, as is done using a univariate approach.

Adopting the same strategy, we trained a simple Artificial Neural Network [15], using
as input/predictors all the spectral points in the range previously considered (32 points
between 324.5 nm and 328.0 nm). We used a single neuron in the hidden layer, with a
sigmoid transfer function.

In the framework of a multivariate analysis, the equivalent of a calibration curve is
expressed by the regression graph, which represents the results of the ANN vs. the nominal
concentrations. The curve obtained for the Cu concentration is shown in Figure 8.
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Figure 8. Regression curve of copper in cast iron.

As expected, the regression curve obtained using a multivariate approach is more
precise than the corresponding univariate calibration curve (Figure 5). Pushing forward this
analogy, the LOD corresponding to the regression curve can be calculated in the same way
as for the calibration curve (Equation (4)). In this case (pseudo-univariate estimation), the
LOD for Cu improves substantially, due to the reduction of σ obtained using a multivariate
approach. Applying Equation (4), we obtain a LOD = 0.15 w% for the measurement of Cu
in cast iron, which should be compared with the univariate LOD = 0.35 w%.

Additionally, in this case we can do a comparison between the distribution of the
predicted values for a sample near the LOD, as shown in Figure 9.
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Figure 9. Distribution of the predicted values for zero concentration (black) and for a sample (yellow)
at the LOD (Sample S9, Cu concentration = 0.15 w%).

Similar to the univariate case, the assumption of a Gaussian distribution is not fulfilled
for the predicted Cu concentrations. Moreover, the standard deviation of the zero signal is
not equal to the one of the signal at the calculated LOD.

Therefore, the actual limit of detection of Cu can be considered substantially lower
than the one calculated using Equation (4).

An alternative empirical method for determining the LOD in multivariate analysis has
been recently proposed by Oleneva et al. [23]. The authors considered the Mean Relative
Error (MRE) of the estimated concentration of a given sample i, defined as:

MREi =
mean(c̃i − ci)

ci
(7)

where c̃i is the concentration estimated by the multivariate algorithm for each repetition of
the measurement on the sample with certified concentration ci. We assume to have ordered
the samples according to the growing concentration of the analyte, i.e., ci+1 ≥ ci. Intuitively,
the MRE of the samples with analyte concentration lower than the LOD would be higher
than the ones for samples with concentration above the LOD. A practical definition of the
LOD can, thus, be, according to the authors, the value of ci after which the MRE fluctuations.

∆MRE = MREi+1 − MREi (8)

which stabilizes below a given threshold.
Applying this method to the ANN results for Cu, we obtain the results shown in Figure 10.
The estimated LOD (about 0.12 w%) is slightly lower than the value estimated through

the pseudo-univariate method (Equation (4)); this is coherent with the failure of the approx-
imation of Gaussian distribution and homoscedasticity of the results, which leads to an
overestimation of the LOD in Equation (4).
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A summary of the results obtained with the different approaches for the LOD of Cu is
reported in Table 2.

Table 2. Value of the LOD as calculated according to the different definitions.

Definition LOD (w%)

Univariate

Old IUPAC formula (Equation (3)) 0.2

New IUPAC formula (Equation (4)) 0.35

Multivariate

Pseudo-univariate IUPAC formula (Equation (4)) 0.15

Oleneva et al., method 0.12

4. Discussion

In the previous sections, we have discussed the motives for using the new IUPAC
formula for the calculation of the LOD of an analyte with a given experimental procedure,
using a univariate or multivariate approach. The use of the old IUPAC formula should,
thus, be deprecated, in LIBS as in other spectro-analytical applications. When the formulas
for the LOD are applied to the case of LIBS, we noticed several critical points that would
partially invalidate the application of the new IUPAC definition for the LOD (as well as the
old one). The failure of the Gaussian approximation for the LIBS intensity distribution and
the non-homoscedasticity of the LIBS signals contrast with the hypotheses at the basis of the
derivation of Equation (4). The method proposed by Oleneva et al. [23], on the other hand,
did not rely on the hypothesis of Gaussianity and homoscedasticity; however, it should be
noted that the new IUPAC definition of LOD is based on the idea of quantifying the risk
of false positives or false negatives for measurements performed near the LOD, and the
Oleneva method (which can also be easily applied to a univariate calibration curve) does
not provide information about these essential parameters. The definition of ‘stabilization’ of
the MRE with increasing the concentration of the standards is essential arbitrary; moreover,
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at high concentrations of the analyte, other effects can produce errors and corresponding
fluctuations of the MRE. On the other hand, a definition based on the analysis of the MRE
is interesting from an operative perspective, although it seems more related to the problem
of the quantification of the analyte concentration, rather than just on its detection.

The issue of determining the LOD of an analyte by LIBS is, thus, very complex, both
in the univariate and in the multivariate case. The discussion and the examples shown in
this paper should suggest some care in providing figures for the LOD of the analytes under
study without checking the validity of the Gaussian distribution and homoscedasticity
of the LIBS signals near the LOD. In particular, non-Gaussian profiles of the intensity
distribution may arise from spectral selection treatments when, as in the example reported
in this paper, the outlier spectra are removed. Since this kind of treatment has become
customary in the analysis of large quantities of data, their effect on the calculation of the
LOD should be checked.

As a general suggestion, in a multivariate as well as univariate quantitative approach,
it is always appropriate to check the histogram of the relevant LIBS signals, comparing
them with the histogram of the blank signal. To guarantee that false positives and false
negatives would have the same probability at the LOD is on the other hand necessary to
use for the calculation of only the data with a standard deviation very close to the one of
the blank. Samples characterized by high concentrations of the analyte should be excluded
from the calculation because of the possible non-linear effect, but also because the standard
deviation of LIBS signals increases with the square root of the signal. Moreover, points at
high concentration in the calibration curve contribute to the increase in the leverage, which
must be considered in the calculation of the LOD.
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