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Abstract

Modelling human mobility is crucial in several scientific areas, from urban planning to epidemic modeling, traffic forecasting,
and what-if analysis. On the one hand, existing models focus on the spatial and temporal dimensions of mobility only, while the
social dimension is often neglected. On other hand, models that embed a social mechanism have trivial or unrealistic spatial and
temporal mechanisms. We propose STS-EPR, a mechanistic model that captures the spatial, temporal, and social dimensions of
human mobility together. Our results show that STS-EPR generates realistic trajectories, making it better than models that lack
either in the social, the spatial, or the temporal mechanisms. STS-EPR is a step towards the design of mechanistic models that can
capture all the aspects of human mobility in a comprehensive way.
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1. Introduction

Mobility data are crucial in different contexts, such as computational epidemiology, traffic forecasting, urban plan-
ning, what-if analysis, ride-sharing simulations, and the design of protocols for ad hoc and opportunistic networks
[3, 8, 10, 14, 19, 7, 21]. Unfortunately, privacy implications restrict sharing mobility datasets because they contain
sensitive information about the individuals whose movements are described [12, 11, 17, 18]. A way to overcome this
issue is to design generative mobility models [10, 3], i.e., algorithms that generate synthetic trajectories that reproduce
human mobility patterns.

Most individual models focus on capturing the spatial patterns, such as the power-law distribution in jump lengths
and characteristic distances [4, 8] and the tendency to return to locations visited before [8]. For example, the Ex-
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ploration and Preferential Return model (EPR) [20] is based on two competing mechanisms: exploration, a random
walk process with truncated power-law jump length distribution; and preferential return, which reproduces humans’
propensity to return to previously visited locations. Among the mechanistic models that improve EPR by adding in-
creasingly sophisticated mechanisms [13, 2, 1], TimeGeo [9] and DITRAS [14] embed a temporal mechanism that
captures the circadian propensity to travel. The social dimension of human mobility is often neglected in EPR-like
models, although about 10-30% of human movements has social purposes [5]. As an exception, GeoSim [22] use an
individual preference and social influence mechanism, but its spatial and temporal realism is limited. Another strand of
works focus on design multidimensional agent environment models that consider the social dimension of individuals
[6, 7].

In this paper, we propose STS-EPR (Spatial, Temporal, and Social EPR), a model that combines: (i) a mechanism
that takes into account the spatial distance between locations and their collective relevance [19, 16]; (ii) a temporal
mechanism to capture the individuals’ tendency to follow a circadian rhythm [14]; (iii) a mechanism that models the
social dimension of human mobility [22]; (iv) an action-correction mechanism that deals with borderline cases during
the simulation. We conduct experiments using check-ins of thousands of users in three cities worldwide and show that
STS-EPR’s trajectories are realistic with respect to several spatial, temporal, and social aspects of mobility.

Open source. The link to the open data and the code to reproduce our models and experiments is available at:
https://github.com/kdd-lab/2019_Cornacchia. An implementation of STS-EPR, GeoSim and DITRAS is
also available in library scikit-mobility (https://github.com/scikit-mobility/scikit-mobility) [15].

2. The STS-EPR model

We define a mobility trajectory as a sequence T = 〈(r1, t1), . . . , (rn, tn)〉 where ti is a timestamp (∀i ∈ [1, n); ti < ti+1)
and ri = (xi, yi) where xi and yi are coordinates on a bi-dimensional space [10]. We assume that agents move on a
spatial tessellation L, representing a bi-dimensional space’s tiling, resulting in a non-overlapped set of locations. Every
location has a weight corresponding to its collective relevance and as a representative point the tile’s centroid expressed
as a pair of coordinates: L = 〈(r1,w1), . . . , (rn,wn)〉 where wj is the weight of the tile j and r j its representative point.
We represent an agent’s a visitation pattern as a location vector lva of |L| locations. The vector’s j-th element, lva[ j],
contains the number of times a visited r j. We assume that an agent’s network of contacts G influences their movements.
G = (V, E) is a graph where V is the set of agents and E the social ties between them.

