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Abstract
Composite materials are widely used in industry due to their light weight and specific performance. Currently, composite
manufacturing mainly relies on manual labour and individual skills, especially in transport and lay-up processes, which are
time consuming and prone to errors. As part of a preliminary investigation into the feasibility of deploying autonomous
robotics for composite manufacturing, this paper presents a case study that investigates a cooperative mobile robot and
manipulator system (Co-MRMS) for material transport and composite lay-up, which mainly comprises a mobile robot, a
fixed-base manipulator and a machine vision sub-system. In the proposed system, marker-based and Fourier transform-
based machine vision approaches are used to achieve high accuracy capability in localisation and fibre orientation detection
respectively. Moreover, a particle-based approach is adopted to model material deformation during manipulation within
robotic simulations. As a case study, a vacuum suction-based end-effector model is developed to deal with sagging
effects and to quickly evaluate different gripper designs, comprising of an array of multiple suction cups. Comprehensive
simulations and physical experiments, conducted with a 6-DOF serial manipulator and a two-wheeled differential drive
mobile robot, demonstrate the efficient interaction and high performance of the Co-MRMS for autonomous material
transportation, material localisation, fibre orientation detection and grasping of deformable material. Additionally, the
experimental results verify that the presented machine vision approach achieves high accuracy in localisation (the root mean
square error is 4.04 mm) and fibre orientation detection (the root mean square error is 1.84◦) and enables dealing with
uncertainties such as the shape and size of fibre plies.
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1 Introduction

Due to the interesting properties and high strength-to-weight
ratio, the applications of composite materials have raised
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considerably in the last decades [15, 27]. They are usually
made of multiple plies of fibres (e.g. carbon, glass and/or
synthetic fibres), layered up in alternating orientations and
held together by resin [10]. Therefore, the laying-up of
fibre plies is the fundamental manufacturing phase in the
production of composite materials. It is usually performed
by human operators, who handle and transport the rawmate-
rials, making composite manufacturing time consuming,
labour intensive and prone to errors. The manual lay-up
process requires skilled workers with knowledge and expe-
rience attained over several years. Common techniques used
in manual lay-up and further highlighted the complexity
and skills involved in the process were discussed in [13],
which indicated that laminators need to be trained before
operations. This is a problem for long-term sustainability
due to a reducing number of skilled workers [34]. Qual-
ity is also going to be dependent on the individual, so it is
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harder to maintain consistent quality with manual lay-up.
Different from manual system, automated composite lay-up
by robotic system could be performed 24 h a day, which is
possible to be more time saving than manual system and is
worth investigating as a replacement for manual lay-up. The
demand for the phasing in of robotic solutions to improve
process efficiency and increase operator safety has grown
significantly in recent years. Automated Tape Laying (ATL)
[17] and Automated Fibre Placement (AFP) [29, 51] are
two popular automated technologies employed in automo-
tive lay-up of composite material. However, limited by the
heavy cost of specialised equipment and low flexibility, they
are not suitable for making small composite parts [24]. Up
to now, investigations on the use of commercially available
robotic platforms for composite lay-up are on the rise in
composite manufacturing.

Previous works have investigated the viability of using
robotic systems in advanced composite manufacturing by
exploiting the flexibility of robots to meet the stringent
demands of manufacturing processes. In [8] and [38], com-
plete systems for handling and laying up prepreg on a mould
were developed. Robotic workcells were demonstrated with
different modules. Bjornsson et al. [3] surveyed pick-and-
place systems in automated composite handling with regard
to handling strategy, gripping technology and reconfigura-
bility etc. This survey indicated that it is hard to find generic
design principle and the best solution for handling raw mate-
rials for composite manufacture depends on the specific case
study. Schuster et al. [42, 43] demonstrated how coopera-
tive robotic manipulators can execute the automated draping
process of large composite plies in physical experiments.
Similar research has been done by Deden et al., who also
addressed the complete handling process from path plan-
ning and end-effector design to ply detection [11]. Szcesny
et al. [47] proposed an innovative approach for automated
composite ply placement by employing three industrial
manipulators, where two of them were equipped with grip-
pers for material grasping and the third manipulates a
mounted compaction roller for layer compression. A com-
parable hybrid robot cell was developed by Malhan et al.
[25, 26], where rapid refinement of online grasping trajecto-
ries was studied. Despite these advances, cooperative/hybrid
robotic systems involving mobile robot platforms and fixed-
base robotic manipulators have received little attention in
the context of advanced composite manufacturing.

Due to the requirement of accurate localisation and fibre
orientation detection, an efficient vision system is of great
importance for autonomous robotic system in advanced
composite manufacturing. Fibre orientation detection is
challenging due to the high surface reflectivity and fine
weaving of the material, and thus, it has still predomi-
nantly been accomplished manually in practice [31, 41].
Traditional machine vision methods for fibre orientation

detection of textiles prefer to utilise diffused lighting [45],
such as diffuse dome [39] and flat diffuse [22] illumina-
tion measuring techniques. Polarisation model approaches
have been particularly popular for measuring fibre orienta-
tion, where contrast between textile features such as fibres
and seams are used to identify the structure of the mate-
rial relative to the camera [40]. The method presented in
[50] used a fibre reflection model to measure fibre orien-
tation from an image and achieved good accuracies and
robustness for different types of surfaces. However, when
considering the specific application of advanced compos-
ite manufacturing, changes in lighting conditions are often
unavoidable because of the moving shadow of the robot
arm cast on the material. The integration of vision systems
with robotics was considered by only few of the previous
works. This means systems are inflexible as they are unable
to cope with dynamic variations within advanced composite
manufacturing processes.

