
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Preprint version 
 

Paper Received 10 July 2017; Received in revised form 30 October 2017; 
Accepted 30 October 2017, Published on International Journal of Applied Earth 
Observation and Geoinformation 65 (2018) 114–123. 
http://dx.doi.org/10.1016/j.jag.2017.10.010 

 

  



ON THE SYNERGY OF SMAP, AMSR2 AND 
SENTINEL-1 FOR RETRIEVING SOIL MOISTURE. 

E. Santi1, S. Paloscia1, S. Pettinato1, L. Brocca2, L. Ciabatta2, D. Entekhabi3 

1Institute of Applied Physics - National Research Council, Florence, Italy 
2Research Institute for Geo-Hydrological Protection - National Research Council, Perugia, Italy 

3Massachusetts Institute of Technology, Parsons Laboratory, Cambridge, US 
e.santi@ifac.cnr.it 

 
Abstract. An algorithm for retrieving soil moisture content (SMC) from synergic use of both active 

and passive microwave acquisitions is presented. The algorithm takes advantage of the integration of 

microwave data from SMAP, Sentinel-1 and AMSR2 for overcoming the SMAP radar failure and 

obtaining a SMC product at enhanced resolution (0.1° x 0.1°) and improved accuracy with respect to 

the original SMAP radiometric SMC product. A disaggregation technique based on the Smoothing 

filter based intensity modulation (SFIM) allows combining the radiometric and SAR data. 

Disaggregated microwave data are used as inputs of an Artificial Neural Networks (ANN) based 

algorithm, which is able to exploit the synergy between active and passive acquisitions. The algorithm 

is defined, trained and tested using the SMEX02 experimental dataset and data simulated by forward 

electromagnetic models based on the Radiative Transfer Theory. Then the algorithm is adapted to 

satellite data and tested using one year of SMAP, AMSR2 and Sentinel-1 co-located data on a flat 

agricultural area located in the Po Valley, in northern Italy. Spatially distributed SMC values at 0.1° x 

0.1° resolution generated by the Soil Water Balance Model (SWBM) are considered as reference for 

this purpose. The synergy of SMAP, Sentinel-1 and AMSR2 allowed increasing the correlation 

between estimated and reference SMC from R ≅ 0.68 of the SMAP based retrieval up to R ≅ 0.86 of 

the combination SMAP+Sentinel-1+AMSR2. The corresponding Root Mean Square Error (RMSE) 

decreased from RMSE ≅  0.04 m3/m3 to RMSE ≅ 0.024 m3/m3. 
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1 INTRODUCTION 

Satellite remote sensing has become an essential tool for observing the main land surface 

parameters at several temporal and spatial scales. The ever-increasing number of satellite missions and 

the consequent augmented availability of long-term global data sets of land surface parameters have 

improved noticeably our knowledge on the carbon, energy and hydrological cycles. In this respect, the 

moisture content of soil (SMC), which is one of the main driving factors of the hydrological cycle, is 

receiving an increasing attention, and dedicated satellite sensors have been recently launched. 

Microwaves are the most suitable frequencies for such a purpose, due to their independence of cloud 

cover and solar illumination, and, especially in the low part of the microwave spectrum, for the direct 

sensitivity to the water content of the observed surfaces. Besides the Soil Moisture and Ocean Salinity 

(SMOS) (Silvestrin et al. 2001, Mecklenburg et al. 2012), operating at L band, one of most popular 

satellite sensors dedicated to the global SMC monitoring is SMAP (Entekhabi et al. 2010, Entekhabi 

et al. 2004), which is characterized by the unique feature of carrying on board both a radiometer and a 

radar operating in the same band (L band), although with different spatial resolutions.  