STS-EPR takes as input the number N of synthetic agents, the spatial tessellation L, the undirected graph G, a
mobility diary generator MDG, and the time interval of the simulation. The model outputs N synthetic trajectories.
STS-EPR consists of four phases: initialization, action selection, location selection, and action-correction (Figure 1).
After the initialization phase, the agents execute the action selection, the location selection, and the action-correction
phases until a stopping criterion is satisfied (e.g., the number of hours to simulate is reached).

Initialization. Each edge’s weight in G indicates the mobility similarity of the linked agents (the cosine sim-
ilarity of their location vectors). The weights are initialized to 0 and updated during the simulation. The model
assigns to each agent a mobility diary produced by MDG. In STS-EPR, the MDG considered is a Markov Model
that captures the individuals’ probability to follow or break their routine at specific times of the day, exploit-
ing the conditional probability of real trajectory data [14]. A mobility diary MD for an agent a is defined as
MDa = 〈(ab0, t1), (ab1, t2), . . . (ab j, t j+1), (ab0, t j+2), (ab1, t j+3) . . . )〉, where ab is an abstract location, ab0 denotes a’s
starting location, ti is a timestamp. The probability p(ri) for an agent of being assigned to a starting physical location
ri ∈ L is ∝ wi, where wi is the location’s relevance. Each agent moves according to its own mobility diary’s entries
at the time specified. If the current abstract location is ab0, the agent visits the starting location; otherwise, abi is
converted into a physical one through the following steps.

Action selection. When moving, an agent can select between two competing mechanisms: exploration and prefer-
ential return. Exploration models the decreasing tendency to explore new locations over time [19]. Preferential return
reproduces individuals’ propensity to return to locations they explored before [19]. An agent explores a new location
with probability Pexp = ρS −γ, or returns to a previously visited one with a complementary probability Pret = 1−ρS −γ,
where S is the agent’s number of unique visited locations and ρ = 0.6, γ = 0.21 are constants [19]. At that point,
the agent determines whether or not the location’s choice will be affected by the other agents, selecting between the
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Fig. 1. Schematic description of STS-EPR. An individual moves according to the entry in its mobility diary. If the abstract location in the diary is
ab0, then the individual returns to its starting location; otherwise it decides whether to explore a new location or return to a previously visited one.
At that point, the agent determines whether or not its social contacts affect its choice for the location to visit next. If the selected action cannot be
performed, it is corrected with an executable one (dashed arrows indicate action corrections).

individual and the social influence mechanisms. With a probability α = 0.2, the agent’s social contacts influence its
movement [22]. With a complementary probability of 1 − α, the agent’s choice is not influenced by the other agents.

Location selection. At this point, the agent decides which location will be the destination of its next displacement.
The sets of locations an agent a can visit or return to are expa = {i | lva[i] = 0} and reta = {i | lva[i] > 0 ∧ i � {sa, ca}},
respectively, where sa and ca are the indices of the starting and current location of agent a. The set of the location
visited, without the constraints of the current and starting location, is visa = {i | lva[i] > 0}. The visitation frequency
of a to a location ri is: fa(ri) = lva[i]∑|L|

j=1 lva[ j]
.

• Individual Exploration: a chooses a new location to explore from expa. Individuals are more likely to move
at small rather than long distances but also take into account the location’s collective relevance [14]. We use
the gravity law to couple distance and relevance [13]. If a is currently at location r j, during the Individual
Exploration action selects an unvisited location ri, with i ∈ expa, with probability p(ri) ∝ wiw j

d2
i j

, where di j is the

distance between locations ri and r j with relevances wi, wj.
• Social Exploration: a selects an agent c among its social contacts in G. The probability p(c) for c to be selected

is proportional to the mobility-similarity between them: p(c) ∝ mobsim(a, c). After the contact c is chosen, the
candidate location to explore is an unvisited location for a that was visited by c, i.e., the location is selected
from set A = expa ∩ visc; the probability p(ri) for a location ri, with i ∈ A, to be selected is proportional to the
visitation pattern of c, namely p(ri) ∝ fc(ri).
• Individual Return: a picks the return location from the set reta with a probability proportional to its visitation

pattern. The probability for a location ri with i ∈ reta to be chosen is: p(ri) ∝ fa(ri).
• Social Return: c is selected as in the Social Exploration action, and the location a returns to is picked from the

set A = reta ∩ visc. The probability p(ri) for a location ri to be selected is proportional to the visitation pattern
of the agent c, namely p(ri) ∝ fc(ri).
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Action correction. The set of possible locations an agent can reach is limited. For example, it may happen that
the agent visited all locations at least once and there are no locations to explore. To comply with these constraints, we
include an action-correction phase, executed if the location selection phase does not allow movements in any location.

