
On Binding in the
Spatial Logics for Closure Spaces⋆

Laura Bussi1,2, Vincenzo Ciancia1, Fabio Gadducci2, Diego Latella1, and
Mieke Massink1

1 CNR-ISTI, Pisa, Italy
{l.bussi, v.ciancia, d.latella, m.massink}@isti.cnr.it
2 Dipartimento di Informatica, Università di Pisa, Pisa, Italy

fabio.gadducci@unipi.it

Abstract. We present two different extensions of the spatial logic for
closure spaces (SLCS), and its spatio-temporal variant (τSLCS), with spa-
tial quantification operators. The first concerns the existential quantifi-
cation on individual points of a space. The second concerns the quantifi-
cation on sets of points. The latter amounts to a form of quantification
over atomic propositions, thus without the full power of second order
logic. The spatial quantification operators are useful for reasoning about
the existence of particular spatial objects in a space, their spatial rela-
tion with respect to other spatial objects, and, in the spatio-temporal
setting, to reason about the dynamic evolution of such spatial objects
in time and space, including reasoning about newly introduced items. In
this preliminary study we illustrate the expressiveness of the operators
by means of several small, but representative, examples.

Keywords: Closure spaces; Spatial logics; Spatio-temporal logics; Binding; Propo-
sitional Quantifiers;

1 Introduction

The notion of space plays a crucial role in the heterogeneous design, implementa-
tion and use of distributed (computer) systems. Debates on the nature of space
date back to the ancient times of—and involve—Greek philosophers like Plato
and Aristotle. In modern mathematics, spaces are typically defined as sets (of
points) with some additional structure. This is the case, for instance, for topo-
logical spaces, where such additional structure captures a notion of “nearness”.

⋆ Research partially supported by the MIUR PRIN 2017FTXR7S IT-MaTTerS. The
authors are listed in alphabetical order, as they equally contributed to this work.
This is a post-print of the paper “On Binding in the Spatial Logics for Closure
Spaces”, by L. Bussi, V. Ciancia, F. Gadducci, D. Latella, and M. Massink. In
Margaria, T., Steffen, B. (eds) Leveraging Applications of Formal Methods, Verifi-
cation and Validation. Verification Principles. ISoLA 2022. Lecture Notes in Com-
puter Science, vol 13701. Springer, Cham pp. 479-497, Springer, 2022, available at:
https://link.springer.com/chapter/10.1007/978-3-031-19849-6 27.

Modal logics have been used since a long time as a means for reasoning
about necessity and possibility, but also about (continuous) space. In fact, a
topological interpretation of the 3 modality was proposed already in the thirties
by Tarski who later proved, together with McKinsey, that the simple modal logic
S4 is complete for interpreting 3 as topological closure on Euclidean spaces,
specifically the reals (see e.g. [6] for a detailed account).

Unfortunately, topological spaces turn out to be rather restrictive since there
are structures that are useful to represent certain kinds of space but that are not
topologies, like, for instance, general graphs or heterogeneous structures includ-
ing both continuous and discrete notions of space. Consequently, in our work,
we consider a larger class of models, namely that of Čech closure spaces, a gen-
eralisation of topological spaces [33, 20]. The relevant logics have been extended
accordingly. In [15, 14] the Spatial Logic for Closure Spaces (SLCS) has been pro-
posed that has the same operators as S4—where the closure operator is denoted
by N , standing for “near”, instead of by 3—plus a surrounded operator such
that a point satisfies Φ1 S Φ2 if it lays in a region that (i) consists of points all
satisfying Φ1 and (ii) is surrounded by points satisfying Φ2.

SLCS has been extended with temporal modalities in [13, 12], giving rise to
a spatio-temporal logic to reason also on heterogeneous properties concerning
dynamic aspects of systems physically distributed in space. Spatial and spatio-
temporal model checking / monitoring algorithms have been proposed in [15, 14,
13, 12, 28] and associated tools, among which VoxLogicA [5] and topochecker [16,
9], have been developed [5, 12, 22, 13, 21]. These, in turn, have been used in var-
ious applications, such as bike-sharing [16], Turing patterns [28] and medical
image analysis [3, 9, 5, 4]—where a digital image is interpreted as a regular grid,
i.e. a graph with an edge relation that models 2D pixel, or 3D voxel, adjacency
(also called an adjacency space). Recently, the approach has also been extended
to polyhedral models and polyhedral model checking [7, 27], leading to the poly-
hedral model checker PolyLogicA [7]. Notions of spatial bisimilarity have been
proposed as well, and their potential for model minimisation plays an important
role in the context of model-checking optimisation [17].

Despite their expressiveness, SLCS and its temporal extension are not suitable
for the expression of properties involving dynamic entities that may appear or
disappear over time. In order to reason about such entities, quantification has
been introduced in well-known temporal logics such as LTL [25] and CTL [29].
Furthermore, in order to reason about graphs whose topology may change over
time, combinations of temporal and graph logics have been proposed [19, 1].

A different perspective on quantification is given by propositional quantifica-
tion, introduced in modal logics by Kripke [24] and thoroughly investigated in,
for instance, [8, 23]. In the latter work, the object of quantification are proposi-
tions, and this allows one to reason about possible changes of properties holding
in a certain region. In the case of spatial model checking for medical image anal-
ysis we mentioned before, this kind of quantification can be useful, for instance,
to verify the occurrence of a new lesion in human organ tissue such as in the

2

brain. Introducing quantification may introduce complexity issues [2] and may
require the development of novel model checking tools and algorithms [30].

In the present paper, we present a preliminary investigation (ultimately
aimed at model checking applications in medical image analysis, such as in [5]),
by means of examples, on suitable extensions of SLCS, and its spatio-temporal
variant, with quantification operators and with a notion of fresh point creation.
We consider both quantification on points in the relevant space and quantification
on atomic propositions. The latter allows for the characterisation of properties
of sets of points, yet without involving the full power of second order logic.

The paper is organised as follows: Section 2 recalls some preliminary def-
initions, including the “kernel logic” SLCS and its temporal extension τSLCS.
Section 3 presents ∃xSLCS, the point quantification extension of SLCS, whereas
the temporal variant thereof is presented in Section 4. The introduction of new
points during the evolution of a system is briefly discussed in Section 5. Sec-
tion 6 shows an extension of SLCS with atomic predicate quantification. Finally,
Section 7 presents a brief discussion on this work and some lines of future work.

2 Preliminaries

Given a set X, we let P(X) denote the powerset of X. For function f : A→ B,
a ∈ A, and b ∈ B, we let f [a 7→ b] be defined as follows: f [a 7→ b](x) ≜ b, if
x = a, and f [a 7→ b](x) ≜ f(x) otherwise.