The aim of SMAP was in improving the accuracy and the spatial resolution of SMC available 

products by fusing information from radar backscattering (σ0) at higher resolution (1-3 Km) and 

radiometric brightness temperature (Tb) at lower resolution (≅ 40 Km). SMAP mission was planned 

for estimating SMC at three different resolutions: 36 Km (radiometer only), 9 Km (radar + radiometer), 

and 3 Km (radar only). Das et al. (2011) presented an algorithm that estimates soil moisture by 

combining SMAP Radiometer and Radar data. The algorithm is based on the integration of the spatial 

heterogeneity at fine resolution detected by SAR observations with the coarse resolution radiometer 

measurements for generating a disaggregated Tb at intermediate-resolution. The algorithm was 

validated using airborne data from the passive and active L band system and simulated data. Results 

indicated that the algorithm allows retrieving soil moisture at 9-km resolution, within the SMAP 

accuracy requirements over slightly vegetated areas (Das et al. 2014).  



Unfortunately, the radar onboard SMAP failed a few months after the launch, preventing the 

generation of the two SMC products at higher resolution. The research prosecuted therefore on the 

SMAP radiometric product only. This study uses as a reference the SMAP radiometric-only soil 

moisture product based on the application of the Backus Gilbert optimal interpolation to the SMAP 

radiometric data. The gridded radiometer and soil moisture products are posted at 9 km spacing but 

maintain the SMAP radiometer field-of-view resolution (half-power and -3 dB) of about 30 km to 40 

km. These data are hosted at the National Snow and Ice Data Center (NSIDC) as enhanced Level-1C 

(L1C) 9 Km Brightness Temperature product. L2 and L3 enhanced SMC products at 9 Km posting 

derived from L1C SMAP Tb data are also distributed by NSIDC (O'Neill et al. 2016).  

The possibility of exploiting the SMAP synergy with other microwave sensors, for replacing the 

SMAP radar data and restoring the combined radar and radiometer SMC product has been also 

investigated. Das et al. (2016) identified the Sentinel-1A SAR data as the most suitable for replacing 

the SMAP radar acquisitions, despite the different frequency, due to the similar orbit configuration, 

that allows overlapping with small time difference and to the availability of co-pol and cross-pol from 

Sentinel 1A observations.  

The synergy of SMAP with Sentinel-1 and AMSR2 is evaluated in this study, which is focused on 

the development of an algorithm able to merge microwave data from SMAP and AMSR2 radiometers 

and Sentinel-1 (S-1) SAR for obtaining an improved SMC product at 0.1° x 0.1° resolution, which is 

similar to the discontinued SMAP radar/radiometer product.  

This study is implemented in two steps: at first, the SMEX02 experimental dataset is considered 

for defining a retrieval algorithm based on Artificial Neural Networks (ANN). ANN are indeed able 

to take advantage of synergistic L band acquisitions from the JPL Passive Active L and S band Sensor 

(PALS) and to account for ancillary information on vegetation biomass (Plant water content – PWC) 

and surface temperature (LST). The algorithm was later on adapted to satellite data and validated using 

one year of combined SMAP, S-1 and AMSR2 acquisitions on a test area located in the Po valley, in 



northern Italy. For this scope, all the SMAP, AMSR2 and S-1 acquisitions collected at the same date 

and closest time over the selected test area were considered. SMAP and AMSR2 data were 

disaggregated at the target resolution of 0.1° x 0.1° using the well-established Smoothing filter based 

intensity modulation disaggregation (SFIM - Santi 2010). Reference SMC data for comparison are 

derived from the Soil Water Balance Model (SWBM – Brocca et al. 2014 and 2008) that has been 

largely validated over Italy and Europe. The model SMC takes advantage of high fidelity precipitation 

information and it is spatially mapped for comparison with airborne and satellite retrievals. It 

represents a complimentary approach to the use of sparse in situ measurements, which suffer from 

spatial representativeness errors, for evaluating the retrieval algorithms. Such errors are difficult to 

distinguish from retrieval errors and they are limited in spatial coverage. 