In composite manufacturing, material transport and com-
posite lay-up have not been integrated into a single autonomous
robotic system, which is challenging due to the many tech-
nologies involved, including path planning, material detection
and localisation. Achieving this requires the development of
a strategy that combines different modules in a flexible sys-
tem and provides autonomous material transportation and
sufficiently accurate material handling capabilities. This
paper presents a case study on robotic material transporta-
tion and composite lay-up, which is based on a real-world
scenario commonly found in advanced composite manufac-
turing. Compared to previous works, this research addresses
specific challenges that arise from the introduction of differ-
ent robots that must be coordinated along with the complex
set of tasks covering transport, detection, grasping and
placement of deformable material for composite manufac-
turing applications. The aim of this research is to conduct
a pilot study on the feasibility of deploying a cooperative
robotic system to perform a series of tasks in composite
material manufacturing. Therefore, a cooperative mobile
robot and manipulator system (Co-MRMS), which consists
of an autonomous mobile robot, a fixed-base manipulator
and a machine vision sub-system is presented in this paper.
The mobile robot transports the material autonomously to a
predefined position within the working range of the fixed-
base manipulator. The machine vision sub-system then
detects the location of the material and estimates the fibre
orientation to enable the manipulator to accurately handle
the material. This is achieved by employing an ArUco
marker detection algorithm [37] to compute the position of
the material, and a Fourier transform-based algorithm [1]
combined with a least squares line fitting method [49] to
calculate the material’s fibre orientation. Afterwards, the
manipulator accurately grasps the material and places it
onto a mould. Simulated trials and physical experiments
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are conducted to verify the cooperation behaviours of the
Co-MRMS and quantify the accuracy of the vision system.

Modelling and handling of flexible deformable objects
have been issues in robotics. To simulate the interactive
behaviour between robot actions (such as grasping and
transfer actions) and material deformation, various tech-
niques do exist to model non-rigid bodies (i.e. deformable
objects), including the finite element method, mass-spring
systems and numerical integration methods [2, 18, 44].
In [20], recent advancement of different types of flex-
ible deformable object modelling for robotic manipula-
tion, such as physical-based and mass-spring modelling,
was reviewed. Moreover, the approaches of building up
deformable object models were presented. Researchers in
[33] established a model for deformable cables and investi-
gated robotic cable assembling, addressing collision detec-
tion issues. However, the modelling process cannot be
performed within (or transferred effectively to) the simu-
lation platforms developed to simulate the physical motion
of robots in both static and dynamic conditions. This
study adopted particle-based modelling approach [6] to
model material deformation within simulation when com-
posite material is grasped and transferred by a manipulator.
Another issue of automated handling composite material is
end-effector design. Until now, a number of grippers, such
as grid gripper and suction cup gripper, have been designed.
Suction cup grippers could handle deformable objects with-
out damaging the material and are flexible enough to drape
different shapes of composite material to flat or curved
moulds. Gerngross et al. [16] developed suction cup-based
grippers for handling prepregs in offline programming. The
solution of automated handling dry textiles to double cur-
vature mould were verified both in offline programming
environment and an industrial scale manufacturing demon-
strator. Ellekilde et al. [14] designed a novel draping tool
with up to 120 suction cups, which has been tested on drap-
ing large aircraft part prepreg. Krogh et al. [23] researched
the moving trajectories of suction cup gripper for draping
plies with establishing cable model. However, composite
material deformation and sagging effects have been few
considered in end-effector design. Therefore, a vacuum
suction-based end-effector model is developed in this work
to simulate sagging effects during grasping, which provides
a useful simulation tool for quickly evaluating different
gripper designs comprising of an arrangement of multiple
suction cups.

In summary, the research gaps of material transport and
lay-up in advanced composite manufacturing are listed as
follows:

– Popular automated technologies employed in automo-
tive lay-up of composite material are not suitable for

making small composite parts owing to the limits of
heavy cost of specialised equipment and low flexibility.

– In composite manufacturing, a single autonomous
robotic system that integrating both of material trans-
port and composite lay-up has not been investigated.

– Robotic systems without integration of vision systems
are inflexible as they are unable to cope with dynamic
variations within advanced composite manufacturing
processes and this is considered by only few of the
previous works.

– Composite material deformation and sagging effects
have been few considered for end-effector design in
simulation environment.

The main contributions of this work are listed as follows:

– An intelligent and cooperative robotic system combin-
ing a fixed-base manipulator with a mobile robot is
presented for material transport and lay-up in advanced
composite manufacturing.

– Amachine vision system integrated with robot for accu-
rate material detection, localisation and fibre orientation
identification.

– Deformable object model was developed in simulation
platform and the interactive behaviour between robot
actions and material deformation was simulated.

The remaining parts of the paper are organised as fol-
lows. First, the framework of the Co-MRMS, the modelling
strategy for the interaction with deformable objects and
machine vision approaches are described in Section 2.
Then, the details of the experimental setup are outlined in
Section 3. Section 4 discusses the Co-MRMS evaluation
through physical experiments, while Section 5 is devoted to
a discussion on the findings, limitations and future direc-
tions of the work. Finally, the conclusions are provided in
Section 6.

2 The proposed system and approach

2.1 Framework of the cooperative mobile robot
andmanipulator system (Co-MRMS)

From a hardware perspective, the proposed Co-MRMS
involves four components: a mobile robot, a fixed-base
robotic manipulator, a vision system and a host PC.
The framework of the Co-MRMS is presented in Fig. 1.
The mobile robot is responsible for transporting the
composite material from a given starting location within
the work shop floor (e.g. the storage area) to the robotic
manipulator. Aided by the vision system, the estimated
position and orientation of the raw material are sent to
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Fig. 1 The framework of the
Co-MRMS

the fixed-base robot manipulator via the host PC. The
manipulator is used for grasping each fibre ply and placing
it correctly according to the designed lay-up manufacturing
specifications. Robotic path planning for both robots
was implemented in MATLAB� [19]. Image processing
algorithms were developed by using OpenCV [5], an open-
source computer vision and machine vision software library
that provides a common infrastructure for computer vision
applications and accelerates the development of machine
perception capabilities. Being a BSD-licensed product,
OpenCV makes it easy for businesses to utilise the library
and modify the code. Simulations of the entire process were
developed using the CoppeliaSim robotic simulator [36]
while the integration of the Co-MRMS was implemented
via ROS (Robot Operating System) [35].

