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ABSTRACT
Existing direction of arrival (DOA) estimation methods in multiple-
input multiple-out (MIMO) radar systems will encounter the perfor-
mance degradation in the cases of few snapshots, low signal-to-noise
ratio (SNR), closely spaced targets, or strongly correlated sources. To
improve it, this paper develops a new sparse representation-based
DOA estimation method. The main contributions are as follows: i) we
construct a new real-valued double weighted l2;1-norm minimisation
model; ii) we derive an improved reduced-dimension technique to
enhance estimation accuracy; and iii) we design optimal and sparse
weights carefully to improve the corresponding estimation accuracy.
Finally, the effectiveness and theoretical analysis of the presented
approach are verified by extensive numerical simulations, which
proves that the new algorithm performs well at low SNR and with
a small number of snapshots as well as at the coherent source case.
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1. Introduction

Multiple-input multiple-output (MIMO) radar exploits multiple transmitters to simulta-
neously propagate diverse waveforms and thus uses multiple receivers to receive the
reflected signals from targets (Haimovich, Blum, Chizhik, Ciminim, & Valenzuela, 2004). It
received a lot of attentions (Chen, Chen, & Qian, 2008; Chen, Gu, & Su, 2008; Gao, Zhang,
Feng, Wang, & Xu, 2009, Haimovich, Blum, & Cimini, 2008; Hassanien & Vorobyov, 2011;
Li & Li, 2012; Li & Stoic, 2007) owing to the potential advantages of MIMO radar such as
powerful sensitivity beneficial to detect slowly moving targets, better parameter iden-
tifiability, more degree of freedom (DOF) and better angular resolution over conven-
tional phased-array radar (Haimovich et al., 2004, 2008; Li & Stoic, 2007). Generally,
according to the configuration of the transmitting array and receiving array, MIMO
radar can be divided into two types. One is called statistical MIMO radar, whose
transmitting elements and receiving elements are widely spaced. Another is called co-
located MIMO radar (Li & Stoic, 2007) including monostatic MIMO radar and bistatic
MIMO radar, in which transmitting elements and receiving elements are closely spaced.
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The co-located MIMO radar can acquire unambiguous angle estimation since it can
provide virtual beneficial aperture, which is bigger than real aperture. In this paper, we
focus on monostatic co-located MIMO radar for direction of arrival (DOA) estimation of
multiple targets, which is one of most significant aspects in array signal processing fields
(Chen et al., 2008, 2008; Gao et al., 2009; Hassanien & Vorobyov, 2011; Li & Li, 2012).

Recently, several algorithms have been proposed for DOA estimation in MIMO radar
(Chen et al., 2008, 2008; Gao et al., 2009; Hassanien & Vorobyov, 2011; Li & Li, 2012). In (Li
& Li, 2012), a low complexity Capon-based algorithm is developed for monostatic radar,
which is of lower complexity and has higher estimation performance than those of the
common Capon algorithm. In (Gao et al., 2009), a multiple signal classification algorithm
is exploited, however, it is computationally expensive resulted from peak search. (Chen
et al., 2008, 2008) present several estimations of signal parameters via rotational invar-
iance technique (ESPRIT) algorithms, which utilise the rotational invariance property of
both the transmitting and receiving arrays and thus have low computational cost as they
need not search spectral peaks. In (Hassanien & Vorobyov, 2011), a transmitting beam-
space energy focusing approach is designed, and angle estimation performance is
enhanced as transmitting beamspace weight matrix with the SNR gain is maximised
for each receive antenna. However, all these methods consider only non-correlated
source environments. Additionally, they mentioned above hinge on target priori infor-
mation and high accurate covariance matrix estimation, and their angle estimation
performance decreases greatly in the situation of low signal-to-noise ratio (SNR), limited
snapshots and closely spaced targets. In other words, they can obtain beneficial angle
estimation accuracy, provided that the targets are not strongly correlated, the number of
snapshots is sufficient, the targets are not close to each other, or the SNR is high
enough. They still can not work well under the coherent source case. Hence, it is time
that we should develop a beneficial angle estimation algorithm to tackle the problems
of the existing algorithms in MIMO radar.