The main notion which our framework for modelling space is based on is that
of Čech Closure Spaces [33] that provide a convenient common framework for the
study of several different kinds of spatial models, including models of discrete
and continuous space [31]. More recently the notion of closure space has been
used in the context of Artificial Intelligence (see for example [20]). We briefly
recall several definitions and results on closure spaces, most of them from [20].

Definition 1 (Closure Space – CS). A closure space, CS for short, is a pair
(X, C) where X is a non-empty set (of points) and C : P(X) → P(X) is a
function satisfying the following axioms: (i) C(∅) = ∅; (ii) A ⊆ C(A) for all
A ⊆ X; and (iii) C(A1 ∪A2) = C(A1) ∪ C(A2) for all A1, A2 ⊆ X. •

In the remainder of the paper, we consider only closure spaces (X, C) where
X is equipped with equality and x = x′ is decidable, for all x, x′ ∈ X. It is worth
pointing out that topological spaces coincide with the sub-class of CSs where C
satisfies the idempotence axiom C(C(A)) = C(A) (see [33, 20] for details).

Definition 2 (Quasi-discrete CS – QdCS). A quasi-discrete closure space
is a CS (X, C) such that for each A ⊆ X it holds that C(A) =

⋃
x∈A C({x}). •

Given any relation R ⊆ X ×X, define the function CR : P(X) → P(X) as
follows: for all A ⊆ X, CR(A) ≜ A ∪ {x ∈ X | a ∈ A exists s.t. (a, x) ∈ R}. It is
easy to see that, for any R, CR satisfies the axioms of Definition 1 and so (X, CR)
is a CS. The following theorem is a standard result in the theory of CSs [20].

3

Theorem 1. A CS (X, C) is quasi-discrete if and only if there is a relation
R ⊆ X ×X such that C = CR. ⊓⊔

A notable example of quasi-discrete closure spaces that are not necessarily
topological spaces is that of general graphs, i.e. graphs where no restriction is
imposed on the edge relation. There are also closure spaces that are neither
quasi-discrete nor topological. An example of such spaces is a heterogeneous
space like the disjoint union of an Euclidean space—a topological space which
is clearly not quasi-discrete—with a quasi-discrete, but not topological, closure
space3. In the sequel, whenever a CS (X, C) is quasi-discrete, we use C⃗ to denote

CR, and, consequently, (X, C⃗) to denote the closure space, abstracting from the

specification of R, when the latter is not necessary. We let ⃗C denote CR−1 .
We use paths over QdCSs; we follow the tradition of topology and define

them based on the notion of continuous function.

Definition 3 (Continuous function). A continuous function from (X1, C1)
to (X2, C2) is a function f : X1 → X2 such that f∗(C1(A)) ⊆ C2(f∗(A)) for all
sets A ⊆ X1, where we let f∗(B) =

⋃
x∈B f(x). •

Should (X1, C1) be a QdCS, continuity coincides with just requiring that
f∗(C1({x})) ⊆ C2({f(x)}) for all x ∈ X1. So, let (N, Csucc) be the QdCS of natural
numbers, where succ is the successor relation, i.e. succ ≜ {(m,n) |n = m+ 1}.

Definition 4 (Quasi-discrete path). A quasi-discrete path (X, C⃗) is a con-

tinuous function from (N, Csucc) to (X, C⃗). •

In the sequel we will consider only quasi-discrete paths. Below, we introduce
the notion of closure model. To that purpose, we assume that a set AP of atomic
propositions is given. In addition, the points of the model are often enriched
with suitable attributes, that can facilitate the definition of appropriate propo-
sitions, as briefly described below. Obvious examples of attributes are the red,
green and blue components of pixels, seen as RGB vectors—recording the colour
intensities—in digital images, when the latter are seen as adjacency spaces.

Definition 5 (Closure model – CM). Given a set of atomic propositions
AP, a set of attribute names A, and a set of attribute values AV , a closure
model, CM for short, is a tuple (X, C,A,V) consisting of a closure space (X, C),
a valuation A : X × A → AV , assigning to each point and attribute the value
of the attribute at that point, and a valuation V : AP → P(X) assigning to each
atomic predicate the set of points where it holds. •

All the definitions for CSs apply to CMs as well; thus, a quasi-discrete closure
model (QdCM for short) is a CM M = (X, C⃗,A,V) where (X, C⃗) is a QdCS.

3 The disjoint union (X1, C1) + (X2, C2) of closure spaces (X1, C1) and (X2, C2) is
the closure space (X, C) whose set of points X is the disjoint union X1 + X2 ≜
{(x, 1) |x ∈ X1} ∪ {(x, 2) |x ∈ X2} while, for A ⊆ X1 + X2 we define C(A) ≜
{(x, 1) |x ∈ A1} ∪ {(x, 2) |x ∈ A2} with Aj ≜ {x | (x, j) ∈ A} for j = 1, 2.

4

2.1 SLCS: The Spatial Logic for Closure Spaces

We recall the kernel logic SLCS; in the present paper, we interpret it on QdCMs.

Definition 6 (Spatial Logic for Closure Spaces – SLCS). For p ∈ AP the
syntax of the logic is the following

Φ ::= p | ¬Φ | Φ ∧ Φ | ρ⃗ Φ[Φ] | ⃗ρ Φ[Φ]

Satisfaction M, x |= Φ of an SLCS formula Φ at point x ∈ X in QdCM M =

(X, C⃗,A,V) is defined by induction on the structure of formulas

M, x |= p ⇔ x ∈ V(p)
M, x |= ¬Φ ⇔ M, x |= Φ does not hold
M, x |= Φ1 ∧ Φ2 ⇔ M, x |= Φ1 and M, x |= Φ2

M, x |= ρ⃗ Φ1[Φ2] ⇔ path π and index ℓ exist s.t. π(0) = x and M, π(ℓ) |= Φ1

and for all indexes j : 0 < j < ℓ implies M, π(j) |= Φ2

M, x |= ⃗ρ Φ1[Φ2] ⇔ path π and index ℓ exist s.t. π(ℓ) = x and M, π(0) |= Φ1

and for all indexes j : 0 < j < ℓ implies M, π(j) |= Φ2 •

A point x satisfies formula ρ⃗ Φ1[Φ2] if a point that satisfies Φ1 can be reached
from x, via a path whose internal points, if any, all satisfy Φ2. Conversely, x
satisfies formula ⃗ρ Φ1[Φ2] if it can be reached from a point that satisfies Φ1, via
a path whose internal points, if any, all satisfy Φ2.

Note that, in the context of space, and in particular when dealing with notions
of directionality (e.g. one-way roads, public area gates), it is essential to be able
to distinguish between the concept of “reaching” and that of “being reached”. A
formula like ρ⃗ (rescue-area ∧ ¬(⃗ρ danger-area)[true])[safe-corridor], given
a suitable interpretation of the atomic propositions, expresses the fact that, via
a safe corridor, a rescue area can be reached that cannot be reached from a
dangerous area. Such situations have no obvious counterpart in the temporal
domain, where there can be more than one future, like in the case of branching
time logics, but there is typically only one, fixed, past, i.e. the one that occurred4.