After a description of the two test areas and the experimental data used in this work, provided in 

section 2, the sensitivity of microwave data to the target SMC is presented in section 3. The ANN 

algorithm implementation and test on both test areas is described in section 4, that also contains some 

comparison with the official SMAP SMC product and discussion on the results.  

2 TEST AREAS AND DATA 

Two different test areas have been considered in this study. The popular Walnut Creek watershed in 

central Iowa, USA, on which the SMEX02 experiment was carried out, was considered for defining 

the retrieval concept and for implementing the algorithm, due to the availability of detailed 

measurements of a large set of surface parameters.  



 

Figure 1. The test area location in Italy from Google Earth. 

The possibility of adapting the algorithm to satellite data was then evaluated on a flat agricultural area 

in the Po Valley, northern Italy, for which time series SMAP, AMSR2 and Sentinel-1 acquisitions 

were available. The area has an extension of ~120Km x 120Km, and its center coordinates are 11.4° 

E and 45.1° N (Figure 1).  

The area is mainly covered by large fields of wheat and corn, with a small percentage of sugarcane; 

the Po River crosses it from west to east. The town of Verona and its surroundings, in the upper left 

corner, is the only area enough urbanized to affect the SMAP radiometric acquisitions.  

2.1 SMEX02 dataset 

The SMEX02 experimental dataset (Njoku 2003, Bindlish and Jackson, 2002, Jackson and Cosh. 

2003) was derived from a large experimental activity carried out in the Walnut Creek watershed in 

central Iowa, USA, between June and July 2002. It included radar and radiometric acquisitions at L 

band from the PALS (Passive Active L band System) airborne sensor, C and X band radiometric 

acquisitions from the Polarimetric Scanning Radiometer (PSR) and ground truth measurements of Soil 



Moisture Content (SMC) and Plant Water Content (PWC) collected during the experimental campaign 

that was carried out in summer 2002. Five flights have been selected (June 25 and 27, July 01, 07 and 

08) from the available archive, and all the data (airborne acquisitions and ground truth) have been 

resampled on a fixed grid of nodes equally spaced at 100 m x 100 m, using linear interpolation. This 

resampling resulted in a database of about 70.000 microwave measurements at the three frequencies 

and corresponding ground measurements of SMC and PWC, in a SMC range between 5% and 35% 

and a PWC range between 0.5 and 5 Kg/m2. These data have been considered for defining the retrieval 

concept and training the algorithm. 

2.2 Po Valley dataset 

One year of overlapped SMAP, AMSR2 and S-1 acquisitions available on the area between April 

2015 and March 2016 was considered for this analysis, which was carried out point by point over a 

grid of 144 nodes spaced at 0.1° x 0.1°. Fourty S-1 images were available in the selected period: for 

each S-1 image, the corresponding SMAP and AMSR2 acquisitions, collected at the closest time from 

each other and separated by ascending and descending passes, were considered. The total dataset 

resulted in about 5000 co-located acquisitions of the three satellites, with the radiometric data almost 

equally divided between ascending and descending orbits.  

S-1 images were downloaded by The Copernicus Open Access Hub, which is the ESA official 

archive providing open access to Sentinel-1, Sentinel-2 and Sentinel-3 data products. The images were 

ground range detected (GRD) images in interferometric wide swath mode (IW), with an original spatial 

resolution of 20 m x 22 m and 5 x 1 looks in range and azimuth, respectively. Images were first 

mosaicked to cover entirely the test area and then radiometrically calibrated, multilooked and 

geocoded for obtaining georeferenced and calibrated σ0 at a spatial resolution of 100 m x 100 m. 

Calibration was performed by taking into account the local incidence angle (LIA) obtained by terrain 

correction using a DEM of the area at 90 m x 90 m resolution, derived from SRTM. Finally, S-1 σ0 data 



were firstly degraded at 0.1° x 0.1° resolution using a low pass filtering and then resampled onto the 

fixed grid using nearest neighbor interpolation. 