• No location in social choices: If an agent a decides to move with the influence of a social contact c but reta ∩
visc = ∅ or expa ∩ visc = ∅ (no locations visited by both c and a or no locations visited by c and unvisited by
a), we execute an individual action preserving a’s choice to explore or return.
• No new location to explore: When an agent a decides to explore but it visited all the locations at least once

(expa = ∅), we force the agent to make an Individual Return.
• No return location: If an agent a, currently at location ri, decides to perform an Individual Return, and ri is the

only location visited so far (besides the starting location), it cannot return to any location (reta = ∅). We force
a to make an Individual Exploration.

3. Experiments

3.1. Datasets

Mobility. We use a public LBSN (Location-Based Social Network) dataset DFS, collected by Yang et al. [23], which
includes a set of global-scale checkins gathered from the social network platform Foursquare over 22 months (from
April 2012 to January 2014). A checkin describes a user’s real-time position with its social contacts. From DFS, we
extract three datasets that describe the mobility of individuals in New York City, London, and Tokyo, from the 10th
of April 2012 to the 10th of July 2012. Table 1 reports the statistics of the three datasets.

Social graphs. DFS is associated with a snapshot of a social network GFS, antecedent at the collection period, that
describes the social relationships between individuals (i.e., mutual follow on Twitter) in DFS. We associate each of the
three datasets with a social graph, extracted from GFS, which describes the social links among the Foursquare users.

3.2. Experimental settings

We simulate the mobility of agents moving for three months in New York City, London, and Tokyo, using STS-
EPR and two state-of-the-art models: GeoSim [22] and DITRAS [14]. GeoSim embeds a social mechanism but has
trivial spatial and temporal mechanisms; DITRAS has sophisticated spatial and temporal mechanisms but does not
embed a social mechanism. For each combination of city and model, we run a trajectory generation for five times and
take, for each standard mobility measure (see Section 3.3), the average and standard deviation of the Kullback-Leibler
divergence between the distribution of that measure on the set of generated trajectories and the set of real trajectories
in that city. We discretize the physical space using a squared tessellation of 300 meters.1

3.3. Mobility measures

We evaluate the models’ realism with respect to the distribution of the following standard mobility measures
[10, 3]:

• Jump Length ∆r, the distance between two consecutive locations visited by an individual [8];
• Radius of Gyration rg, the typical distance traveled by an individual during the period of observation [8, 16];
• Visits per Location Vl, the relevance of a location described as its attractiveness at a collective level;
• Location Frequency f (ri), the probability of visiting a location ri [8];
• Waiting Time ∆t, the elapsed time between two consecutive visited locations;
• Entropy Eunc, the predictability of the movements of an individual u [20];
• Activity per Hour t(h), the number of movements made by the individuals at every hour of the day [14, 9];

1 The squared tessellation is performed using python library scikit-mobility [15].
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Fig. 1. Schematic description of STS-EPR. An individual moves according to the entry in its mobility diary. If the abstract location in the diary is
ab0, then the individual returns to its starting location; otherwise it decides whether to explore a new location or return to a previously visited one.
At that point, the agent determines whether or not its social contacts affect its choice for the location to visit next. If the selected action cannot be
performed, it is corrected with an executable one (dashed arrows indicate action corrections).

individual and the social influence mechanisms. With a probability α = 0.2, the agent’s social contacts influence its
movement [22]. With a complementary probability of 1 − α, the agent’s choice is not influenced by the other agents.

Location selection. At this point, the agent decides which location will be the destination of its next displacement.
The sets of locations an agent a can visit or return to are expa = {i | lva[i] = 0} and reta = {i | lva[i] > 0 ∧ i � {sa, ca}},
respectively, where sa and ca are the indices of the starting and current location of agent a. The set of the location
visited, without the constraints of the current and starting location, is visa = {i | lva[i] > 0}. The visitation frequency
of a to a location ri is: fa(ri) = lva[i]∑|L|

j=1 lva[ j]
.