It is also worth noting that it is not always possible to define the reversed path
in CSs: indeed, while this is immediate in the case, for instance, of graphs, the
same idea is not applicable in continuous spaces, as, e.g., used in [7, 27]. Thus,
for the sake of generality, the semantics for the “reach” and “being reached”
operators is given explicitly.

The standard derived operators ∨ and =⇒ will be used in the sequel:
Φ1 ∨ Φ2 ≡ ¬(¬Φ1 ∧ ¬Φ2) and Φ1 =⇒ Φ2 ≡ ¬Φ1 ∨ Φ2. We recall here that the

proximity operator N⃗ defined as M, x |= N⃗ Φ ⇔ x ∈ C⃗({x′ ∈ X |M, x′ |= Φ}),
for QdCMs can be derived from the reachability one, namely N⃗ Φ ≡ ⃗ρ Φ[false];

similarly ⃗N Φ ≡ ρ⃗ Φ[false], with M, x |= ⃗N Φ ⇔ x ∈ ⃗C({x′ ∈ X |M, x′ |= Φ}).
In particular, ⃗N coincides with the classical 3 closure modality.

Finally, we recall that in [15, 14] a surrounded operator S was introduced
such that a point x satisfies Φ1 S Φ2 if and only if it belongs to a set of mutually

4 There are a few exceptions to this view of past-tense operators, e.g. [26, 32].

5

connected points all satisfying Φ1 and this set is directly surrounded by points all
satisfying Φ2. In other words, no path rooted in x can leave the Φ1 area without
passing by a point satisfying Φ2. It is worth noting that the surrounded operator
can be expressed using ρ⃗ as follows: Φ1 S Φ2 ≡ Φ1 ∧ ¬ρ⃗(¬(Φ1 ∨ Φ2))[¬Φ2].

2.2 τSLCS: The Temporal Extension of SLCS

We recall here a temporal extension of SLCS, similar to the one presented in [13,
12], that provides a formal, unified framework for reasoning about both spa-
tial and temporal features of systems and their behaviour. The version of SLCS
defined in [13, 12] is based on the proximity and surrounded operators, both
expressible in terms of reachability operators, as we have seen in Section 2.1.

For what concerns the satisfaction relation, now a spatio-temporal model M
(more simply, just a temporal model) is composed of a Kripke structure and a
family of closure models, one for each world of the Kripke structure.

Definition 7 (Temporal closure model - TCM). Given a set of atomic
propositions AP, a temporal closure model, TCM for short, is composed of a
Kripke structure K = (S, T)—with set of states (worlds) S and transition (ac-
cessibility) relation T ⊆ S × S—and of a family {(X, C)s,Vs,As}s∈S of closure
models. We say that TCM M = ((S, T), {(X, C)s,Vs,As}s∈S) is conservative if,
for all s, s′ ∈ S, it holds Xs ⊆ Xs′ whenever (s, s′) ∈ T . •

All definitions for CMs extend also to TCMs; so, for instance, a quasi-discrete
temporal closure model, QdTCM for short, is a temporal closure model where
all closure models (i.e., one for each state s ∈ S) are quasi-discrete. Here, we
consider only conservative QdTCM5. This means that space can only grow when
time advances: i.e., the points of space can never be lost. This condition simpli-
fies the definition of spatio-temporal logics; we leave the investigation of non-
conservative models to future work. We recall the definition of temporal paths.

Definition 8. Given Kripke structure K = (S, T) and s ∈ S, a temporal path
rooted in s is a function τ : N → S such that τ(0) = s and (τ(i), τ(i + 1)) ∈ T
for all i ∈ N. For s ∈ S, Ts denotes the set of all temporal paths τ rooted in s. •

Note that the above definition implies that the relation T is total, which is
readily obtained by adding self-loops (s, s) whenever there is no s′ s.t. (s, s′) ∈ T .

Definition 9 (Spatio-Temporal Logic for Closure Spaces – τSLCS). For
p ∈ AP the syntax of the logic is the following

Φ ::= p | ¬Φ | Φ ∧ Φ | ρ⃗ Φ[Φ] | ⃗ρ Φ[Φ] | Aφ | Eφ

φ ::= XΦ | ΦU Φ

5 In [13, 12], the stronger condition Xs = Xs′ for all s, s′ ∈ S was required.

6

Given QdTCM M = (K, {(X, C⃗)s,Vs,As}s∈S), with K = (S, T), satisfaction
M, s, x |= Φ of a formula Φ in state s ∈ S and at point x ∈ Xs is defined by
induction on the structure of formulas as given below

M, s, x |= p ⇔ x ∈ Vs(p)
M, s, x |= ¬Φ ⇔ M, s, x |= Φ does not hold
M, s, x |= Φ1 ∧ Φ2 ⇔ M, s, x |= Φ1 and M, s, x |= Φ2

M, s, x |= ρ⃗ Φ1[Φ2] ⇔ path π in (X, C⃗)s and index ℓ exist s.t.
π(0) = x and M, s, π(ℓ) |= Φ1

and for all indexes j : 0 < j < ℓ implies M, s, π(j) |= Φ2

M, s, x |= ⃗ρ Φ1[Φ2] ⇔ path π in (X, C⃗)s and index ℓ exist s.t.
π(ℓ) = x and M, s, π(0) |= Φ1

and for all indexes j : 0 < j < ℓ implies M, s, π(j) |= Φ2

M, s, x |= Aφ ⇔ for all τ ∈ Ts it holds M, τ, x |= φ
M, s, x |= Eφ ⇔ τ exists s.t. τ ∈ Ts and M, τ, x |= φ

M, τ, x |= X Φ ⇔ M, τ(1), x |= Φ
M, τ, x |= Φ1 U Φ2 ⇔ n exists s.t. n ∈ N and M, τ(n), x |= Φ2

and for all n′ ∈ N s.t. 0 ≤ n′ < n it holds
M, τ(n′), x |= Φ1 •

In the sequel we will often use the eventually operator F, that is derived from
U in the standard way: FΦ ≡ trueU Φ. In addition, we define the following
operator ag as derived from E and F as follows: agΦ ≡ ¬ E F¬Φ. Similarly, we
define eg as follows: egΦ ≡ ¬ A F¬Φ.

3 ∃xSLCS: Point Existential Extension of SLCS

We extend the logic presented in Section 2.1 with a point existential quantifi-
cation operator ∃γ. . To that purpose, we assume a denumerable set Γ of point
variables, ranged over by γ, γ′, γ1 . . . Furthermore, we use the standard notion
of free occurrence of a (point) variable in a formula, with respect to quantifiers.
We also refine the syntax of the logic, by introducing a syntactic category E of
expressions on the attributes of points, and point equality, as specified below.