More recently, sparse representation has attracted a great deal of attention for
DOA estimation in array signal processing (Hu, Ye, Xu, & Cao, 2012; Hyder & Mahata,
2008; Liu, Huang, & Zhou, 2013; Malioutov, Cetin, & Willsky, 2005; Steffens &
Pesavento, 2018; Wang, Huang, & Zhang, 2011; Yin & Chen, 2011; Zhen, Li, Liu, &
Wang, 2012; Zheng, Li, & Wang, 2013). In (Malioutov et al., 2005), l1-norm singular
value decomposition (l1-SVD) algorithm is developed for DOA estimation via using
sparse recovery, which has several advantages over conventional source localisation
techniques such as high resolution, robustness to noise and correlation of signals.
Literature (Liu et al., 2013) derives a sparse representation of covariance matrix
approach, which can estimate both the number and directions of targets via sparsely
representing a vector constructed with array output matrix elements. In (Yin & Chen,
2011), a sparse representation of array covariance vector (SRACV) algorithm is devel-
oped to estimate both coherent and uncorrelated sources for an arbitrary configura-
tion of array, which has high angle estimation accuracy. In (Hyder & Mahata, 2008),
a sparse recovery iterative algorithm is proposed for the single measurement vector
(SMV) case. In (Hu et al., 2012), a sparse subspace fitting algorithm is introduced. In
(Zhen et al., 2012), a sparse representation angle estimation algorithm is presented by
combining unitary transformation with the weighted l1-norm sparsity signal recovery
method. However, MIMO radar angle estimation generally encounters with multiple
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measurement vector (MMV) problem, and the iterative algorithm may not be
exploited to estimate angle. Furthermore, the two-dimensional dictionary matrix is
constructed for recovering sparse signal matrix in MIMO radar, which causes very
heavy computational burden owing to complex-valued process and MMV problem.
Hence, the above-mentioned sparse algorithms are extended difficulty to DOA esti-
mation for MIMO radar owing to high computational cost. Furthermore, these tech-
niques (Hu et al., 2012; Hyder & Mahata, 2008; Liu et al., 2013; Malioutov et al., 2005;
Wang et al., 2011; Yin & Chen, 2011; Zhen et al., 2012; Zheng et al., 2013) concern
only angle estimation for conventional radar, which are seldom exploited to address
the DOA estimation in MIMO radar (Qian, He, & Zhang, 2018).

To tackle these challenging problems, and inspired by the sparse representation l1-
SVD algorithm (Malioutov et al., 2005) and the subspace fitting method (Hu et al., 2012;
Zhen et al., 2012) in array signal processing, we design a new sparse representation
approach via constructing a real-valued double weighted l2;1-norm minimisation model
for DOA estimation in monostatic MIMO radar. In the presented method, an improved
reduced-dimension technique is utilised to transform the high dimensional complex-
valued received data into low dimensional one. Secondly, the low dimensional data are
transformed into a low dimensional real-valued data by employing a unitary transforma-
tion technique, thereby diminishing computational complexity. Thirdly, the optimal and
sparse weights are devised to enhance estimation accuracy since the reduced computa-
tional cost techniques lead to slight angle estimation performance degradation. Thus,
the real-valued double weighted l2;1-norm minimisation model is formulated for DOA
estimation when multiple snapshots are available. The simulation results prove that the
proposed methodology can acquire high angle estimation accuracy, improved angular
separation performance and low sensitivity to the assumed number of targets in
comparison with RD-ESPRIT (Zhang & Xu, 2011) and RD-Capon algorithms (Li & Li,
2012), especially in relatively small number of snapshots and/or low SNR and closely
spaced targets case. Furthermore, the proposed algorithm works well under coherent
source environments. To the best of our knowledge, no similar sparse representation
methodology has been investigated yet so far for angle estimation in monostatic MIMO
radar. The major contributions of the paper as follows:

(1) Derive an improved reduced-dimension technique to enhance estimation accu-
racy of the new algorithm.