2.2 Deformable object modelling and suction cup
end-effector design approach

A method based on the particle-based system [6] is devel-
oped in this research to simulate the draping behaviour of
composite material within the CoppeliaSim robotic simu-
lator. The non-rigid characteristics of composite material
was modelled through an array of individual cuboids and
associated dummies. A simple 3×3 modelling example of
composite material is presented in Fig. 2. Note that these
primitive shapes individually behave as rigid bodies. As
shown in the Figure, the dummies are attached to cuboids
and linked by dynamic constraints linkages. Once the struc-
ture is disturbed by an external force, the relative motion

between adjacent dummies are constrained by the linkages
and material deformation behaviour including bending and
stretching are emulated. Note that this approach is a sim-
plified modelling of the particle-based system and does
not model shear effects. It is therefore important to note
that this model is not intended to replace the more realis-
tic modelling of draping behaviours achieved by the other

Fig. 2 Modelling the non-rigid nature of composite material as an
array of dynamically linked cuboids
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methods described earlier. Instead, it provides an approxi-
mation of the draping effects for visual simulation of the
interactions between robot manipulation and draping within
a single comprehensive robotic simulation environment for
evaluating the high-level behaviours of the Co-MRMS.

Material stiffness parameters have crucial effects on
modelling deformable objects. The method presented above
for modelling deformable objects in CoppeliaSim enables
the stiffness of the overall material to be adjusted by
tweaking two different types of model parameters: principle
moments of inertia and individual primitive cuboids
dimensions. Increasing either the dimensions of the cuboid
or the principle moments of inertia produces a higher
stiffness material, while reducing either parameters leads
to lower stiffness. The parameters chosen in this work are
presented in Table 1.

Having developed an approach to model composite mate-
rial as a non-rigid, deformable body within CoppeliaSim,
it is also necessary to develop a model for the vacuum
suction-based end-effector. CoppeliaSim’s default library
provides a simple vacuum suction cup model that enables
the simulation of vacuum suction grasping for the manipu-
lation of rigid bodies. However, without any modifications,
this model cannot realistically interact with the composite
material model as it is developed to grasp only a single
rigid body within the simulation environment. When used
to grasp the simulated composite material, a numerical-
method-induced sagging effect would occur around the
vacuum suction cup as the end-effector would pick up the
deformable object from a single point corresponding to one
cuboid. In reality, however, a suction cup gripper should
maintain contact with the entire region of cloth directly
underneath the suction cups. Therefore, the default suc-
tion cup model was modified to enable compatibility with
the approach to modelling deformable materials by ensur-
ing more proper contact behaviour between all elements
that lie within the grasp region of a suction cup during
grasping operations. The modified suction cup gripper with
four suction cups, provides a useful simulation component
for quickly evaluating different gripper designs compris-
ing of an arrangement of multiple suction cups. This is an
important resource for future design processes that seek to

Table 1 Model parameters for composite material deformation

Model parameters Value

Principle moment of inertia Ix /mm2 1.25

Principle moment of inertia Iy /mm2 4.25

Principle moment of inertia Iz /mm2 15.00

Length Lx /mm 12.00

Width Ly /mm 6.00

Height Lz /mm 1.00

minimise sagging effects during the transfer of composite
material sheets of a known shape and size.

The capability of the robot end-effector to deal with
ply sagging was tested in simulation environment. Figure 3
shows images of example simulation involving the use
of a 4-cup and single-cup vacuum suction gripper to
transfer a sheet of composite material across the workspace.
Compared with single-cup vacuum suction gripper, 4-
cup vacuum suction gripper reduced the sagging effects
significantly, reaching satisfactory performance in dealing
with ply sagging. It should also be noticed that each
suction cup maintains complete contact with the material
and sagging effects are minimised in the convex region
defined by the four contacts between the gripper and the
composite material.

2.3 Localisation and fibre direction identification
approach

The aim of the machine vision system is to detect and locate
the composite material and identify the orientation of the
fibre in the work space according to the requirements of
composite material manufacturing processes. The extracted
position and orientation of the material are provided to
the host PC, which uses the information to plan target
coordinates for the robot arm to grasp the composite
material transported by the mobile robot. Generally, the
position of the material could be approximated continually
using wheel encoders of the mobile robot, but substantial
error is accumulated over time due to the wheel slippage.
This can be compensated by the vision system which
provides higher accuracy position information relative to the
manipulator end-effector frame and it is necessary to enable
accurate localisation of composite material. This corrected
position estimation can further be used to eliminate
the build-up of error within the wheel odometry-based
localisation system. Thus, machine vision plays a crucial
role in the Co-MRMS developed for composite material
manufacturing. By combining both of the machine vision
and wheel odometry-based data, the proposed localisation
system could be robust and accurate. Yet the application
requires an approach for object detection that is robust to
variations in the size and shape of the material. To overcome
these challenges, first, a marker-based approach is adopted
to enable the Co-MRMS to locate the material accurately.
Then, a method for accurate and robust fibre orientation
detection is developed. Here it is assumed that the relative
position between the marker and the material is fixed.
By locating the marker, the position of the material can
be inferred from the relative position between the marker
and material. This provides the Co-MRMS with a higher
accuracy estimation of the position of the fibre material,
which does not accumulate error over time. Then, the
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Fig. 3 a End-effector mounted with camera and vacuum suction cup in simulation environment. b Image captured from simulation showing the
grasping interactions between the vacuum suction cup gripper and composite material model

orientation of fibre is detected to support the composite
lay-up process. More details will be given in following
sections.

2.3.1 Localisation approach

As shown in Fig. 4, this work uses a single ArUco vision
marker for material localisation material. The marker is
defined by a 7×7 square array. Horizontal and vertical
borders are formed by black squares. All other squares
within the array may carry a black or white colour, where
the arrangement of black and white interior squares encode
a binary pattern. Each ArUco marker has a unique pattern,
which can be used to identify the marker. Thus, the digital
coding theory system used for detecting these markers
proves to be a robust and accurate system producing a low
rate of false marker detection. Additionally, the layout of the
four corners can be used to identify the orientation of the
marker. With this encoded information, the marker can be
used robustly to estimate the 3D position and orientation of
the marker relative to a monocular camera.