For set A of attribute names, set AC of attribute constants—which is as-
sumed to include boolean values, true and false, for which the usual boolean
operators are assumed defined— and set Γ of point variables, with a distin-
guished item this ̸∈ Γ , the abstract syntax for expressions E follows

E ::= c | a | γ = γ | γ = this | γ.a | this.a | f(E, . . . , E) (1)

where c ∈ AC, a ∈ A, γ ∈ Γ and f is the name of an n-ary function; f
can denote any standard function of attribute values, e.g., equality, for which a
standard semantics IF is assumed given. Similarly, we assume an interpretation
function IC for attribute constants that maps every attribute constant c to a
value IC(c) ∈ AV . The special item this will be used for referring to the point

7

on which the formula at hand—which the expression where this occurs is a
component of—is interpreted, as shown in Example 1 below.

Assertions are the subclass of expressions that evaluate to boolean values6.
In order to compute assertions we define below the valuation function E of ex-
pressions E that extends function A in the expected way. Function E is defined
using an auxiliary variable assignment (partial) function µ : (Γ ∪ {this}) → X.
We let µ0 denote the assignment that is undefined for all elements of Γ ∪{this}.
For all x ∈ X, c ∈ AC, a ∈ A, γ, γ1, γ2 ∈ Γ and µ : (Γ ∪ {this}) → X

Eµ(x, c) ≜ IC(c)
Eµ(x, a) ≜ A(x, a)

Eµ(x, γ1 = γ2) ≜ µ(γ1) = µ(γ2)

Eµ(x, γ = this) ≜ µ(γ) = µ(this)

Eµ(x, γ.a) ≜ A(µ(γ), a)

Eµ(x, this.a) ≜ A(µ(this), a)

Eµ(x, f(E1, . . . , En)) ≜ IF (f)(Eµ(x,E1), . . . , Eµ(x,En)).

Definition 10 (∃xSLCS). The syntax of ∃xSLCS is the same as in Definition 6
with the addition of the following productions

Φ ::= E | ∃γ.Φ

The scope of γ in ∃γ.Φ is Φ. For every ∃xSLCS formula Φ, where no point
variable occurs free, satisfaction M, x |= Φ of Φ at point x ∈ X in QdCM

M = (X, C⃗,A,V) is defined as follows

M, x |= Φ⇔ M, µ0[this 7→ x], x ||= Φ

where relation ||= is defined below, by induction on the structure of the formulas

M, µ, x ||= p ⇔ x ∈ V(p)
M, µ, x ||= ¬Φ ⇔ M, µ, x ||= Φ does not hold
M, µ, x ||= Φ1 ∧ Φ2 ⇔ M, µ, x ||= Φ1 and M, µ, x ||= Φ2

M, µ, x ||= ρ⃗ Φ1[Φ2] ⇔ path π and index ℓ exist s.t. π(0) = x and M, µ, π(ℓ) ||= Φ1

and for all indexes j : 0 < j < ℓ implies M, µ, π(j) ||= Φ2

M, µ, x ||= ⃗ρ Φ1[Φ2] ⇔ path π and index ℓ exist s.t. π(ℓ) = x and M, µ, π(0) ||= Φ1

and for all indexes j : 0 < j < ℓ implies M, µ, π(j) ||= Φ2

M, µ, x ||= E ⇔ Eµ(x,E) is true
M, µ, x ||= ∃γ.Φ ⇔ there is x′ ∈ X s.t. M, µ[γ 7→ x′], x ||= Φ. •

The universal quantifier operator is derived from the existential one, in the
usual way: ∀γ.Φ ≡ ¬∃γ.¬Φ.

6 For the sake of notational simplicity, we refrain from giving an explicit syntactic
characterisation of assertions here.

8

Example 1. Suppose we are interested in the safety condition of a building where
(adjacent) rooms, corridors and stairs—collectively called “premises”—are con-
nected by means of doors that can be locked or unlocked. In particular, we
consider a critical safety hazard the fact that there are premises with a concen-
tration of a certain substance in the air higher than a given threshold threshold

that are reachable from other premises, via unlocked doors, i.e. doors that can
accidentally be opened by unauthorized people. We can model the building as
a QdCM M = ((X, C⃗),V,A) where each element x ∈ X has an attribute,
sort, that can take as values those represented by the following constants:
room, corridor, stair, door ∈ AC. The topological requirement that premises
are connected one another via doors can be enforced by a requirement on C⃗ and
A, namely, that for all x, y ∈ X

– if A(x, sort) ̸= IC(door) and y ∈ C⃗({x})\{x}, then A(y, sort) = IC(door);
– if A(y, sort) = IC(door) and x ∈ C⃗({y})\{y}, then A(x, sort) ̸= IC(door).

Moreover, every x ∈ X has an attribute concentration that can take nat-
ural numbers as values and is relevant only for elements representing rooms,
corridors and stairs. Finally, attribute status takes as values those represented
by locked, unlocked ∈ AC and is relevant only for doors. The hazardous situa-
tion can then be formalised by formula ϕ1, defined below, that states that there
is a location (i.e., room, corridor or stairs) from which premises can be reached,
via locations and unlocked doors, in which the substance concentration is higher
than the threshold

ϕ1 ≡ ∃γ.(¬(γ.sort = door) ∧ ρ⃗ ϕ2 [ϕ3])

where

ϕ2 ≡ ¬(sort = door) ∧ concentration > threshold

ϕ3 ≡ (sort = door) ⇒ (status = unlocked).

Note the global nature of the formula: either all points in X satisfy it or none
does. In contrast, if we replace ϕ2 with ϕ′2 defined below, we get a formula that
is satisfied by x ∈ X only if the unsafe location has the same sort as x

ϕ′2 ≡ sort = this.sort ∧ concentration > threshold •

Example 2. We consider the example proposed in [19] that falls in the category
of circle elimination games and is a sort of distributed leader survivor game. The
choice of the example is motivated by the large use of leader election protocols
in the area of distributed systems design and applications7.

7 In line with [19], we are not interested in the algorithm(s) used for deciding the
winner of the game. We are only interested in providing a representation for the
configurations of the game and investigating properties of any such configuration,
as well as the whole game, that can be expressed using the extensions of SLCS we
discuss in the present paper.

9

A finite set of entities is given; the entities are connected through communi-
cation channels in such a way that a ring topology is formed. The game evolves
performing a series of elimination rounds. After each round the loser is elimi-
nated from the game: his neighbours should be connected in such a way that
the ring is closed and no longer includes the loser. The game ends when there is
only one entity left: the leader, that is, the winner of the game.