SMAP L1B Radiometer Half-Orbit Time-Ordered Brightness Temperatures were obtained from 

the NSIDC data portal, while AMSR2 L1B V2 multifrequency data were downloaded from the JAXA 

GCOM data portal. In this study, we considered only AMSR2 overpasses that overlapped completely 

those of SMAP on Italy, at the same date and in the same ascending or descending orbit, in order to 

avoid any problem in disaggregating both SMAP and AMSR2 data at the target resolution of 0.1° x 

0.1°.  

SMAP and AMSR2 C and X bands have been disaggregated at the target resolution using the SFIM 

filtering. This disaggregation technique, which was initially developed for fusing multispectral images 

and Panchromatic data (Liu, 2000), was adapted to microwave radiometers in (Santi 2010), with the 

aim of increasing the resolution of C and X bands of AMSR-E up to values close to the sampling rate 

(i.e. 10 km x 10 km). Other publications aimed at soil moisture and Snow Depth retrieval from AMSR-

E and AMSR2 (Santi et al. 2012, Santi et al. 2014, Parinussa et al. 2013), reported extensive validations 

of SFIM, that is currently applied to the LPRM/AMSR2/GCOM-W1 L2 Downscaled Surface Soil 

Moisture product, hosted by NASA (https://data.nasa.gov/Earth-Science/LPRM-AMSR2-GCOM-

W1-L2-Downscaled-Surface-Soil-Mois/kndx-bvi2). In the current study, SFIM has been modified and 

adapted to SMAP using the following strategy: for each couple of overlapped SMAP and AMSR2 

data, SMAP data have been resampled on the lat/lon grid of the corresponding AMSR2 overpass and 

then managed as an “additional” channel of AMSR2, applying the same processing proposed in Santi 

(2010). A key characteristic of SFIM relies upon its capability of preserving the information content 

of the original data after disaggregation. This means that SFIM has effect in separating the different 

surface contributions in mixed pixels, while it keeps unchanged the original values on uniform areas.  

The problem of obtaining SMC reference value representative of the 0.1° x 0.1° (approximately 

100 km2) pixel was addressed by using the well assessed Soil Water Balance hydrological Model 

https://data.nasa.gov/Earth-Science/LPRM-AMSR2-GCOM-W1-L2-Downscaled-Surface-Soil-Mois/kndx-bvi2
https://data.nasa.gov/Earth-Science/LPRM-AMSR2-GCOM-W1-L2-Downscaled-Surface-Soil-Mois/kndx-bvi2


(SWBM), which was developed in Brocca et al. (2014 and 2008). SWBM accounts for precipitation 

and temperature data for estimating the water fluxes within the soil layer, and it requires the soil texture 

information for estimating the soil hydraulic properties (Santi et al., 2016). The model was largely 

described in Brocca et al. (2014), to which we refer for details, and it was extensively validated in Italy 

and Europe (Brocca et al. 2011, Lacava et al. 2012, Gumuzzio et al., 2016). Specifically, in Lacava et 

al. (2012), we compare model simulations with in situ soil moisture data for one station located in the 

Po Valley with good performance (RMSE=0.022 m³/m³). In Santi et al. (2016), the model was used to 

assess the accuracy of satellite soil moisture data at 10 km scale in central Italy. The good agreement 

with in situ and satellite soil moisture justified the use of the SWBM for obtaining spatially distributed 

SMC data from the punctual measurements of meteorological stations available in the area. SWBM is 

freely available as ®Matlab code (http://dx.doi.org/10.13140/2.1.1460.8323). 

3 DATA ANALYSIS 

The first step in defining the retrieval algorithm structure was to evaluate the sensitivity of the 

available microwave data to SMC for both datasets.  