• Individual Exploration: a chooses a new location to explore from expa. Individuals are more likely to move
at small rather than long distances but also take into account the location’s collective relevance [14]. We use
the gravity law to couple distance and relevance [13]. If a is currently at location r j, during the Individual
Exploration action selects an unvisited location ri, with i ∈ expa, with probability p(ri) ∝ wiw j

d2
i j

, where di j is the

distance between locations ri and r j with relevances wi, wj.
• Social Exploration: a selects an agent c among its social contacts in G. The probability p(c) for c to be selected

is proportional to the mobility-similarity between them: p(c) ∝ mobsim(a, c). After the contact c is chosen, the
candidate location to explore is an unvisited location for a that was visited by c, i.e., the location is selected
from set A = expa ∩ visc; the probability p(ri) for a location ri, with i ∈ A, to be selected is proportional to the
visitation pattern of c, namely p(ri) ∝ fc(ri).
• Individual Return: a picks the return location from the set reta with a probability proportional to its visitation

pattern. The probability for a location ri with i ∈ reta to be chosen is: p(ri) ∝ fa(ri).
• Social Return: c is selected as in the Social Exploration action, and the location a returns to is picked from the

set A = reta ∩ visc. The probability p(ri) for a location ri to be selected is proportional to the visitation pattern
of the agent c, namely p(ri) ∝ fc(ri).
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Action correction. The set of possible locations an agent can reach is limited. For example, it may happen that
the agent visited all locations at least once and there are no locations to explore. To comply with these constraints, we
include an action-correction phase, executed if the location selection phase does not allow movements in any location.

• No location in social choices: If an agent a decides to move with the influence of a social contact c but reta ∩
visc = ∅ or expa ∩ visc = ∅ (no locations visited by both c and a or no locations visited by c and unvisited by
a), we execute an individual action preserving a’s choice to explore or return.
• No new location to explore: When an agent a decides to explore but it visited all the locations at least once

(expa = ∅), we force the agent to make an Individual Return.
• No return location: If an agent a, currently at location ri, decides to perform an Individual Return, and ri is the

only location visited so far (besides the starting location), it cannot return to any location (reta = ∅). We force
a to make an Individual Exploration.

3. Experiments

3.1. Datasets

Mobility. We use a public LBSN (Location-Based Social Network) dataset DFS, collected by Yang et al. [23], which
includes a set of global-scale checkins gathered from the social network platform Foursquare over 22 months (from
April 2012 to January 2014). A checkin describes a user’s real-time position with its social contacts. From DFS, we
extract three datasets that describe the mobility of individuals in New York City, London, and Tokyo, from the 10th
of April 2012 to the 10th of July 2012. Table 1 reports the statistics of the three datasets.

Social graphs. DFS is associated with a snapshot of a social network GFS, antecedent at the collection period, that
describes the social relationships between individuals (i.e., mutual follow on Twitter) in DFS. We associate each of the
three datasets with a social graph, extracted from GFS, which describes the social links among the Foursquare users.

3.2. Experimental settings

We simulate the mobility of agents moving for three months in New York City, London, and Tokyo, using STS-
EPR and two state-of-the-art models: GeoSim [22] and DITRAS [14]. GeoSim embeds a social mechanism but has
trivial spatial and temporal mechanisms; DITRAS has sophisticated spatial and temporal mechanisms but does not
embed a social mechanism. For each combination of city and model, we run a trajectory generation for five times and
take, for each standard mobility measure (see Section 3.3), the average and standard deviation of the Kullback-Leibler
divergence between the distribution of that measure on the set of generated trajectories and the set of real trajectories
in that city. We discretize the physical space using a squared tessellation of 300 meters.1

3.3. Mobility measures

We evaluate the models’ realism with respect to the distribution of the following standard mobility measures
[10, 3]:

• Jump Length ∆r, the distance between two consecutive locations visited by an individual [8];
• Radius of Gyration rg, the typical distance traveled by an individual during the period of observation [8, 16];
• Visits per Location Vl, the relevance of a location described as its attractiveness at a collective level;
• Location Frequency f (ri), the probability of visiting a location ri [8];
• Waiting Time ∆t, the elapsed time between two consecutive visited locations;
• Entropy Eunc, the predictability of the movements of an individual u [20];
• Activity per Hour t(h), the number of movements made by the individuals at every hour of the day [14, 9];