The camera can be used to detect and obtain the
position of the ArUco vision marker as described below
(see Fig. 5). When the image is captured by a camera,
it is converted into a grey-scale image. Afterwards, the
most prominent contours in the image are detected through

Fig. 4 An ArUco marker example

the use of a Canny edge detector [9], an efficient edge
detection algorithm that provides a binary image containing
the border information. The Suzuki algorithm [46] is then
used to extract the contours, which are reconstructed by
the Douglas-Peucker algorithm [12]. Here contours that
do not contain four vertexes or lie too close together are
discarded. After these image processing steps, the encoding
of the marker is extracted and analysed. To achieve this, the
perspective view of the marker must be projected onto a 2D
plane. This is achieved through the use of a homography.
Otsu’s method [32] was applied using an optimal image
threshold value to generate a binarised image. This results
in a grid representation of the marker where each cell is
assigned a binary value, determined by the average binary
value of each pixel belonging to the cell. For example, a
value of 1 is assigned if the majority of binarised pixels
in the cell possess a value of 1. Cells belonging to the
border of the image carry a value of 0, while all inner
cells are analysed to obtain the internal encoding, which
corresponds to a 6x6 internal grid area. To improve the
accuracy of the marker detection, the corners of the marker
are refined through subpixel interpolation. Finally, the pose
of the camera is estimated by iteratively minimising the
reprojection error of the corners using the Levenberg-
Marquardt algorithm [28].

As shown in Fig. 6, the material is placed on the x direc-
tion of the marker. Using dcc to denote the distance between
the centre of the material and the marker (assumed to be
known a priority), (xmar , ymar) to denote the marker posi-
tion, and � to denote the marker orientation in the x-y
plane. The relative position of the material can be calcu-
lated by:
{

xmat = xmar + dcc cos(�)

ymat = ymar + dcc sin(�)
(1)

where the final position (xmat , ymat ) corresponds to the x
and y positions of the material centroid.

Using this approach, the position of the material can
be determined robustly regardless of the size and shape of
the material. Once the position of the material is detected,
target commands are sent to the robot to move the end-
effector above this centre position. Additionally, there is no
restriction for the size and shape of the material as long
as the centre of the fabric is fixed. Thus, this localisation
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Fig. 5 Marker detection process

approach is suitable for handling different sizes and shapes
of fabric patches.

2.3.2 Fibre orientation detection approach

The orientation of the composite material during placement
on a mould must be carefully controlled in a composite lay-
up process. This is due to the material being anisotropic,
meaning it provides varying strength along different directions

across the material. In order to make sure that the plies are
layered as designed, strict requirements are imposed for the
orientation of each layer of fibres to obtain the expected
composite parts. The Fourier Transform [4] is a popular
image processing tool that has proven to be effective for
a variety of image processing applications such as image
enhancement and image compression. In this work, the
Fourier Transform is applied for fibre orientation analysis,
where an image is converted into the frequency domain to
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Fig. 6 Composite material detection

obtain its spatial frequency components. The transformed
image can be calculated by:

F(μ,ν) =
∫ +∞

−∞

∫ +∞

−∞
f(x,y)e

−i2π(μx+νy)dxdy (2)

where μ and ν are spatial frequencies. In order to robustly
detect the orientation of fibres from an image using the
Fourier transform, a high gradient image possessing strong
directional change in intensity must be acquired. This is
achieved through the use of a spotlight mounted together
with the camera to produce strong reflections from the fibres
of the material. The detection process is shown in Fig. 7. An
image captured by the camera is first converted to a grey-
scale image. Then, the Fourier transform is applied to obtain
the frequency domain image. A series of morphological
procedures are applied to generate several discrete points
that lie along the line in the direction of the fibres. The
centre of these points can be analysed by contour detection.
Finally, a fitted straight line for this set of points is computed
and the orientation of this line is calculated according to
its slope. Here curve fitting is achieved through the use of
the least squares line fitting method. It should be noted that
this approach is inspired by the high surface reflectivity and
colour difference between yarn and fibres. Therefore, it’s
suitable for materials like carbon fibre while other method
need to be considered in detecting low surface reflectivity
and colour difference material such as fibreglass.

Assume that the points obtained from the morphological
procedures are (x1, y1) , ..., (xn, yn), and the fitted straight
line equation is yi = axi +b. The process for curve fitting is

Fig. 7 Fibre orientation
detection procedure

to identify appropriate values for (a, b) that minimises the
total square error E:

E =
n∑

i=1

(yi − axi − b)2 (3)

The above equation can be re-expressed as:

E = ‖Y − XB‖2 , (4)

where

Y =
⎡
⎢⎣

y1
...

yn

⎤
⎥⎦ , X =

⎡
⎢⎣

x1 1
...

...
xn 1

⎤
⎥⎦ , B =

[
a

b

]
,

The explicit expression of E as a function of Euclidean
vector norm is:

E = ‖Y − XB‖2
= (Y − XB)T (Y − XB)

= YT Y − 2(XB)T Y + (XB)T (XB).
(5)

According to the stationary condition of E with respects to
B requires

dE

dB
= 2XT XB − 2XT Y = 0, (6)

which leads to the stationary point

B = [XT X]−1XT Y . (7)

Thus, the original equation can be represented by a least
squares solution, B = [XT X]−1XT Y given that [XT X]−1

exists which depends on the data collection. The values for
(a, b) are obtained by:

a =
∑

x2i
∑

yi−∑
xi (

∑
xiyi )

n
∑

x2i −(
∑

xi )
2

b = n
∑

xi

∑
yi−∑

xi (
∑

xiyi )

n
∑

x2i −(
∑

xi )
2

(8)

This provides the fitted line, y = ax + b. Using the
computed gradient of the line a, the orientation can be
calculated by: � = arctan(a), where � is the fibre
orientation angle in x-y plane taking x-axis as reference
position. Therefore, as long as the relative orientation of
fibres and yarn is known, the fibre orientation detection
could be adapted to different kinds of prepregs. The prepreg
used in this work is carbon fibre reinforced polymer (CFRP)
composites. The relative orientation of fibres and sewing
yarn is known in advance, which is at 90◦.
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3 Experimental setup

The composite material used here is a small sheet of
fabric prepreg. Both of the simulation-based and physical
experiments are described, where the specific robotic layout
and designed tools are defined.