A session of the game can be represented as a sequence of graphs, each graph
modelling the situation at a given step of the game. For instance, the graph
G0 of Figure 1a represents a configuration in which there are three agents—
the nodes n0, n1, n2—and three channels—the edges e0, e1, e2, with source and
target functions, s and t, defined as follows: sG0 = {e0 7→ n0, e1 7→ n2, e2 7→ n1}
and tG0 = {e0 7→ n1, e1 7→ n0, e2 7→ n2}. A final (correct) configuration is
represented by a graph with a single node, say n1—the (unique) winner—and a
single edge, say e, the source and target of which coincide with this node—i.e.
s(e) = t(e) = n1, namely a self-loop in n1 (Figure 1c).

n0 n1

n2

e0

e1 e2

(a)

n0 n1
e0
e3

(b)

n1
e

(c)

Fig. 1: (a) A configuration with three agents and three communication chan-
nels; (b) an intermediate configuration in which n2 has been eliminated; (c) a
configuration where the leader (n1, in this case) has emerged.

We can represent a configuration in the game using a QdCM (X, C⃗,A,V), the
underlying binary relation of which is the empty relation (so that C⃗(A) = A for
all A ⊆ X) and where each x ∈ X can represent either an agent of the game or
a communication channel. To that purpose, we use again a sort attribute, that
takes as values those represented by node, edge ∈ AC. Finally, attributes source
and target—relevant only for elements of sort edge—yield the (unique identifier
of the) source and target node of an edge. Under the above assumptions, a leader
can be specified as follows

leader(γ) ≡ (γ.sort = edge) ∧ (γ.source = γ.target).

The game terminates correctly only if there is a unique leader. Unicity can
be specified as follows

correctNLeader(γ1, γ2) ≡ (leader(γ1) ∧ leader(γ2)) ⇒ (γ1 = γ2).

Thus a correct final configuration is one in which there is a unique leader, as
specified by the formula (∃γ.leader(γ)) ∧ (∀γ1.∀γ2.correctNLeader(γ1, γ2)).

10

The two requirements on the leader can obviously be expressed in a combined
way by the following formula: ∃γ1.(leader(γ1)∧(∀γ2.leader(γ2) =⇒ γ1 = γ2)).

We close the example noting that the same technique based on unique iden-
tifiers can be used for expressing properties about the size of a system (see page
191 of [19]). For instance a bound of two is expressed as follows

at-most-two ≡ ∀γ1.∀γ2.∀γ3.{γ1 = γ2 ∨ γ2 = γ3 ∨ γ3 = γ1}.

4 ∃xτSLCS: Point Existential Temporal Extension of SLCS

We extend the spatio-temporal logic presented in Section 2.2 with the point ex-
istential quantification operator ∃γ. introduced in Section 3. To that purpose,
we need to extend the valuation function E with an additional parameter for the
state where the evaluation has to be performed

Eµ(x, c, s) ≜ IC(c)
Eµ(x, a, s) ≜ As(x, a)

Eµ(x, γ1 = γ2, s) ≜ µ(γ1) = µ(γ2)

Eµ(x, γ = this, s) ≜ µ(γ) = µ(this)

Eµ(x, γ.a, s) ≜ As(µ(γ), a)

Eµ(x, this.a, s) ≜ As(µ(this), a)

Eµ(x, f(E1, . . . , En), s) ≜ IF (f)(Eµ(x,E1, s), . . . , Eµ(x,En, s)).

Definition 11 (∃xτSLCS). The syntax of ∃xτSLCS is the same as in Defini-
tion 9 with the addition of the following productions

Φ ::= E | ∃γ.Φ

The scope of γ in ∃γ.Φ is Φ. For every ∃xτSLCS formula Φ, where no point
variable occurs free, satisfaction M, s, x |= Φ of Φ in state s ∈ S and at point

x ∈ Xs in QdTCM M = (K, {(X, C⃗)s,Vs,As}s∈S), with K = (S, T), is defined
as follows

M, s, x |= Φ⇔ M, µ0[this 7→ x], s, x ||= Φ

11

where relation ||= is defined below, by induction on the structure of the formulas

M, µ, s, x ||= p ⇔ x ∈ Vs(p)
M, µ, s, x ||= ¬Φ ⇔ M, µ, s, x ||= Φ does not hold
M, µ, s, x ||= Φ1 ∧ Φ2 ⇔ M, µ, s, x ||= Φ1 and M, µ, s, x ||= Φ2

M, µ, s, x ||= ρ⃗ Φ1[Φ2] ⇔ path π in (X, C⃗)s and index ℓ exist s.t.
π(0) = x and M, µ, s, π(ℓ) ||= Φ1

and for all indexes j :
0 < j < ℓ implies M, µ, s, π(j) ||= Φ2

M, µ, s, x ||= ⃗ρ Φ1[Φ2] ⇔ path π in (X, C⃗)s and index ℓ exist s.t.
π(ℓ) = x and M, µ, s, π(0) ||= Φ1

and for all indexes j :
0 < j < ℓ implies M, µ, s, π(j) ||= Φ2

M, µ, s, x ||= E ⇔ Eµ(x,E, s) is true
M, µ, s, x ||= ∃γ.Φ ⇔ there is x′ ∈ Xs s.t. M, µ[γ 7→ x′], s, x ||= Φ.
M, µ, s, x ||= Aφ ⇔ for all τ ∈ Ts it holds M, µ, τ, x ||= φ
M, µ, s, x ||= Eφ ⇔ τ exists s.t. τ ∈ Ts and M, µ, τ, x ||= φ

M, µ, τ, x ||= X Φ ⇔ M, µ, τ(1), x ||= Φ
M, µ, τ, x ||= Φ1 U Φ2 ⇔ n exists s.t. n ∈ N and M, µ, τ(n), x ||= Φ2

and for all n′ ∈ N s.t. 0 ≤ n′ < n it holds
M, µ, τ(n′), x ||= Φ1 •

Example 3. Let us consider again the building of Example 1. We want to for-
malise the fact that whenever the building is in a hazardous situation, as specified
by formula ϕ1, it will recover from it. This is the same to say that there is no
evolution in the behaviour of the building where a situation is reached in which
ϕ1—expressing the hazardous situation—holds and in no future configuration
¬ϕ1 holds. This is formalised by ϕ4 as follows

ϕ4 ≡ ¬EF(ϕ1 ∧ ¬AF¬ϕ1)

or equivalently, using the eg derived operator

ϕ4 : ¬E F egΦ1

A stronger property is expressed by ϕ5 below where we also require that
eventually nowhere the concentration is above the threshold

ϕ5 ≡ ¬EF(ϕ1 ∧ ¬AF(¬ϕ1 ∧ AFϕ6))

where ϕ6 ≡ ∀γ.safe(γ) and predicate safe is defined as follows

safe(γ) ≡ (¬(γ.sort = door)) ⇒ γ.concentration ≤ threshold. •

Example 4. With reference to Example 2, now we consider a QdTCM M =
((S, T), {(X, C⃗)s,Vs,As}s∈S). In [19] the following properties are introduced

12

ψ1: for all departing paths, eventually there will be a leader (Example 4.2 on page
185, property ψ1);

ψ2: there is an entity that, for all departing paths, will eventually become the
leader (Example 4.2 on page 185, property ψ2);

ψ3: for any evolution of the game, eventually there will be a state containing an
entity that will become the leader (Example 4.2 on page 185, property ψ3);

ψ4: any evolution, starting from any state, will lead to a state with (at least) a
leader (property p1 on pages 181 and 193).