1 The squared tessellation is performed using python library scikit-mobility [15].
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Table 1. A summary of the properties of the three datasets and the corresponding social graphs extracted from the public Foursquare dataset DFS

and the social graph GFS, respectively.
City # checkins # users # edges average degree
London 14,895 622 1,185 3.81
New York City 37,489 1,001 1,755 3.506
Tokyo 231,471 4,396 18,183 8.272

• Mobility Similarity mobsim, the cosine-similarity of two individuals’ location vectors [22, 5, 23];

We quantify the similarity between each measure’s distributions for real and synthetic trajectories using the Kull-
back–Leibler divergence (KL).

4. Results

Our results highlight the importance of coupling both distance and relevance in the location selection phase to
obtain realistic trajectories regarding the spatial measures (Table 2). Concerning ∆r and rg, STS-EPR is more realistic
than GeoSim, which cannot reproduce neither the ∆r distribution (Figures 2(a), 3(a) and 4(a)) nor the rg distribution.
STS-EPR is also slightly more realistic than DITRAS concerning ∆r, except for New York City (Table 2). DITRAS
is the best model regarding the distribution of rg; STS-EPR fails in reproduce correctly the distribution for small radii
with the exception of Tokyo, where DITRAS and STS-EPR achieve similar KL scores (0.2417 and 0.2504, respec-
tively). GeoSim generates trajectories with the most realistic distribution of f (ri) but fails in reproducing accuratly
the Vl distribution (Figures 2(d), 3(d) and 4(d)). STS-EPR is more realistic than DITRAS on f (ri), and for Vl the KL
scores of STS-EPR are 58.62% (New York City), 27.73% (London), and 79.47% (Tokyo) better than DITRAS. None
of the models can replicate the distribution of Eunc, though the best one is this sense is STS-EPR.

The temporal measures, ∆t and t(h) (Figures 2(f), 3(f) and 4(f)), are better reproduced by STS-EPR and DITRAS,
since they use the same temporal mechanism (MDG). The small fluctuations of the scores obtained from these two
models are caused only by the pseudo-random nature of each execution. Although GeoSim can reproduce the ∆t
distribution, it fails in reproducing t(h) because its trajectories that do not follow the circadian rhythm of individuals.

As for the distribution of the social measure mobsim, STS-EPR reproduces it better than GeoSim and DITRAS,
especially for Tokyo (KL=0.014, Table 2), presumably because the social graph of users in Tokyo is the largest in
terms of nodes and edges, giving a more realistic representation of the individuals’ sociality. STS-EPR can capture
the distribution’s shape better than GeoSim; the latter can reproduce correctly the distribution only for values ≤ 0.25
(Figures 2(h), 3(h) and 4(h)). DITRAS is not able to capture the mobility similarity as it does not include a mechanism
that models the sociality between agents.

The results for New York City, London, and Tokyo (Table 2) are consistent, suggesting that STS-EPR do not
depend on the specific characteristics of the geographic area, i.e., STS-EPR is geographically transferable.

5. Discussion

Coupling spatial distance and location relevance is crucial to improve the realism for spatial measures such as
jump length, radius of gyration, and location relevance. Indeed GeoSim, which does not use the gravity law, cannot
capture the shape of these distributions. Although STS-EPR and DITRAS use the same spatial mechanisms, STS-
EPR approximates better the distribution of number of visits per location, while DITRAS reproduces accurately
the distribution of the radius of gyration also for small radii. The use of the mobility diary generator is crucial to
capture the temporal patterns of human mobility as it allows reproducing both the waiting time and the propensity
to move at specific times during the day. The combination of realistic social and temporal mechanisms allows STS-
EPR to reproduce the mobility similarity in the most realistic way. Although GeoSim embeds a social mechanism,
its generated trajectories are unrealistic with respect to the social measure, and so are those generated by DITRAS,
which does not embed any social mechanism.
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Fig. 2. Distribution of jump length (a), radius of gyration (b), location frequency (c), visits per location (d), waiting time (e), activity per hour (f),
uncorrelated entropy (g), and mobility similarity (h) of real data (black dotted line) and data generated by GeoSim (red dash-dotted line), DITRAS
(orange dash-dotted line), and STS-EPR (blue line), for New York City.