3.1 Robot setup

In this paper, the Turtlebot3 Burger differential drive mobile
robot was chosen as the mobile robot platform in both
simulation and physical experiments due to the unavailabil-
ity of industry-standard mobile robots. The robot setup in
the simulation environment is presented in Fig. 8. As the
Turtlebot3 Burger is an open-source mobile robot, low-level
access to the robot’s individual functionalities is possible,
providing easy access to wheel odometry-based readings
that can be sent to the host PC through a ROS network. For
the fixed-base robotic manipulator, the 6 degrees of freedom
KUKA KR90 R3100 industrial manipulator was chosen for
implementation in the simulation environment to model a
realistic industrial environment. In physical experiments, a
6 degrees of freedom KUKA KR6 R900 manipulator was
used due to its lower scale and availability. Nevertheless,
both robots share the same control scheme, allowing algo-
rithms to transfer without modification between the two
systems.

3.2 Machine vision system design

The machine vision system comprises a commercial low-
cost webcam, a spotlight and a customised camera mounting
unit. Localisation of the material and fibre orientation detec-
tion are achieved through the use of a spotlight mounted
together with the camera to produce strong reflections from
the fibres of the material. In order to attach the camera to
the end-effector of the fixed-base manipulator and ensure
that the camera is orthogonal to the material plane, a cam-
era mounting unit was designed by CAD (Computer-aided
design) software and then 3D printed. The CAD design

and mounted 3D-printed piece is presented in Fig. 9. Dur-
ing physical experiments, the camera was inserted into the
holder facing downwards, while the spotlight was attached
to the external surface of the mounting unit facing in the
same direction as the camera.

3.3 Host computer and related software

Following the description of the proposed Co-MRMS in
Section 2.1, Matlab, CoppeliaSim and OpenCV have been
used to support the development of crucial robotic capa-
bilities for this work. The path planning routine for the
mobile robot, based upon a bi-directional variant of the
Rapidly-exploring Random Tree algorithm [48], was imple-
mented on Matlab. Likewise, the planning of manipulator
actions for grasping was developed in Matlab, where rea-
soning is applied on sensory information to identify tar-
get positions and complete motions for the end-effector.
The robot was actuated using Point-To-Point movement. A
remote API library, developed by Coppelia Robotics, was
used to send resulting actuation commands from Matlab
to the simulated robots in CoppeliaSim. CoppeliaSim pro-
vides an extensive environment for the development of the
integrated simulation. In addition, the deformable object
was modelled in CoppeliaSim by leveraging its support for
the simulation of dynamic behaviours, which is achieved
through the Bullet 2.78 physics engine. This handles the
complex calculation of composite material deformation dur-
ing handling operations and enables the visualisation of the
material’s deformation behaviours. The integrated simula-
tion environment is presented in Fig. 10, which comprises
of the mobile robot, the fixed robotic manipulator, the com-
posite material, a work surface, a cube-shaped mould and
the mounted camera. For the physical implementation, the
ITRA toolbox [30], developed for the control of KUKA
robots, provided the interface for directly sending actuation
commands from Matlab to the KUKA robot controller unit
for manipulator control, while ROS provided the interface
for the actuation of the Turtlebot3 Burger. The vision system
relied upon images captured by a webcam mounted on the

Fig. 8 a and b are Turtlebot3
Burger and KUKA KR90 R3100
industrial manipulator model in
CoppeliaSim respectively while
c is the integrated simulation
environment
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Fig. 9 a CAD model and
physical dimensions of the
module; b and c are the camera
mount setup during physical
experiments

end-effector of the manipulator to observe the environment.
Then the OpenCV library was used for the development of
machine vision algorithms that processed images obtained
by the camera.

4 Performance evaluation

The manual lay-up process requires skilled workers with
knowledge and experience attained over several years. This
is a problem for long-term sustainability due to a reducing
number of skilled workers. Quality is also going to be
dependent on the individual, so it is harder to maintain
consistent quality with manual lay-up. Different from
manual system, automated composite lay-up by robotic
system could be performed 24 h a day, which is possible
to be more time saving than manual system and is worth
investigating as a replacement for manual lay-up. System
performance is evaluated on the basis of the feasibility of
laying up fibre plies, how accurate the plies are placed on the
mould and how capable the system deals with uncertainty.
To validate the developed system, several experiments
were conducted to test the capabilities of the Co-MRMS.
Initially, simulation-based experiments were carried out

according to the proposed approaches in Section 2 and the
accuracy of the vision system was assessed. Subsequently,
physical experiments were conducted on an integrated
robotic system to validate the combined behaviour of the
proposed Co-MRMS and assess the accuracy of machine
vision algorithms in real-world scenes.

4.1 Simulation-based experiments

The Co-MRMS, which employs a KUKA KR90 R3100
industrial fixed-base manipulator and a Turtlebot3 Burger
differential drive mobile robot, was firstly modelled in
CoppeliaSim to verify the performance in fulfilling the
transportation and lay-up task of the proposed system.
Additionally, an integrated camera and a gripper unit with
four suction cups were modelled on the KUKA KR90
end-effector so that the detection and grasping of the
material could be simulated. Based on the modelled Co-
MRMS, two simulation-based experiments were conducted
to evaluate the attainable accuracy of the composite material
vision system. First, experiment of evaluating localisation
accuracy was assessed. Using the modified bi-directional
RRT algorithm [48] to compute a collision-free path, the
mobile robot drove autonomously to a randomly generated

Fig. 10 a Simulation
environment in CoppeliaSim; b
and c are composite material’s
placement on mobile robot and
mould respectively
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goal within the manipulator workspace. Then, the vision
system was employed to correct the simulated error in the
wheel odometry-based positioning system by applying the
object localisation algorithm described in Section 2.3.1. To
evaluate the repeatability of the localisation results, this
experiment was conducted 10 times. In addition, to simulate
the accumulation of error in wheel odometry observed
in real environments, Gaussian noise was introduced
and superimposed with the simulated wheel odometry
measurement of the mobile robot’s position relative to its
starting position. Gaussian noise has generally been used in
signal processing to deal with uncorrelated random noise
and is also commonly adopted in neural networks for
modelling uncertainties [7]. It is statistically defined by a
probability density function (PDF) that is equivalent to a
normal distribution (also known as Gaussian distribution).
In other words, the odometry error due to wheel slippage
was assumed to be Gaussian-distributed.