In ∃xτSLCS property ψ1 can be expressed as ψ1 ≡ AF∃γ.leader(γ). Property
ψ2 is expressed by formula ψ2 ≡ ∃γ.AF leader(γ), while property ψ3 is expressed
by ψ3 ≡ AFψ2. Property ψ4 is expressed as

ψ4 ≡ ag A F(∃γ.leader(γ)).

In Example 2 we have shown a formula expressing existence and uniqueness
of the leader. The following formula enforces the property at the global level

AF(∃γ1.(leader(γ1) ∧ (∀γ2.leader(γ2) =⇒ γ1 = γ2))).

•

5 ∃τνxSLCS: Dealing with Fresh Point Names

In situations where the space can change (e.g., grow) during the computation,
it can be useful to quantify only over those paths where such a change takes
place. For instance, with reference to the leader election example (Example 2),
one might want to express that existence and unicity of the leader are preserved
whenever new entities enter the game (see Example 5 below). Similarly, it can
be useful to quantify only over those paths where no such changes take place.
In addition, in the first case, one might be interested requiring that all newly
introduced points satisfy a certain property or that such a property is indeed
satisfied by some of such new points. Therefore, we extend the spatio-temporal
logics presented in Section 2.2 with modalities Aν and Eν , quantifying over paths
where new points are introduced; in contrast, modalities Aν̄ and Eν̄ quantify over
paths where no new points are introduced.

In addition, we introduce the point quantified next unary operators X∀γ and
X∃γ ; the former universally quantifies over all new points whereas the latter
quantifies existentially over new points.

Definition 12 (∃τνxSLCS). The syntax of ∃τνxSLCS is the same as in Defini-
tion 11 with the addition of the following productions

Φ ::= Aν φ | Aν̄ φ | Eν φ | Eν̄ φ

φ ::= X∀γ Φ | X∃γ Φ

13

The scope of γ in X∀γΦ and in X∃γΦ is Φ. For every ∃τνxSLCS formula Φ, where
no point variable occurs free, satisfaction M, s, x |= Φ of Φ in state s ∈ S and

at point x ∈ Xs in QdTCM M = (K, {(X, C⃗)s,Vs,As}s∈S), with K = (S, T), is
defined as follows

M, s, x |= Φ⇔ M, µ0[this 7→ x], s, x ||= Φ

where relation ||= is defined by induction on the structure of the formulas as in
Definition 11, with the addition of the following equalities

M, µ, s, x ||= Aν φ ⇔ for all τ ∈ Ts s.t. Xτ(0) ⊂ Xτ(1) it holds M, µ, τ, x ||= φ
M, µ, s, x ||= Aν̄ φ ⇔ for all τ ∈ Ts s.t. Xτ(0) = Xτ(1) it holds M, µ, τ, x ||= φ
M, µ, s, x ||= Eν φ ⇔ there is τ ∈ Ts s.t. Xτ(0) ⊂ Xτ(1) and M, µ, τ, x ||= φ
M, µ, s, x ||= Eν̄ φ ⇔ there is τ ∈ Ts s.t. Xτ(0) = Xτ(1) and M, µ, τ, x ||= φ

M, µ, τ, x ||= X∀γ Φ⇔ for all x′ ∈ Xτ(1) \Xτ(0) it holds M, µ[γ 7→ x′], τ(1), x′ ||= Φ
M, µ, τ, x ||= X∃γ Φ⇔ there is x′ ∈ Xτ(1) \Xτ(0) s.t. M, µ[γ 7→ x′], τ(1), x′ ||= Φ

•

With reference to the above definition, recall that for temporal path τ , Xτ(0)

is the current space and Xτ(1) is the space at the next step of the computation.

Example 5. With reference to Example 2, the fact that the existence and unicity
of the leader is preserved in the next time instant if a new element is added to
the game can be expressed now by the following formula

ξ ≡ AνX ((∃γ.leader(γ)) ∧ (∀γ1.∀γ2.correctNLeader(γ1, γ2))).

The requirement can be turned into an invariant in the expected way: ag ξ. The
following formula is true only if the number of entities keeps growing forever
during the evolution of the game: ¬E F Eν̄ F true. •

Example 6. Again with reference to Example 1, suppose that, due to new safety
& security rules, additional premises have to be added eventually. Obviously,
authorities will require that these new rooms, corridors or stairs have a con-
centration of the dangerous material that is less than the given threshold, as
formalised by the following formula: AF((EνX∃γsafe(γ))∧ (AνX∀γsafe(γ))), with
safe(γ) defined as in Example 3. •

6 ∃pSLCS: Predicate Existential Extension of SLCS

In this section, we extend the logic presented in Section 2.1 with an atomic
proposition existential quantification operator ∃v. . The operator we introduce
quantifies over atomic propositions in a rather syntactic way, since two different
atomic proposition symbols are not considered equal (not even if they denote the
same subset of points of the space). In this variant of SLCS, atomic propositions
play the role of labels or identities that can be associated to sets of points.

14

Although quantification operators have a wide applicability, we are particu-
larly interested in applications in the field of medical imaging, and especially em-
bedding known lesion tracking methods in the logical framework of VoxLogicA.
Lesion tracking is the labelling of different lesions of a patient along the tem-
poral axis (e.g., in longitudinal studies). In that context, it is required that the
same label is assigned to the same lesion in different temporal snapshots. Sev-
eral lesion tracking algorithms exist, aimed at different kinds of lesions. Since
the number of lesions found in a patient is unknown a priori, in order to model
the situation in our logical language, we intend to use atomic propositions to
denote such lesions by internal labels, so that one can express formulas such as
“there is a lesion x that outgrows all the other ones after one month”, and then
use x in other formulas, to better qualify the lesion x. We note in passing that
the identification of the motion of discrete regions alongside the temporal axis
is also the main topic of [20], where, notably, closure spaces are used as models.

Further examples include the analysis of video streams [11], in which different
entities may be labelled by non-logical primitives, ranging from simple connected
components labelling operations to machine-learning based methods. Similarly
to the lesion tracking example, it is not known at formula design time how many
entities exist in the analysed stream, and the identity of each entity is meant to
be denoted by (internal) atomic propositions.