3.1 SMEX02 

A first attempt to relate the radiometric and radar acquisitions at L band to the measured SMC is 

shown in Figure 2, where the L band Tb (a) and σ° (b) from PALS are represented as a function of 

SMC. The poor sensitivity demonstrated by both active and passive PALS acquisitions to SMC (R2 

between 0.17 and 0.19) suggested exploiting the contribution of ancillary parameters as PWC and LST 

for improving the SMC retrieval. 

http://dx.doi.org/10.13140/2.1.1460.8323


  
 

Figure 2 a) PALS Tb at L- band in both H and V polarizations as a function of SMC from SMEX02 database. 1b) 
PALS σ0 at both VV and VH polarizations as a function of SMC from SMEX02 database. 

SMEX02 dataset includes direct measurements of PWC; however, looking at an operational 

application of the algorithm for a global monitoring, we focused on the possibility to derive this 

information from the Polarization Index at X band, that can be obtained for instance from co-located 

SMAP and AMSR2 overpasses. This index, defined as  

𝑃𝑃𝑃𝑃𝑋𝑋 = 2�
(𝑇𝑇𝑇𝑇𝑇𝑇𝑋𝑋 −  𝑇𝑇𝑇𝑇𝑇𝑇𝑋𝑋)
(𝑇𝑇𝑇𝑇𝑇𝑇𝑋𝑋 +  𝑇𝑇𝑇𝑇𝑇𝑇𝑋𝑋)� 

was already demonstrated well correlated to the vegetation biomass (Paloscia and Pampaloni, 1988), 

and was successfully employed for estimating PWC on a global scale (Santi et al. 2012). PWC was 

related to PIX using the following relationship, which was obtained comparing PIX from AMSR-E and 

PWC from optical data on a wide portion of Africa, from the Sahara Desert to Equatorial forest, thus 

including a very wide range of vegetation types and landscapes. 

𝑃𝑃𝑃𝑃𝑃𝑃 =  −1.77𝑙𝑙𝑙𝑙(𝑃𝑃𝑃𝑃𝑋𝑋) − 2.39 (Kg/m2) 
By applying this relationship to the PSR acquisitions at X band, the distribution of Figure 3 was 

obtained, in which the histogram of PWC derived from in-situ measurements and PWC derived from 

PIX, using the above relationship, are compared.  

Figure 3 demonstrates that PIX is not able to reproduce the highest and lowest values of the ground 

measurements, due to the coarse resolution of PSR radiometer, which caused a significant 

oversampling of the acquired data and a subsequent smoothing of Tb dynamics. However, the mean 



values of measured and PIX-derived PWC are very close - respectively 2.2 Kg/m2 and 2.5 Kg/m2, thus 

demonstrating the PI capability to catch the average PWC value of the area. This relationship 

confirmed the sensitivity of PIX to PWC, thus supporting the possibility of using PIX as additional 

input of the ANN algorithm. 

 
Figure 3. Histograms of PWC derived from PSR PIX and from in-situ data 

Another ancillary parameter strongly affecting the radiometric measurements is the LST. For 

developing the algorithm, we derived this information from MODIS LST data collected at the same 

dates of the SMEX02 campaigns. MODIS overflew the area 2-3 hours after PALS; therefore, the LST 

product was rescaled basing on ancillary information in order to account for the surface temperature 

variations between the MODIS and PALS acquisitions. In detail, the data collected by the SMEX02 

Tower-Based Surface Temperature system, which was composed by 12 flux towers, were considered 

to compute the temperature difference between Modis LST and in-situ data at the time of flights. The 

Modis LST product was then scaled by this factor in order to have a distributed information on the 

surface temperature. 

3.2  PO VALLEY 

In Figure 4, the maps of the correlation coefficients (R) between the Tb from SMAP and SMC 

estimated from the SWBM, and σ0 from S1 and SMC SWBM are shown. R values were computed at 



each pixel of the grid considering the whole time series of data, while the overall R values are 

summarized in Table 1. Figure 4 points out that SMAP acquisitions in both H and V polarizations are 

very well correlated with SMC simulations, whose values ranged between very dry (0.05 m3/m3) and 

wet (0.3 m3/m3) conditions during the considered time period. The contribution of SFIM is limited, 

since the area is almost flat and homogeneous; however, the disaggregated SMAP Tb are slightly better 

correlated to SMC with respect to the original data, characterized by coarser resolution (Table 1). The 

lower R values in the upper left part of the images depend on the presence of urban areas (Verona and 

its suburbs) that are wide enough for influencing the SMAP acquisitions, while the highest R values 

in the lower-left part of the images do correspond to agricultural areas with negligible urbanization.  