Setting the mean and standard deviation of the Gaussian
distribution to 100 mm and 70 mm, respectively, the wheel
odometry position error in x and y are given by:

Error(x) = 1√
2σπ

e
−(x−μ)2

2σ2

Error(y) = 1√
2σπ

e
−(y−μ)2

2σ2

(9)

where μ is the Gaussian mean and σ is the standard
deviation. With the material position data obtained from
machine vision system and wheel odometry, the localisation
accuracy could be evaluated through Mean Absolute Error
(MAE) and Root Mean Squared Error (RMSE). Here the
ground truth was retrieved from the simulation. The results
are presented in Table 2, where MAE and RMSE of wheel
odometry were 158.48 mm and 121.21 mm, respectively,
while the MAE and RMSE of the vision system were
11.53 mm and 9.00 mm, respectively. Compared to the
wheel odometry-based estimation, the proposed machine
vision system reduced the localisation error by 93%
and demonstrated its ability in improving the localisation
accuracy.

In the second experiment, the fibre orientation detection
algorithm was evaluated by comparing the output of the
algorithm against the ground truth. Here the orientation of
the material was incremented by 10 degrees between the
range of [0◦, 180◦] relative to the camera frame. Like before,

Table 2 Localisation and fibre orientation detection error in simula-
tion environment

MAE RMSE

Material localisation Wheel odometry/mm 158.48 121.21

Vision/mm 11.53 9.00

Fibre orientation detection Vision/degree 0.70 0.048

the accuracy is expressed by the MAE and RMSE and is
shown in Table 2. The MAE and RMSE for fibre orientation
detection were found to be 0.70◦ and 0.048◦, respectively.
Since the experiments were conducted in a simulation
environment, the lighting conditions in the scene could be
controlled, which shows that under ideal conditions, the
fibre orientation detection algorithm can provide accurate
estimates.

4.2 Physical experiments

4.2.1 System interaction behaviour evaluation

The cooperative system interaction behaviour was evaluated
by physical experiments, of which a set of execution
routines consisting of five active phases and two idle
phases were obtained. This corresponds to the complete
performance with a duration of approximately 87 s,
involving approximately 18 s idle pauses time. Figure 11
plots the time evolution of the x and y positions of the
mobile robot (odomx and odomy , respectively), and the x,
y and z positions of the manipulator end-effector (kukax ,
kukay , and kukaz, respectively) across these execution
phases recorded from a single trial of the experiment. The
first phase consists of the autonomous drive of the mobile
robot. The duration of this phase varies according to the
start point, goal point and the subsequent path to move
between these two points. After the mobile robot arrives at
the goal point, it remains stationary to await the machine
vision processing phase. This corresponds to a flat curve
from the end of phase 1 for odomx and odomy in Fig. 11.
After a brief pause where all systems remain idle to indicate
that the mobile robot has reached its destination, the host PC
sends the wheel odometry estimation of the mobile robot’s
position as a target command to drive the manipulator
towards the approximate location of the material (phase 2).
Here the build-up error in the estimated position arising
from wheel slippage causes a misalignment between the
centre of the composite material (carried by the mobile
robot) and the end-effector of the manipulator. Once the
manipulator reaches the target position, both robots remain
stationary as the vision system captures an image and runs
the localisation algorithm to compute a higher accuracy
estimate of the mobile robot’s true position.

Phase 3 then consists of refining the position of the
end-effector using the vision-based estimate of the mobile
robot position to reduce the misalignment between the
manipulator and composite material. In the fourth phase,
the manipulator lowers the z position of the end-effector
from 420 mm to 250 mm (relative to the base frame of the
manipulator, which is treated as the world coordinate frame)
to provide the camera with a close-up view of the composite
material. This is necessary to ensure a satisfactory image
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Fig. 11 Turtlebot3 Burger and
KUKA robot positions during
the experiment

can be obtained for accurate fibre orientation detection.
In the final phase, machine vision parameters are adjusted
for the new image depth and the fibre orientation angle of
the material is computed using the algorithm described in
Section 2. This information is used to rotate the end-effector
to correct for the angular offset between the end-effector
and composite material. This facilitates the placement of
the material in a controlled orientation during grasping
operations by ensuring that the fibre direction is always
aligned with the z axis rotation of the end-effector.

This experiment demonstrated the capability of the inte-
grated system to correct any manipulator positional offset
error that arises from wheel slippage of the mobile robot
through higher accuracy estimation provided by machine
vision. Compared to the wheel odometry-based localisa-
tion, the vision system corrected the position in the x and y
direction by 156.87 mm and 23.17 mm in this case.

Due to the high degree of flexibility and wide compat-
ibility of the approach, the fix-based manipulator could be
substituted by other industrial robotic manipulator when
considering the availability of equipment. As is shown in
Fig. 12, experiments including material detection, fibre
orientation identification, handling and placement were
implemented in 6 degrees of freedom UR 10e with han-
dling tool inspired by tapes. The results indicate that the

developed system is capable of performing completed fibre
plies lay-up process.

4.2.2 Machine vision system accuracy evaluation

To measure the accuracy of the machine vision algorithms
in the real world, additional experiments were conducted.