To that purpose, we assume a denumerable set Var of proposition variables,
ranged over by v, v′, v1 . . . For formula Φ, p ∈ AP and variable v we let Φ[p/v]
denote, as usual, the formula obtained by substituting all free occurrences of v in
Φ with p, where the notion of free occurrence is the standard one, with respect
to quantifiers. The substitution is performed syntactically: a variable occurrence
is thus replaced by a proposition name. This kind of syntactic quantification is
inspired by the work of Demri et al. on LTL with the freeze quantifier [18].

We refine the syntax of the logic by introducing a syntactic category of propo-
sition expressions P and an equality operator on proposition letters.

Definition 13 (∃pSLCS). For p ∈ AP and v ∈ Var the syntax of ∃pSLCS is the
same as in Definition 6 with the addition of the following productions

Φ ::= v | ∃v.Φ | P = P

P ::= p | v.

The scope of v in ∃v.Φ is Φ. For every ∃pSLCS formula Φ, where no proposition
variable occurs free, satisfaction M, x |= Φ of Φ at point x ∈ X in QdCM

M = (X, C⃗,A,V) is defined by induction on the structure of formulas as in
Definition 6, with the addition of the following equalities

M, x |= ∃v.Φ ⇔ there is atomic proposition p ∈ AP s.t. M, x |= Φ[p/v]
M, x |= P1 = P2 ⇔ P1 and P2 are the same atomic proposition. •

15

Example 7. Consider model M = (X, C⃗,A,V), where X = {x1, x2, x3, x4, x5},
V(p) = {x1, x2, x3} and V(q) = {x3, x4, x5}, for p ̸= q. We can use the following
formula for overlap detection

η1 ≡ ∃v1.∃v2.v1 ∧ v2 ∧ ¬(v1 = v2).

Clearly, the formula η1 holds only in point x3, as V(q) ∩ V(p) = {x3}, assigning
p and q to v1 and v2, respectively. Thus we have that M, x3 |= η1 whereas
M, xj ̸|= η1 for j ∈ {1, 2, 4, 5}.

Example 8. In this example we show how ∃pSLCS formulas can be used to distin-
guish regions in a digital image based on their identity (which is not possible in
“classic” SLCS). Let us consider the image of Figure 2a and let us assume that all
the points (pixels) belonging to a connected region of the same colour have been
labelled with the same label—this can easily be achieved by running a standard
algorithm for computing the connected components on the image. In terms of log-
ics, we can assume that such labels are elements of AP; without loss of generality,
let us call them 1, 2, 3, 4, 5, 6, 7, identifying each of the yellow, red and blue areas
in the image. In addition, we assume that all yellow pixels satisfy atomic propo-
sition yellow, and similarly for red and blue pixels and atomic propositions red
and blue, respectively. So, we assume {1, 2, 3, 4, 5, 6, 7, yellow, red, blue} ⊆ AP;
we also assume that atomic propositions 1, 2, 3, 4, 5, 6 and 7 are unknown to
users—for instance they are the result of the algorithm for computing connected
components mentioned above—so that they cannot use them explicitly in the
formulas. Under these assumptions, formula η2 below can be used to distinguish
the top-left yellow region from the bottom-left one

η2 ≡ yellow ∧ ρ⃗ η3[yellow]

where

η3 ≡ yellow∧∀v1.∀v2.((ρ⃗ (v1 ∧ ¬blue)[blue]∧ ρ⃗ (v2 ∧ ¬blue)[blue]) =⇒ v1 = v2)

In fact, any point of the top-left yellow region satisfies η2, having v1 and v2
assigned to the label 3, which identifies the top red area, whereas no point of the
bottom-left yellow one satisfies it. Note also that there is no need to explicitly
mention red in the formula, as it is the only possible area satisfying ¬blue which
is reachable via a blue path. Finally, we can find the unique label identifying the
yellow top circle by mean of the formula

∃v.v ∧ η2

Example 9. With reference to Figure 2b, let us assume a similar labelling schema
as for Example 8, with {1, 2, 3, 4, 5, 6, red, blue} ⊆ AP. It is easy to see that
formula η4 below distinguishes the points of any of the two red regions in the
top from those of the red one in the bottom of the image

η4 ≡ red ∧ ρ⃗ η5[red]

16

(a) (b)

Fig. 2: Two example images: interesting areas can be identified by means of
atomic propositions and the existential quantifier over propositions. Note that
areas are not treated as nodes and edges, rather as regions of adjacent pixels
having colors red, yellow and blue.

where

η5 ≡ ∀v1.∀v2.v1 ∧ ρ⃗ v2[blue] ∧ ¬(v1 = blue ∨ v2 = blue ∨ v1 = v2)

Any point of any of the two red regions in the top satisfies η4, whereas no
point of the red region in the bottom satisfies it.

7 Conclusions and Future Work

In this work we presented a preliminary investigation on binding in the set-
ting of spatial and spatio-temporal logic. Our aim was to provide an intuition
of how we can deal with identity of (groups of) points in a space by means of
quantifiers. We provided illustrative examples of how these can be used to ex-
press interesting properties in different settings, i.e., when dealing with images
and graphs, and introduced a point quantified spatio-temporal logic for closure
spaces. The extension of τSLCS with predicate binding is as expected, and is
not introduced here for reasons of space. Furthermore, while this preliminary
investigation focuses on conservative spatio-temporal models, in future work we
plan to consider also non-conservative ones, thus widening the set of possible
application domains. We note in passing that it is very likely that some of the
presented logical constructs can be expressed in more general formalisms such
as first or second order logic, or the modal µ-calculus. Although this may be the
subject of future investigation, we remark that our main aim is to investigate
model checking algorithms for the newly introduced extensions. Therefore, the
study of fragments that admit an efficient model checking algorithm is more
immediate to our research line. In particular, a major objective is to extend the
tool VoxLogicA [5] with a suitable implementation of the binding operator, in
order to apply spatial model checking to a larger set of case studies. In particu-
lar, we plan to exploit the computational power of GPUs in order to achieve high
efficiency via parallelisation, in a similar way as done for standard operators in
its variant VoxLogicA-GPU [10].