(2) By employing a unitary transformation technique, the low dimensional complex-
valued received data are transformed into a low dimensional real-valued data,
thereby diminishing computational complexity. The optimal and sparse weights
are designed carefully to improve the corresponding angle estimation performance.

(3) Propose a new sparse representation approach by constructing a real-valued
double weighted l2;1-norm minimisation model.

The remainder of the paper is organised as follows. Section 2 introduces the mono-
static radar signal model. Section 3 demonstrates the proposed algorithm for DOA
estimation in monostatic radar. Section 4 provides computational complexity of the
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proposed algorithm and CRB. Section 5 shows the extensive simulation results. Finally,
conclusions are summarised in Section 6

Notation: ð�ÞH and ð�Þ� 1 signify conjugate transpose and inverse operations, respectively.
Reð�Þ is to obtain the real part of the complex value. � and � denote Kronecker and
Handamard product, respectively. IMN is an MN�MN identity matrix. �k kF and �k k1
signify Frobenius norm and the l1 norm, respectively. diagðvÞ denotes diagonal matrix
whose diagonal is a vector. Eð:Þ represents expectation operator.

2. Signal model

Without loss of generality, we consider a narrowband monostatic MIMO radar system
composed of M transmitting elements and N receiving elements, both of which are
half-wavelength spaced uniform linear arrays (Chen et al., 2008, 2008; Gao et al.,
2009; Hassanien & Vorobyov, 2011; Li & Li, 2012), as shown in Figure 1. In the
transmitting array, M different narrowband orthogonal waveforms are transmitted
simultaneously by M transmitting antennas, which have identical bandwidth and
centre frequency. Suppose that P signifies the number of uncorrelated targets, and
the DOA of the pth target is denoted by θp with respect to the normal of transmit-
ting and receiving arrays. Then, the output of the matched filter in the receiving
array can be formulated as (Chen et al., 2008, 2008; Gao et al., 2009; Hassanien &
Vorobyov, 2011; Li & Li, 2012)

xðtÞ ¼ ½arðθ1Þ � atðθ1Þ; . . . ; arðθpÞ � atðθpÞ�sðtÞ þ nðtÞ (1)

where sðtÞ ¼ ½s1ðtÞ; s2ðtÞ; . . . ; sPðtÞ�
T
2 C

P�1 and spðtÞ ¼ αpej2πfpt with αp being the ampli-
tude and fp Doppler frequency. arðθpÞ and atðθpÞ denote the receive steering vector and
transmit steering vector for θp, respectively; arðθpÞ � atðθpÞ signifies the Kronecker product.

arðθpÞ ¼ ½1; expð� jπ sin θpÞ; . . . ; expð� jπðN � 1Þ sin θpÞ�
T
; . . . ;atðθpÞ ¼ ½1; expð� jπ sin θpÞ,

expð� jπðM � 1Þ sin θpÞ�
T . nðtÞ signifies an MN� 1 Gaussian white noise vector with zeros

mean and covariance matrix σ2IMN. We define A ¼ ½arðθ1Þ � atðθ1Þ; . . . ; arðθpÞ � atðθpÞ�;
then, the received data in Equation (1) can be rewritten as xðtÞ ¼ AsðtÞ þ nðtÞ. In the case
of multiple snapshots, we collect L snapshots and the received data can be expressed as

Figure 1. The monostatic MIMO radar configuration.
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X ¼ ASþ N (2)

where X ¼ ½xðt1Þ; . . . ; xðtLÞ�, S ¼ ½sðt1Þ; . . . ; sðtLÞ� and N ¼ ½nðt1Þ; . . . ;nðtLÞ� is the
Gaussian white noise matrix.

3. New sparse representation approach for DOA estimation

In this section, we first employ the improved reduced-dimension technique to transform
the high dimensional complex-valued received data into low dimensional one. Secondly,
we exploit the unitary transformation technique to transform the low dimensional data
into a low dimensional real-valued data. Thirdly, we devised the optimal and sparse
weights to enhance the angle estimation. Finally, the real-valued double weighted l2;1-
norm minimisation model is formulated for DOA estimation.