The first experiment was used to quantify the errors in
the measured position of the mobile robot using the vision-
based localisation algorithm and wheel odometry. The setup
for the experiment is shown in Fig. 9, where the camera
and spotlight are mounted on the end-effector of the KUKA
robot positioned above the Turtlebot3 Burger platform.
The mobile robot was driven autonomously to a randomly
generated goal within the workspace of the manipulator and
the wheel odometry-based position reading was obtained.
The fixed-base manipulator was then manually controlled
to align the end-effector directly above the centroid of the
composite material. The feedback position information of
the end-effector was obtained from the KUKA controller
and used as the ground truth in this experiment. Finally,
the vision-based estimate of the material position was
obtained by applying the localisation algorithm with both
robots fixed. This experiment was conducted 20 times for
statistical significance. For this reason, the mobile robot

Fig. 12 Lay-up experiment
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drove autonomously to a randomly generated goal within
the workspace of the manipulator, of which the travelled
distances were different each time. The average travelled
distance of the mobile robot was 340.9 mm. Table 3 reports
the MAE and RMSE for both wheel odometry estimation
and vision-based estimation relative to the ground truth. It
was found that the MAE and RMSE for wheel odometry
was 19.88 mm and 24.72 mm, respectively. This was
much larger than the MAE and RMSE for vision-based
localisation, which was 4.04 mm and 4.75 mm respectively.
Evidently, machine vision reduced the wheel odometry-
based error by 80%, which significantly improves the
accuracy for localisation when used in conjunction with
wheel odometry.

The systematic lay-up accuracy is quantified by measur-
ing the deviation between the placement centre and fibre
plies. This work uses a single ArUco vision marker for
material localisation. As long as the centre of the fabric is
fixed, this localisation approach is suitable for handling dif-
ferent sizes and shapes of fabric patches which is shown
in Fig. 13. Here, the RMSE of (i) and (ii) are obtained
with little difference, which are 5.10 mm and 5.48 mm
respectively.

Additionally, experiment was conducted to quantify the
accuracy of machine vision for fibre orientation detection.
Like the first experiment, a camera and flashlight were
mounted on the end-effector of manipulator. A sample piece
of composite material was placed in a fixed position in the
workspace of the manipulator while the end-effector was
positioned directly above the centre of the material with
their rotation axes aligned at 0◦. The orientation of the end-
effector about the z axis was incrementally increased by
10◦ within the range of [0◦, 180◦]. At each interval the
fibre orientation detection algorithm was used to measure
the orientation angle of the fibre relative to the camera,
which should coincide with the rotation angle of the end-
effector under ideal conditions. Thus, the measured angle
was compared against the end-effector rotation, used as the
ground truth, to compute the MAE and RMSE. Moreover,
fibre orientation detection accuracy under three different
light conditions (no flash light, low flash light, high flash

Fig. 13 Different sizes and shapes of fabric patches

light) were investigated. Fibre orientation readings shown
in Fig. 14 reveal that the identification is more accurate
with stronger flash light. The MAE and RMSE for fibre
orientation detection are shown in Table 3. Furthermore,
manual lay-up was tested by picking and placing the
same materials under the same conditions. Table 3 shows
the accuracy of the developed Co-MRMS and manual
system in lay-up. The placement accuracy differs by 1 mm
approximately.

Furthermore, the error in fibre orientation detection in
the real world was greater than the simulation results as the
composite material was modelled as a non-rigid body, of which
the optical features (high specular reflectivity and high
absorption of light) of the material were not simulated and
the illumination environment in the real world is far more
challenging than the simulated environment. Moreover, the
alignment between the camera and the normal of the mate-
rial was not exact in the physical setup, which introduces
additional projection errors when detecting the orientation
of the fibre as shown in Fig. 15. The investigation shows that
the closer the true fibre orientation is to 0◦, the higher the
accuracy in fibre orientation detection. This could be over-
come by applying a two-step detection strategy as follows.
The first step consists of computing an approximate rotation
angle for the end-effector to roughly align the camera with

Table 3 Material localisation
and fibre orientation detection
error

MAE RMSE

Material localisation Wheel odometry/mm 19.88 24.72

Vision/mm 4.04 4.75

Manual system/mm 3.08 3.67

Fibre orientation detection Vision (high flash light)/degree 5.11 5.73

Vision (low flash light)/degree 5.91 6.70

Vision (no flash light)/degree 6.59 7.12

Manual system/degree 2.09 2.61
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Fig. 14 Fibre orientation
readings under different light
conditions

the fibre orientation which corresponds to the zero degrees
region. Subsequently, a finer tuning on the end-effector rota-
tion is performed by applying a second instance of the fibre
orientation detection algorithm, which produces an estimate
for the fibre orientation angle with minimal error.

The strategy was evaluated in physical experiments. As
expected, the performance yielded greater accuracy in fibre
orientation detection. The error of the vision system was
reduced to 0.23 degree approximately. In comparison, the
detection error was around or below 1 degrees by derived
fibre reflection model in [50] and the frequency domain
machine vision algorithm in [21] showed around 5 degrees
error for braid angle measurement. This indicated that the
proposed machine vision system with two-step strategy
can achieve high accuracy in fibre orientation detection. In
addition, the systematic error is approximately 1.84 degrees
due to the nonalignment between the camera and fibre
orientation and is lower than manual system’s 2.61 degrees.
Nevertheless, the system is capable of meeting the high
accuracy orientation detection requirements in composite
material manufacturing.

5 Discussions

This section discusses the obtained experimental results.
Firstly, it should be noted that the trials incorporating

the manipulation actions for grasping the material in phys-
ical trials with tapes rather than vacuum suction hardware.
Nevertheless, in both the simulation-based and physical
experiments, autonomous material transportation, localisa-
tion, fibre orientation detection and handling capabilities
were achieved. Future work will seek to integrate a vacuum
gripper with the existing physical system to further develop
material handling capabilities.

Secondly, it could be observed that the mobile robot
used in this work was not of an industrial standard. Instead,
the educational mobile robot platform Turtlebot 3 Burger
was adopted for the investigations conducted. This meant
experiments and evaluations were limited to small-scale
setups due to the small size of the Turtlebot3 platform. Thus,
additional development work is necessary to implement the
proposed system framework onto an industrial standard set
of hardware to validate the proposed system.

Fig. 15 Vision detection error
varies with fibre orientation
angle
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This work has so far focused on the detection and
handling of a single sheet of material. Current ongoing work
is investigating the lay-up task with the aim of developing an
algorithm for autonomous lay-up of composite materials—
i.e. working with multiple plies.

Another interesting avenue to examine is the feasibility
of developing a method to correct any creases or poor
contacts between composite material and the mould in
the composite draping process through the use of the
manipulator(s), which can maximise the quality of the
draping process when performed autonomously using a
cooperative robotic system.