Fig. 3. Distribution of jump length (a), radius of gyration (b), location frequency (c), visits per location (d), waiting time (e), activity per hour (f),
uncorrelated entropy (g), and mobility similarity (h) of real data (black dotted line) and data generated by GeoSim (red dash-dotted line), DITRAS
(orange dash-dotted line), and STS-EPR (blue line), for London.

It is worth noting that the inclusion of the social dimension in STS-EPR help improve the realism concerning
both the spatial and temporal measures. This result highlights the importance of sociality: though often neglected in
generative mobility models, it is essential to model properly individual human mobility.
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Table 1. A summary of the properties of the three datasets and the corresponding social graphs extracted from the public Foursquare dataset DFS

and the social graph GFS, respectively.
City # checkins # users # edges average degree
London 14,895 622 1,185 3.81
New York City 37,489 1,001 1,755 3.506
Tokyo 231,471 4,396 18,183 8.272

• Mobility Similarity mobsim, the cosine-similarity of two individuals’ location vectors [22, 5, 23];

We quantify the similarity between each measure’s distributions for real and synthetic trajectories using the Kull-
back–Leibler divergence (KL).

4. Results

Our results highlight the importance of coupling both distance and relevance in the location selection phase to
obtain realistic trajectories regarding the spatial measures (Table 2). Concerning ∆r and rg, STS-EPR is more realistic
than GeoSim, which cannot reproduce neither the ∆r distribution (Figures 2(a), 3(a) and 4(a)) nor the rg distribution.
STS-EPR is also slightly more realistic than DITRAS concerning ∆r, except for New York City (Table 2). DITRAS
is the best model regarding the distribution of rg; STS-EPR fails in reproduce correctly the distribution for small radii
with the exception of Tokyo, where DITRAS and STS-EPR achieve similar KL scores (0.2417 and 0.2504, respec-
tively). GeoSim generates trajectories with the most realistic distribution of f (ri) but fails in reproducing accuratly
the Vl distribution (Figures 2(d), 3(d) and 4(d)). STS-EPR is more realistic than DITRAS on f (ri), and for Vl the KL
scores of STS-EPR are 58.62% (New York City), 27.73% (London), and 79.47% (Tokyo) better than DITRAS. None
of the models can replicate the distribution of Eunc, though the best one is this sense is STS-EPR.

The temporal measures, ∆t and t(h) (Figures 2(f), 3(f) and 4(f)), are better reproduced by STS-EPR and DITRAS,
since they use the same temporal mechanism (MDG). The small fluctuations of the scores obtained from these two
models are caused only by the pseudo-random nature of each execution. Although GeoSim can reproduce the ∆t
distribution, it fails in reproducing t(h) because its trajectories that do not follow the circadian rhythm of individuals.

As for the distribution of the social measure mobsim, STS-EPR reproduces it better than GeoSim and DITRAS,
especially for Tokyo (KL=0.014, Table 2), presumably because the social graph of users in Tokyo is the largest in
terms of nodes and edges, giving a more realistic representation of the individuals’ sociality. STS-EPR can capture
the distribution’s shape better than GeoSim; the latter can reproduce correctly the distribution only for values ≤ 0.25
(Figures 2(h), 3(h) and 4(h)). DITRAS is not able to capture the mobility similarity as it does not include a mechanism
that models the sociality between agents.

The results for New York City, London, and Tokyo (Table 2) are consistent, suggesting that STS-EPR do not
depend on the specific characteristics of the geographic area, i.e., STS-EPR is geographically transferable.