3.1 Reduced-dimension transformation for received data

It has been mentioned above that the sparse presentation approaches are extended
difficulty to DOA estimation for MIMO radar owing to high computational cost. Thus, we
first employ an improved reduced-dimension technique transform the high dimensional
complex-valued received data into low dimensional one. Referring to (Li & Li, 2012; Xie,
Liu, & Zhang, 2010; Xu, Li, & Stocia, 2006), it is evident that the transmit-receive steering
vector has only ðMþ N � 1Þ distinct elements. Thus, arðθpÞ � atðθpÞ can be given by

arðθpÞ � atðθpÞ ¼ GbðθpÞ (3)

wherebðθpÞ ¼ ½1; expð� jπ sin θpÞ; . . . ; expð� jπðMþ N � 2Þ sin θpÞ�
T is the ðMþ N � 1Þ � 1

Vand-ermonde vector which relies on θ and M, and G is the MN� ðMþ N � 1Þ transformed
matrix as follows:

G ¼

1 0 . . . 0
0 1 . . . 0
..
. ..

. . .
. ..

.

0 0 . . . 1

0 . . . 0
0 . . . 0
..
. . .

. ..
.

0 . . . 0

9
>>=

>>;

M

0 1 . . . 0
0 0 1 0
..
. ..

. ..
. . .

.

0 0 . . . 0

0 . . . 0
0 . . . 0
..
. . .

. ..
.

1 . . . 0

9
>>=

>>;

M

. . .

. . .

0 . . . 0 1
0 . . . 0 0
..
.

. . . ..
.

. . .

0 . . . 0 0

0 . . . 0
1 . . . 0
..
. . .

. ..
.

0 . . . 1

9
>>=

>>;

M

2

6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
5

2 CMN�ðMþN� 1Þ (4)

According to Equation (4), we let be F ¼ GHG, which is further presented as
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F ¼ diag½1; 2; . . . ;minðM;NÞ; . . . ;minðM;NÞ
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

M� Nj jþ1

; . . . ; 2; 1� (5)

In order to whiten coloured noise, we define the reduced-dimension transformation
matrix D as

D ¼ F� ð1=2ÞGH (6)

Applying the reduced-dimension transformation F� ð1=2ÞGH for the received signal xðtÞ,
we have

yðtÞ ¼ F� ð1=2ÞGHxðtÞ
¼F� ð1=2ÞF½bðθ1Þ;bðθ2Þ; . . . ;bðθPÞ�sðtÞ þ F� ð1=2ÞGHnðtÞ
¼Fð1=2ÞBsðtÞ þ F� ð1=2ÞGHnðtÞ

(7)

where B ¼ ½bðθ1Þ;bðθ2Þ; :::;bðθPÞ�. Till now, the low dimensional received data yðtÞ is
obtained. The covariance matrix of the noise in (7) is shown as follows (Li & Li, 2012):

~Rn ¼ E½F� ð1=2ÞGHnðtÞðF� ð1=2ÞGHnðtÞÞH� ¼ F� ð1=2ÞGHE½nðtÞnHðtÞ�GHF� ð1=2Þ (8)

Although the reduced-dimension transformation technique does not lead to additional
colouring (Li & Li, 2012), we can see from Equation (7) that the signal part contains
amplitude error Fð1=2Þ, which is difficult to be calibrated by conventional calibration meth-
ods and can significantly impact angle estimation performance of the existing algorithms
based on reduced-dimension transformation especially in relatively small number of snap-
shots and/or low SNR. In the following components, we introduce how to calibrate ampli-
tude error step by step. The reduced-dimension signal covariance matrix is then given by