6 Conclusions

In this study, a cooperative mobile robot and manipulator
system (Co-MRMS), which comprised of a fixed-base manip-
ulator, an autonomous mobile robot and a machine vision
sub-system, was developed as a promising strategy for
autonomous material transfer and handling tasks to advance
composite manufacturing. To demonstrate the feasibility
and effectiveness of the proposed Co-MRMS, compre-
hensive simulations and physical experiments have been
conducted. The integrated simulation, developed in Cop-
peliaSim, simulated a material transfer operation that involves
the use of a mobile robot to transport composite mate-
rial to a robotic manipulator, which grasps and transfers
the material to a mould. To realistically simulate the inter-
actions between the robots and the non-rigid nature of
composite materials, a method for modelling deformable
material within CoppeliaSim has been devised. Physi-
cal experiments were performed to evaluate the perfor-
mance of individual components of the proposed Co-
MRMS through a small-scale robotic cell consisting of a 6
degrees of freedom manipulator and the Turtlebot3 Burger
mobile robot.

An effective machine vision system has been developed
to support the robotic tasks described above by providing
the capabilities for object detection, localisation and fibre
orientation detection and deals with uncertainties such as
size and shape of fibre plies. When compared to the estima-
tion achieved using wheel odometry, the proposed machine
vision system reduced the localisation error by 93% and
80% in simulation-based and physical experiments rela-
tively. When compared to the manual system, the proposed
machine vision system shows slight difference in localisa-
tion and fibre orientation detection accuracy.

Future work will focus on validating the proposed
system on industrial standard platforms and improving
the system, e.g. integrating a vacuum gripper, quantifying
system efficiency, extending the work to multiple plies and
developing a method for draping correction.

In conclusion, by exploiting the availability of wheel
odometry and integrating this with machine vision algo-
rithms within the proposed Co-MRMS, it is possible to
implement a flexible system that provides autonomous
material transportation and sufficiently accurate material
handling capabilities that extend beyond what is currently
adopted in the industry.

Author contribution Idea conception: Manman Yang; project super-
vision: Erfu Yang and Carmelo Mineo; simulation experiments: Man-
man Yang, Leijian Yu, Cuebong Wong and Carmelo Mineo; physical
experiments: Manman Yang, Leijian Yu and Cuebong Wong; original
draft writing: Manman Yang; review and editing: Leijian Yu, Cuebong
Wong, Carmelo Mineo, Erfu Yang, Ruoyu Huang and Iain Bomphray.

Funding This research was funded by the Route to Impact Program
2019–2020 (grant no.: AFRC CATP 1469 R2I-Academy) and sup-
ported by the Advanced Forming Research Centre (University of
Strathclyde), Lightweight Manufacturing Centre (University of Strath-
clyde) and Control Robotics Intelligence Group (Nanyang Technolog-
ical University, Singapore).

Availability of data andmaterial The datasets generated during and/or
analysed during the current study are available from the corresponding
author on reasonable request.

Code availability The code generated during and/or analysed during
the current study are available from the corresponding author on
reasonable request.

Declarations

Conflict of interest The authors declare no competing interests.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons licence, and indicate
if changes were made. The images or other third party material in this
article are included in the article’s Creative Commons licence, unless
indicated otherwise in a credit line to the material. If material is not
included in the article’s Creative Commons licence and your intended
use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright
holder. To view a copy of this licence, visit http://creativecommons.
org/licenses/by/4.0/.

References

1. Ayres CE, Jha BS, Meredith H, Bowman JR, Bowlin GL,
Henderson SC, Simpson DG (2008) Measuring fiber alignment
in electrospun scaffolds: a user’s guide to the 2d fast fourier
transform approach. Journal of Biomaterials Science Polymer
Edition 19(5):603–621

2. Baudet V, Beuve M, Jaillet F, Shariat B, Zara F (2009) Integrating
tensile parameters in mass-spring system for deformable object
simulation

3. Björnsson A, Jonsson M, Johansen K (2018) Automated
material handling in composite manufacturing using pick-and-
place systems–a review. Robot Comput Integr Manuf 51:222–229

1263Int J Adv Manuf Technol (2022) 119:1249–1265

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


4. Bracewell RN, Bracewell RN (1986) The Fourier Transform and
its Applications, vol 31999. McGraw-Hill, New York

5. Bradski G, Kaehler A (2000) Opencv. Dr. Dobb’s Journal of
Software Tools 3

6. Breen DE, House DH, Wozny MJ (1994) A particle-based model
for simulating the draping behavior of woven cloth. Text Res J
64(11):663–685

7. Brownlee J (2019) Train neural networks with noise to reduce
overfitting. Machine Learning Mastery

8. Buckingham R, Newell G (1996) Automating the manufacture of
composite broadgoods. Composites Part A: Applied Science and
Manufacturing 27(3):191–200

9. Canny J (1986) A computational approach to edge detection.
IEEE Transactions on Pattern Analysis and Machine Intelligence
8(6):679–698

10. Christensen R (2012) Mechanics of Composite Materials. Courier
Corporation Massachusetts, USA

11. Deden D, Frommel C, Glück R, Larsen LC, Malecha M, Schuster
A (2019) Towards a fully automated process chain for the lay-
up of large carbon dry-fibre cut pieces using cooperating robots.
SAMPE Europe 2019

12. Douglas DH, Peucker TK (1973) Algorithms for the reduction
of the number of points required to represent a digitized line
or its caricature. Cartographica: The International Journal for
Geographic Information and Geovisualization 10(2):112–122

13. Elkington M, Bloom D, Ward C, Chatzimichali A, Potter K
(2015) Hand layup: understanding the manual process. Advanced
Manufacturing: Polymer & Composites Science 1(3):138–151

14. Ellekilde LP, Wilm J, Nielsen OW, Krogh C, Kristiansen E,
Gunnarsson GG, Stenvang TS, Jakobsen J, Kristiansen M, Glud
JA et al (2021) Design of automated robotic system for draping
prepreg composite fabrics. Robotica 39(1):72–87

15. Fleischer J, Teti R, Lanza G, Mativenga P, Möhring HC, Caggiano
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