  

  



  
Figure 4. R maps: SMAP V and H in ascending and descending orbits and S-1 VV and VH vs. SWBM SMC  

 

The R values reported in both Figure 4 and Table 1 do confirm the scarce sensitivity of S-1 C band 

data to SMC on the study area, unless no corrections for vegetation effects are performed.  

Table 1. Correlation between SMAP and S-1 acquisitions and reference SMC 

 
SMAP TbV 

(original 
resolution) 

SMAP TbH 
(original 

resolution) 

SMAP TbV (SFIM 
disaggregated at 

0.1° x 0.1°) 

SMAP TbH (SFIM 
disaggregated at 

0.1° x 0.1°) 
S-1 σ0 VV S-1 σ0 VH 

R 0.76 0.79 0.78 0.80 0.35 0.38 

 

4 ANN ALGORITHM  

The SMC retrieval algorithm was based on Artificial Neural Networks (ANN). We considered the 

feed-forward multi-layer perceptron (MLP) ANN available in the Matlab ® toolbox, that use the back 

propagation (BP) learning rule for training. The proposed algorithm considers Tb and σ° together with 

ancillary PWC and LST data as inputs and SMC as output. 

Two configurations, namely ANN1 and ANN2, have been implemented, depending on the 

availability of ancillary information on PWC and LST. The final architecture ANN, in terms of number 

of neurons and hidden layers, has been defined through an iterative process that repeated the ANN 

training and test by increasing the number of neurons and hidden layers at each iteration and compared 



training and test errors (Santi et al. 2016). This process is needed to avoid underfitting (too simple 

architectures are not able to reproduce the problem with enough accuracy) and overfitting (too complex 

architectures return low training error but fail the test on other datasets). The outcome of this process 

was an “optimal” configuration with two hidden layers of 10 neurons each for both ANN. The 

architecture of the two ANNs is displayed in Figure 5 a) and b). 

a)  b) 
Figure 5. ANN architecture in the configuration without, ANN1 (a), and with, ANN2 (b), the ancillary inputs 

of LST and PWC. 

4.1 ANN training 

In order to extend the validity of the training and to make the ANN able to reproduce a wider range 

of observed surface conditions, data simulated by forward electromagnetic models based on the 

radiative transfer theory have been added to the SMEX02 experimental dataset. In detail, Tb at L and 

X bands have been simulated by the so called “tau-omega” model (Mo et al. 1982), while the 

Vegetation Water Cloud (VWC) model (Attema and Ulaby 1978) was considered for simulating the 

σ°values at L and C bands. The contribution of soil under vegetation was accounted for by coupling 

VWC with the OH semi-empirical model (Oh et al. 1992). 

Model simulations have been iterated 30.000 times, with inputs, namely SMC, LST, PWC, the 

optical depth (tau), the single scattering albedo (omega), the height standard deviation (HSTD), and 

the correlation length (Lc), randomly varying in the range of experimental surface parameters, derived 

from the SMEX02 database. The data for training and independent test have been defined as follows: 



• TRAINING: simulated + ½ experimental (approx. 65,000 samples) 

• Independent TEST: remaining ½ experimental (approx. 35,000 samples) 

 

The range of model inputs not available from direct measurements, namely tau, omega, and HSTD, 

was derived from the experimental data using a Nelder Mead optimization algorithm, according to the 

strategy proposed in Santi et al. (2016). In particular, Nelder Mead minimization was applied to find 

tau and omega values that minimize the following cost function between measured Tb from PALS and 