Ry ¼ E½yðtÞyHðtÞ� ¼ F1=2B½sðtÞsHðtÞ�BHF1=2 þ σ2IMþN� 1
¼UsoΛsoUH

so þ UnΛnUH
n

(9)

where Λso is a diagonal matrix, the columns of Uso are the eigenvectors corresponding to the
P largest eigenvalues, while the columns of Un are the eigenvectors corresponding to Mþ
N � 1 � P smallest eigenvalues. The F1=2B contains amplitude error F1=2, which is manifested
on the rows of Λ1=2

so . Then, we define ~Ry ¼ B½sðtÞsHðtÞ�BH ¼ F� ð1=2ÞUsoΛsoUH
soF
� ð1=2Þ and we

can obtain P-snapshot signal matrix So ¼ F� ð1=2ÞUsoΛ1=2
so . Then, the amplitude error Fð1=2Þ

including Λ1=2
so is compensated by using Fð� 1=2Þ. So can be represented as So ¼ BT, where

P� P -dimensional matrix T is full-rank. In practice,
Λ1=2

so always has noise components. The optimal Λs is obtained by solving
Equation (10)

min
Λs;T1

UsoΛ1=2
s � F1=2BT1

�
�

�
�2

F (10)

then, the optimal solution can be represented as Λs ¼ ðΛso � σ2
oIPÞ

2Λ� 1
so according to the

references (Harry, 2002; Viberg & Ottersten, 1991; Viberg, Ottersten, & Kailath, 1991), where

σ2
o ¼

1
MþN� 1� P

PMþN� 1

i¼Pþ1
λi, i ¼ Pþ 1; . . . ;Mþ N � 1. Eventually, we can obtain P-snapshots

data matrix S1 ¼ F� ð1=2ÞUsoΛ1=2
s 2 C

ðMþN� 1Þ�P, which do not have amplitude error.
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Remark 1: The proposed algorithm not only provides low computational cost but also
has high estimation accuracy by using the reduced-dimension method without causing
amplitude error in comparison with previous reduced-dimension method (Li & Li, 2012;
Xie et al., 2010; Xu et al., 2006).

3.2 Unitary transformation for low dimensional received data

In this section, the low dimensional P-snapshot data matrix S1 is transformed into to
a centro-Hermitian matrix Z that composes the spatial smoothing technique (Haardt &
Nossek, 1995) as follows:

Z ¼ ½S1; ΠMþN� 1S1
�ΠP� (11)

where ΠMþN� 1 signifies the exchange matrix with ones on its anti-diagonal and zeros
elsewhere and ð�Þ� represents the complex conjugate. Then, the low dimensional real-
valued extended data matrix Γ is constructed by applying unitary transformation on the
complex-valued extended data matrix Z as follows (Haardt & Nossek, 1995; Huarng &
Yeh, 1991; Thakre, Haardt, & Giridhar, 2009)

Γ ¼ QH
MþN� 1ZQ2P ¼ QH

MþN� 1½Y; ΠMþN� 1S1
�ΠP�Q2P 2 RðMþN� 1Þ�2P (12)

where ð�ÞH represents the complex conjugate transpose, and Q is defined for even and
odd order, respectively, which is the unitary transformation matrix, can be expressed as

QP ¼
1
ffiffiffi
2
p

IP jIP
ΠP � jΠP

� �

; Q2Pþ1 ¼
1
ffiffiffi
2
p

IP 0 jIP
0T

ffiffiffi
2
p

0T

ΠP 0 � jΠP

2

4

3

5 (13)

where Γ 2 RðMþN� 1Þ�2P is in real domain after implementing the unitary transformation,
then, a low dimensional real-valued covariance matrix can be estimated as follows:

R̂real ¼
1
2P
ΓΓH (14)

and we can find from Equation (12) that the number of snapshots is doubled, which can
further enhance the jointly sparse constraint. Then, implement the singular value
decomposition (SVD) on low dimensional real-valued matrix R̂real, and the real-valued
signal subspace Us and the real-valued noise subspace Un can be obtained, respectively,
according to the magnitude of corresponding singular values.