5. Discussion

Coupling spatial distance and location relevance is crucial to improve the realism for spatial measures such as
jump length, radius of gyration, and location relevance. Indeed GeoSim, which does not use the gravity law, cannot
capture the shape of these distributions. Although STS-EPR and DITRAS use the same spatial mechanisms, STS-
EPR approximates better the distribution of number of visits per location, while DITRAS reproduces accurately
the distribution of the radius of gyration also for small radii. The use of the mobility diary generator is crucial to
capture the temporal patterns of human mobility as it allows reproducing both the waiting time and the propensity
to move at specific times during the day. The combination of realistic social and temporal mechanisms allows STS-
EPR to reproduce the mobility similarity in the most realistic way. Although GeoSim embeds a social mechanism,
its generated trajectories are unrealistic with respect to the social measure, and so are those generated by DITRAS,
which does not embed any social mechanism.
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Fig. 2. Distribution of jump length (a), radius of gyration (b), location frequency (c), visits per location (d), waiting time (e), activity per hour (f),
uncorrelated entropy (g), and mobility similarity (h) of real data (black dotted line) and data generated by GeoSim (red dash-dotted line), DITRAS
(orange dash-dotted line), and STS-EPR (blue line), for New York City.

Fig. 3. Distribution of jump length (a), radius of gyration (b), location frequency (c), visits per location (d), waiting time (e), activity per hour (f),
uncorrelated entropy (g), and mobility similarity (h) of real data (black dotted line) and data generated by GeoSim (red dash-dotted line), DITRAS
(orange dash-dotted line), and STS-EPR (blue line), for London.

It is worth noting that the inclusion of the social dimension in STS-EPR help improve the realism concerning
both the spatial and temporal measures. This result highlights the importance of sociality: though often neglected in
generative mobility models, it is essential to model properly individual human mobility.
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Fig. 4. Distribution of jump length (a), radius of gyration (b), location frequency (c), visits per location (d), waiting time (e), activity per hour (f),
uncorrelated entropy (g), and mobility similarity (h) of real data (black dotted line) and data generated by GeoSim (red dash-dotted line), DITRAS
(orange dash-dotted line), and STS-EPR (blue line), for Tokyo.

Table 2. Results for London, Tokyo and New York City. For each measure, we show the average and the standard deviation of the KL divergence.
The best results for a combination of city and measure are highlighted in bold.