17

References

1. Baldan, P., Corradini, A., König, B., Lluch Lafuente, A.: A temporal graph logic
for verification of graph transformation systems. In: Fiadeiro, J.L., Schobbens, P.Y.
(eds.) WADT 2006. LNCS, vol. 4409, pp. 1–20. Springer (2007)

2. Bednarczyk, B., Demri, S.: Why propositional quantification makes modal logics
on trees robustly hard? In: LICS 2019. pp. 1–13. IEEE (2019)

3. Belmonte, G., Broccia, G., Ciancia, V., Latella, D., Massink, M.: Feasibility of
spatial model checking for nevus segmentation. In: Bliudze, S., Gnesi, S., Plat, N.,
Semini, L. (eds.) FormaliSE@ICSE 2021. pp. 1–12. IEEE (2021)

4. Belmonte, G., Ciancia, V., Latella, D., Massink, M.: Innovating medical image
analysis via spatial logics. In: ter Beek, M.H., Fantechi, A., Semini, L. (eds.) From
Software Engineering to Formal Methods and Tools, and Back. LNCS, vol. 11865,
pp. 85–109. Springer (2019)

5. Belmonte, G., Ciancia, V., Latella, D., Massink, M.: Voxlogica: A spatial model
checker for declarative image analysis. In: Vojnar, T., Zhang, L. (eds.) TACAS
2019. LNCS, vol. 11427, pp. 281–298. Springer (2019)

6. Benthem, J.v., Bezhanishvili, G.: Modal logics of space. In: Aiello, M., Pratt-
Hartmann, I., Benthem, J.v. (eds.) Handbook of Spatial Logics, pp. 217–298.
Springer (2007)

7. Bezhanishvili, N., Ciancia, V., Gabelaia, D., Grilletti, G., Latella, D., Massink, M.:
Geometric model checking of continuous space. CoRR abs/2105.06194 (2021),
https://arxiv.org/abs/2105.06194

8. Bull, R.A.: On modal logic with propositional quantifiers. The Journal of Symbolic
Logic 34(2), 257–263 (1969)

9. Buonamici, F.B., Belmonte, G., Ciancia, V., Latella, D., Massink, M.: Spatial logics
and model checking for medical imaging. International Journal on Software Tools
and Technology Transfer 22(2), 195–217 (2020)

10. Bussi, L., Ciancia, V., Gadducci, F.: Towards a spatial model checker on GPU. In:
Peters, K., Willemse, T.A.C. (eds.) FORTE 2021. LNCS, vol. 12719, pp. 188–196.
Springer (2021)

11. Bussi, L., Ciancia, V., Gadducci, F., Latella, D., Massink, M.: Towards model
checking video streams using VoxLogicA on GPU’s. In: DataMod 2021. LNCS,
Springer (2022), to appear

12. Ciancia, V., Gilmore, S., Grilletti, G., Latella, D., Loreti, M., Massink, M.: Spatio-
temporal model checking of vehicular movement in public transport systems. In-
ternational Journal on Software Tools and Technology Transfer 20(3), 289–311
(2018)

13. Ciancia, V., Grilletti, G., Latella, D., Loreti, M., Massink, M.: An experimental
spatio-temporal model checker. In: Bianculli, D., Calinescu, R., Rumpe, B. (eds.)
SEFM Workshops 2015. LNCS, vol. 9509, pp. 297–311. Springer (2015)

14. Ciancia, V., Latella, D., Loreti, M., Massink, M.: Specifying and verifying prop-
erties of space. In: Dı́az, J., Lanese, I., Sangiorgi, D. (eds.) TCS 2014. LNCS,
vol. 8705, pp. 222–235. Springer (2014)

15. Ciancia, V., Latella, D., Loreti, M., Massink, M.: Model checking spatial logics for
closure spaces. Journal of Logical Methods in Computer Science 12(4) (2016)

16. Ciancia, V., Latella, D., Massink, M., Paskauskas, R., Vandin, A.: A tool-chain for
statistical spatio-temporal model checking of bike sharing systems. In: Margaria,
T., Steffen, B. (eds.) ISoLA 2016, Part I. LNCS, vol. 9952, pp. 657–673. Springer
(2016)

18

17. Ciancia, V., Latella, D., Massink, M., de Vink, E.P.: On bisimilarities
for closure spaces - preliminary version. CoRR abs/2105.06690 (2021),
https://arxiv.org/abs/2105.06690

18. Demri, S., Lazić, R.: LTL with the freeze quantifier and register automata. ACM
Transactions in Computional Logic 10(3) (2009)

19. Gadducci, F., Lluch-Lafuente, A., Vandin, A.: Counterpart semantics for a second-
order µ-calculus. Fundamenta Informaticae 118(1-2), 177–205 (2012)

20. Galton, A.: A generalized topological view of motion in discrete space. Theoretical
Computer Science 305(1-3), 111–134 (2003)

21. Grosu, R., Smolka, S.A., Corradini, F., Wasilewska, A., Entcheva, E., Bartocci,
E.: Learning and detecting emergent behavior in networks of cardiac myocytes.
Communications of the ACM 52(3), 97–105 (2009)

22. Haghighi, I., Jones, A., Kong, Z., Bartocci, E., Grosu, R., Belta, C.: Spatel: a novel
spatial-temporal logic and its applications to networked systems. In: Girard, A.,
Sankaranarayanan, S. (eds.) HSCC 2015. pp. 189–198. ACM (2015)

23. Holliday, W.H.: A note on algebraic semantics for S5 with propositional quantifiers.
Notre Dame Journal of Formal Logic 60(2), 321–332 (2017)

24. Kripke, S.A.: A completeness theorem in modal logic. Journal of Symbolic Logic
24(1), 1–14 (1959)

25. Kröger, F., Merz, S.: First-order linear temporal logic. In: Temporal Logic and
State Systems, pp. 153–179. Springer (2008)

26. Kurtonina, N., de Rijke, M.: Bisimulations for temporal logic. Journal of Logic,
Language and Information 6(4), 403–425 (1997)

27. Loreti, M., Quadrini, M.: A spatial logic for a simplicial complex model. CoRR
abs/2105.08708 (2021), https://arxiv.org/abs/2105.08708

28. Nenzi, L., Bortolussi, L., Ciancia, V., Loreti, M., Massink, M.: Qualitative and
quantitative monitoring of spatio-temporal properties with SSTL. Journal of Log-
ical Methods in Computer Science 14(4) (2018)

29. Patthak, A., Bhattacharya, I., Dasgupta, A., Dasgupta, P., Chakrabarti, P.: Quan-
tified computation tree logic. Information Processing Letters 82(3), 123–129 (2002)

30. Rensink, A.: Model checking quantified computation tree logic. In: Baier, C., Her-
manns, H. (eds.) CONCUR 2006. pp. 110–125. Springer (2006)

31. Smyth, M.B., Webster, J.: Discrete spatial models. In: Aiello, M., Pratt-Hartmann,
I., van Benthem, J. (eds.) Handbook of Spatial Logics, pp. 713–798. Springer (2007)

32. Stirling, C.: Modal and temporal logics. In: Abramsky, S., Gabbay, D., Maibaum,
T. (eds.) Handbook of Logic in Computer Science, pp. 477–563. Oxford University
Press (1993)

33. Čech, E.: Topological Spaces. In: Pták, V. (ed.) Topological Spaces, chap. III, pp.
233–394. Publishing House of the Czechoslovak Academy of Sciences/Interscience
Publishers, John Wiley & Sons, Prague/London-New York-Sydney (1966), Revised
edition by Zdeněk Froĺıc and Miroslav Katětov. Scientific editor, Vlastimil Pták.
Editor of the English translation, Charles O. Junge. MR0211373

19