Remark 2. In the presented method, a unitary transformation technique is exploited to
double the number of data samples, which can further boost the jointly sparse constraint
on the solution, suppress spurious peaks, enhance angle estimation performance, improve
decorrelation ability for the unitary technique implies spatial smoothing method (Haardt &
Nossek, 1995). Furthermore, the low dimension complex-valued received data is trans-
formed into a real-valued data, thereby diminishing computational complexity.
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3.3 Angle estimation in monostatic MIMO radar

In this section, sparse weights are devised to enhance estimation accuracy since we
exploit the improved reduced-dimension technique lead to slight angle estimation
performance degradation. To describe the sparse weighting idea briefly, let

W
_

¼ ðQH
MþN� 1ΦÞ

HUn ¼ ΦHQMþN� 1Un (15)

then, by exploiting the orthogonality between the noise subspace and the array mani-
fold matrix, the W

_

is rewritten as follows (Zhen et al., 2012):

W
_

¼
ΦH

ΛQMþN� 1Un
ΦH

ΛCQMþN� 1Un

� �

(16)

where Λc represents the complementary of setting to Λ.

Remark 3. As the proof of the sparse weighting has been given in Ref. (Zhen et al., 2012;
Zheng et al., 2013) for angle estimation in conventional radar, and also owing to page
limitation, here, the detailed discussion of this problem is omitted. In this paper, we
extend the sparse weighting scheme to the proposed algorithm for angle estimation in
monostatic MIMO radar.

Then, define Θ ¼ θ
_

1; θ
_

2; . . . θ
_

D

n o
as a dense sampling grid of all DOAs of interest and

assume that the true DOAs belong to Θ. An ðMþ N � 1Þ � D overcomplete basis matrix

Φ ¼ ½bðθ
_

1Þ;bðθ
_

2Þ; :::;bðθ
_

DÞ� is given by employing Θ. Then, combining the sparse
representation technique and subspace fitting scheme (Hu et al., 2012; Viberg &
Ottersten, 1991; Viberg et al., 1991; Zhen et al., 2012), the real-valued sparse representa-
tion framework in monostatic MIMO radar is given by

UsW
1=2
opt ¼ Q

H
MþN� 1Φ~Sþ E (17)

where complex-valued overcomplete basis marix Φ is transformed into real-valued
overcomplete baise marix by using QH

MþN� 1. E is a real-valued Gaussian noise. ~S has

a few non-zero rows and its the ith row corresponds to DOAs of the possible. Thus, ~S is
a sparse spatial spectrum. In order to recover the sparse matrix ~S, we consider the real-
valued double weighted l2;1-norm constrained minimisation problem as follows:

min ~S
�
�
�
�

�w;2;1; s:t UsW
1=2
opt � Q

H
MþN� 1Φ~S

�
�
�

�
�
�

2

F
� β2 (18)

where :k k
w_;2;1
¼
Δ PD

d¼1 w
_

dð
PP

p¼1 j½:�d:pj
2
Þ
1=2 and Wopt ¼ ðΛs � σ2IPÞ

2Λ� 1
s , Λs is

a diagonal matrix and σ2 is noise variance. For detailed knowledge of the optimal
weight Wopt is already presented in ref. (Harry, 2002; Viberg & Ottersten, 1991; Viberg
et al., 1991) and also detailed discussion of this subject referring in (Harry, 2002;
Viberg & Ottersten, 1991; Viberg et al., 1991). β2 is a regulation parameter which can
be given by a χ2 distribution with ðMþ N � 1Þ � P degrees of freedom and 0.99
probability (Malioutov et al., 2005). The DOAs can be estimated by finding the
nonzero elements of ~Sðl2Þ by solving ~Sðl2Þ. Here, the second-order cone (SOC) problem
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in Equation (18) can be solved by exploiting CVX package (Grant & Boyd). Then, we
can estimate DOA in monostatic MIMO radar by plotting ~Sðl2Þ, solved from
Equation (18).