Model ∆r rg f (ri) Vl ∆t t(h) Eunc mobsim

L
on

do
n

GeoSim
0.5036
±0.0075

4.9381
±0.0932

0.0016
±0.0001

4.427
±0.0069

0.1962
±0.0043

0.281
±0.0003

8.5182
±0.0003

0.6097
±0.0079

DITRAS
0.0221
±0.0022

0.1813
±0.0239

0.1094
±0.0

0.1428
±0.006

0.166
±0.0031

0.0119
±0.0004

3.8816
±0.1897

0.4347
±0.0516

STS-EPR 0.0108
±0.0016

0.4609
±0.233

0.0097
±0.0003

0.1032
±0.0126

0.1626
±0.0035

0.0116
±0.001

2.6749
±0.1169

0.2543
±0.01

To
ky

o

GeoSim
0.7257
±0.002

4.8165
±0.0042

0.0002
±0.0

3.0957
±0.0148

0.2354
±0.0003

0.2837
±0.0006

7.1242
±0.0593

0.0931
±0.0017

DITRAS
0.0628
±0.0025

0.2417
±0.0171

0.1409
±0.0

0.1101
±0.0048

0.2007
±0.003

0.0074
±0.0001

5.0034
±0.2708

0.923
±0.0375

STS-EPR 0.0485
±0.0013

0.2504
±0.0746

0.0108
±0.0002

0.0226
±0.0019

0.2001
±0.0024

0.0076
±0.0001

4.8717
±0.2247

0.014
±0.0009

N
ew

Yo
rk

C
ity GeoSim

0.5947
±0.0062

5.3913
±0.0051

0.0071
±0.0004

3.6418
±0.0069

0.1973
±0.0004

0.18
±0.0005

8.0483
±0.0579

0.5879
±0.0149

DITRAS
0.0091
±0.0006

0.2987
±0.0359

0.193
±0.0026

0.1281
±0.0044

0.1665
±0.0032

0.0066
±0.0003

4.8881
±0.0248

0.5425
±0.038

STS-EPR 0.0188
±0.0015

0.3886
±0.0284

0.0318
±0.0008

0.0531
±0.004

0.1705
±0.0047

0.0071
±0.0005

5.028
±1.1511

0.3066
±0.0044

6. Conclusion

We proposed a mechanistic generative model that considers the spatial, temporal, and social dimensions together
during the generation of the synthetic mobility trajectories. Our results showed that the modelling all the three di-
mensions at the same time produces more realistic trajectories than existing models that lack either the social, the
spatial, or the temporal mechanisms. STS-EPR can be particularly useful to computational epidemiology, in which
agent-based simulations of human movements may help decision making for the containment of epidemics.
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An opportunity for future improvement consists of embedding deep learning techniques (e.g., Generative Adver-
sarial Networks and Variational Autoencoders) to model aspects of mobility that are not captured by the current
mechanisms [10]. In the meantime, our model is a step towards the design of a mechanistic model that can capture all
the aspects of human mobility in a complete way.
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Fig. 4. Distribution of jump length (a), radius of gyration (b), location frequency (c), visits per location (d), waiting time (e), activity per hour (f),
uncorrelated entropy (g), and mobility similarity (h) of real data (black dotted line) and data generated by GeoSim (red dash-dotted line), DITRAS
(orange dash-dotted line), and STS-EPR (blue line), for Tokyo.

Table 2. Results for London, Tokyo and New York City. For each measure, we show the average and the standard deviation of the KL divergence.
The best results for a combination of city and measure are highlighted in bold.

Model ∆r rg f (ri) Vl ∆t t(h) Eunc mobsim

L
on

do
n

GeoSim
0.5036
±0.0075

4.9381
±0.0932

0.0016
±0.0001

4.427
±0.0069

0.1962
±0.0043

0.281
±0.0003

8.5182
±0.0003

0.6097
±0.0079

DITRAS
0.0221
±0.0022

0.1813
±0.0239

0.1094
±0.0

0.1428
±0.006

0.166
±0.0031

0.0119
±0.0004

3.8816
±0.1897

0.4347
±0.0516

STS-EPR 0.0108
±0.0016

0.4609
±0.233

0.0097
±0.0003

0.1032
±0.0126

0.1626
±0.0035

0.0116
±0.001

2.6749
±0.1169

0.2543
±0.01

To
ky

o

GeoSim
0.7257
±0.002

4.8165
±0.0042

0.0002
±0.0

3.0957
±0.0148

0.2354
±0.0003

0.2837
±0.0006

7.1242
±0.0593

0.0931
±0.0017

DITRAS
0.0628
±0.0025

0.2417
±0.0171

0.1409
±0.0

0.1101
±0.0048

0.2007
±0.003

0.0074
±0.0001

5.0034
±0.2708

0.923
±0.0375

STS-EPR 0.0485
±0.0013

0.2504
±0.0746

0.0108
±0.0002

0.0226
±0.0019

0.2001
±0.0024

0.0076
±0.0001

4.8717
±0.2247

0.014
±0.0009

N
ew

Yo
rk

C
ity GeoSim

0.5947
±0.0062

5.3913
±0.0051

0.0071
±0.0004

3.6418
±0.0069

0.1973
±0.0004

0.18
±0.0005

8.0483
±0.0579

0.5879
±0.0149

DITRAS
0.0091
±0.0006

0.2987
±0.0359

0.193
±0.0026

0.1281
±0.0044

0.1665
±0.0032

0.0066
±0.0003

4.8881
±0.0248

0.5425
±0.038

STS-EPR 0.0188
±0.0015

0.3886
±0.0284

0.0318
±0.0008

0.0531
±0.004

0.1705
±0.0047

0.0071
±0.0005

5.028
±1.1511

0.3066
±0.0044

6. Conclusion

We proposed a mechanistic generative model that considers the spatial, temporal, and social dimensions together
during the generation of the synthetic mobility trajectories. Our results showed that the modelling all the three di-
mensions at the same time produces more realistic trajectories than existing models that lack either the social, the
spatial, or the temporal mechanisms. STS-EPR can be particularly useful to computational epidemiology, in which
agent-based simulations of human movements may help decision making for the containment of epidemics.
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An opportunity for future improvement consists of embedding deep learning techniques (e.g., Generative Adver-
sarial Networks and Variational Autoencoders) to model aspects of mobility that are not captured by the current
mechanisms [10]. In the meantime, our model is a step towards the design of a mechanistic model that can capture all
the aspects of human mobility in a complete way.
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