4. Computational complexity analysis and the Cramér-Rao Bound (CRB)

The main computational complexity of the proposed algorithm is
ofðMþ N � 1Þ2 þ 2ðMþ N � 1Þ3 þ 2ðMþ Nþ 2PÞ þ ðMþ N � 1Þ3P3g. The RD-Capon

and RD-ESPRIT computational complexity are o ðMþ N � 1Þ2Lþ ðMþ N � 1Þ3þ
n

L½ðMþ NÞðMþ N � 1 � PÞ�g and o ðMþ N � 1Þ2Lþ ðMþ N � 1Þ3
n o

, respectively. Even

though the proposed algorithm utilises the reduced-dimension technique, the real-
valued processing method and SVD method to decrease the computation complexity
of sparse signal reconstruction, the computation complexity of the proposed algorithm
is higher than the RD-Capon and RD-ESPRIT algorithms. However, the advantages of the
proposed algorithm outweigh the cost of additional computation: the presented algo-
rithm obtains high angle estimation accuracy, beneficial angular separation perfor-
mance, low sensitivity to the assumed number of targets, and works well coherent
source environments without requiring the decorrelation procedure. Furthermore,
according to (Li & Li, 2012; Stoica & Nehorai, 1990), the CRB of angle estimation is
given by

CRB ¼
σ2

2L
Re DHΠ?AD

� �
� R

_T
� �� �� 1

(19)

where � signifies the Hadamard product, Π?A ¼ IMN � AðAHAÞ� 1AH, R
_

¼ 1
L

PL

l¼1
sðtlÞsHðtlÞ,

D ¼ ½h1;h2; . . . ;hP�, hp ¼ @ðarðθpÞ � atðθpÞÞ=@θp.
The presented algorithm has the following advantages:

(1) It can perform well in the cases of the strongly correlated and coherent source
environments.

(2) It can work well in the situation of a small number of snapshots and/or low SNR
and closely spaced targets case.

(3) It has much better angle estimation accuracy than that of the RD-Capon algorithm
(Li & Li, 2012) and RD-ESPRIT, which will be shown in the following section.

(4) It has a low sensitivity to the assumed number of targets.

5. Simulation results

In this section, we demonstrate the superiority of the proposed algorithm over existing
algorithms, including the RD-ESPRIT (Zhang & Xu, 2011) and RD-Capon algorithms (Li &
Li, 2012), by the extensive numerical examples. The root mean squared error (RMSE) of
evaluation angle estimation performance is defined as
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RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1
ðPKÞ

XP

p¼1

XK

k¼1

ðθ̂p;k � θpÞ
2

v
u
u
t (20)

where θ̂p;k is the estimation of θp of the kth Monte Carlo trial. In the following simulation
examples, 200 Monte Carlo trials are exploited, and the spatial direction grid is uniform
with 0:1� sampling between � 90� with 90�. We assume that there are three uncorrelated
targets, which are located at angles θ1 ¼ 10:5�; θ2 ¼ 20:7�; θ3 ¼ 30:8�, respectively.

Figure 2 describes the spatial spectra of the proposed algorithm and RD-Capon for
three uncorrelated targets with M ¼ 8, N ¼ 8, L ¼ 300, and SNR = 10 dB. We can see
from Figure 2(a) that our technique obtains more sharp peaks than that of RD-Capon
since we exploit the optimal and sparse weights, and the unitary transformation tech-
nique to enhance estimation performance of the proposed algorithm. Furthermore, as
we can see from Figure 2(b), the proposed algorithm can distinguish closely targets
effectively while the RD-Capon fails to the work.

Figure 2. (a) Spatial spectra comparison with three uncorrelated targets. (b) Spatial spectra
comparison three uncorrelated targets. DOAs: � 2�; 1�; 4�.
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Table 1. shows that the angle estimation of results of the RD-ESPRIT for three uncorre-
lated targets with M = 8, N = 8, L = 200, and SNR = 10 dB. It can be seen from Table 1 that the
RD-ESPRIT method can also effectively distinguish closely targets. From Figures 5 and 6, we
can observe that the proposed method estimation accuracy better than the RD-ESPRIT.

Figure 3 presents the angle estimation of results of the proposed algorithm and RD-Capon
for three coherent targets with M ¼ 8, N ¼ 8, and SNR = 10 dB. As we can see from Figure 3,
the proposed algorithm can effectively estimate coherent targets, which does not require
decorrelation procedure while the RD-Capon fails to the work. On the other hand, Figure 3
further demonstrates that our technique can obtain spatial smoothing (Haardt & Nossek,
1995; Harry, 2002; Huarng & Yeh, 1991) ability by unitary transformation and angle estimation
performance of our technique is effectively boosted in contrast to the Capon algorithm.

In this simulation, we indicate the sensitivity of our technique to the priori informa-
tion of the target number in Figure 4, where M ¼ 8, N ¼ 8, L ¼ 300, and SNR = 10 dB are
adopted. As we can see from Figure 4, the proposed algorithm can correctly estimate
the number of targets, which has low sensitivity that affords beneficial robustness
against mistakes in estimating the number of targets. The main reason is that sparse
weighting does not depend on the priori information of the target number. Moreover,
the unitary transformation technique promotes sparsity and thus the proposed algo-
rithm obtains more accurate angle estimation.

Figure 5 illustrates angle estimation performance comparison, where we compare the
proposed algorithm with the RD-Capon and RD-ESPRIT algorithms. Then, it can be
clearly seen from Figure 5 that the proposed algorithm has lower RMSE than that of RD-
Capon and RD-ESPRIT algorithms, especially in the low SNR case. The RMSE of the
proposed algorithm approaches to the CRB since we adopt the optimal and sparsity
weights, and the unitary transformation technique to improve estimation performance
of the proposed algorithm. Thus, the proposed algorithm enjoys superior angle estima-
tion performance.

Figure 6 demonstrates the angle estimation performance comparison with different L,
where we compare our algorithm with RD-Capon and RD-ESPRIT algorithms. As shown in
Figure 6 that the proposed algorithm acquires better angle estimation performance com-
pared with the RD-ESPRIT and RD-Capon algorithms, especially for the finite snapshot case.
According to Figure 6, the angle estimation performance of our technique is enhanced with
L increasing.

Figure 7 describes the angle estimation performance comparison of our technique for
different transmitting and receiving antennas, respectively. It is manifested that from
Figure 7 that angle estimation error will be reduced with the increase of number of

Table 1. Angle estimation of results of the
RD-ESPRIT.
θ1 ¼ 4� θ1 ¼ 1� θ1 ¼ � 2�

3.8104 1.1322 −2.2271
3.8967 1.1602 −1.8320
3.9747 1.2618 −2.0982
4.0337 0.6552 −2.0711
3.9675 0.7232 −2.2099
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antennas. Multiple transmitting/receiving antennas boost angle estimation performance
owing to the diversity gain.

In this simulation, we demonstrate the biases against angular separation between
two correlated signals with a correlation coefficient of 0:9, and θ2 is held fixed at � 3�,
θ1 ¼ θ2 þ Δθ where Δθ varies from 1� to 20� with 1� interval with M ¼ N ¼ 8, L ¼ 100
and SNR = 10 dB. The points on each curve are obtained by an average over 100
experiments. As we have seen from Figure 8, we can find it that our technique can
resolve closely spaced correlated sources without any decorrelation operation and has
smaller biases, especially when correlated sources are more than about 3� apart, the
estimation bias of our technique vanishes. In other words, our technique has beneficial
angle estimation performance.

Figure 3. (a) Spatial spectra comparison for three coherent targets. DOAs: 30�; 40�; 70� and L ¼ 300.
(b) Spatial spectra comparison of three coherent targets. DOAs: 30�; 40�; 70� and L ¼ 200.
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6. Conclusion

This paper has focused on the DOA estimation problem in monostatic MIMO radar. The
success of the proposed algorithm lies in: i) constructing a new real-valued double
weighted l2;1-norm minimisation model; ii) deriving an improved reduced-dimension
technique; and iii) designing the optimal and sparse weights carefully. All these new
schemes enable the proposed method to work well in the cases of few snapshots, low
signal-to-noise ratio (SNR), closely spaced targets, or strongly correlated sources.
Numerical simulations further prove the effectiveness of the proposed method.

Figure 4. Sensitivity of the proposed algorithm for target priori information. The correct number is 3.

Figure 5. Angle estimation performance comparison with three uncorrelated targets.
M ¼ N ¼ 6; L ¼ 200.
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