PSR and tau-omega model simulations: 

��𝑇𝑇𝑇𝑇𝑇𝑇𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 𝑃𝑃𝑃𝑃𝑃𝑃⁄  − 𝑇𝑇𝑇𝑇𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚�
2

+ �𝑇𝑇𝑇𝑇𝑇𝑇𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 𝑃𝑃𝑃𝑃𝑃𝑃⁄  − 𝑇𝑇𝑇𝑇𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚�
2
 

The mean and variance of τ and ω resulting from this minimization are listed in table: 

Table 2. Mean value and variance of tau and omega from the minimization process. 

τ L C X 
mean 0.24 0.76 0.99 
variance 0.003 0.012 0.009 
ω    
mean 0.03 0.02 0.02 
variance 0.002 0.000 0.000 

 

A similar procedure allowed estimating the roughness parameter, HSTD. In this case, the Nelder 

Mead algorithm was applied to find HSTD values that minimize the cost function between measured 

σ0 and VWC model simulations: 

�(σ0𝑉𝑉𝑉𝑉𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 − σ0𝑉𝑉𝑉𝑉𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚)2 + (σ0𝐻𝐻𝐻𝐻𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 − σ0𝐻𝐻𝐻𝐻𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚)2 

The function was minimized as a function of HSTD and of the empirical A and B parameters of 

WCM, which depend on the crop type. The minimization resulted in a mean HSTD of 1.55 cm, with 

a variance=0.36 cm. 



The comparison between simulated and measured data is represented in Figure 6, where the 

simulated and measured σ0 (a) and Tb (b) are represented as a function of the SMC measured on 

ground.  

The ANN training was carried out by splitting the training set in 60%, 20% and 20% for training itself, 

a posteriori test and validation. This has been done for applying the so-called “early stopping” rule, 

which stops the training as soon as the errors on the three subsets are diverging. This operation was 

needed to prevent overfitting. Training was repeated 100 times, each time by resetting the initial ANN 

configuration and only the ANN that provided best result was saved and considered for testing the 

algorithms. It has to be remarked that the tests of the algorithm presented in section 4.1 and section 

4.2 does not refer to the ANN test and validation cited here, that is part of the training itself, but to the 

application of the already trained and saved ANN to the remaining 50% of experimental data, not 

considered for the training.  

4.2 ANN test with airborne data (SMEX02) 

After training, the algorithm was tested on SMEX02 data by applying the already trained ANN1 

and ANN2 to the 35,000 experimental samples not involved in the training process, in order to keep 

this result as independent as possible of the training itself. 

  

a) b) 
Figure 6. a) Simulated and measured σ0 at L band, VV polarization, as a function of the measured SMC; b) 

simulated and measured Tb at L band, V polarization, as a function of the measured SMC. 



In Figure 7, the SMC estimated by the algorithm is represented as a function of the SMC measured 

on ground for the ANN1, only PALS data (a) and ANN2, PALS data + ancillary (b). 

 
a) 

 
b) 

Figure 7. a) SMC estimated by ANN1 vs. SMC measured; b) SMC estimated by ANN2 vs. SMC measured. 

The results can be considered encouraging in both cases; however, from the statistics is evident the 

contribution of the ancillary information in enhancing the retrieval accuracy. The correlation 

coefficient increased indeed from R=0.81 of ANN1 to R=0.93 of ANN2, and the corresponding RMSE 

decreased from 0.015 (m3/m3) to 0.009 (m3/m3).  

4.3 ANN application to satellite data (Po Valley) 

The ANN algorithm was then adapted to satellite data and tested on the Po Valley area. With respect 

to the original implementation for SMEX02, σ0 from S-1 replaced the PALS radar acquisitions in VV 

and VH polarization, and SMAP Tb at V and H polarization replaced and the PALS radiometric 

acquisitions.  

PWC was derived from the Polarization Index computed from the X band channel of AMSR2 (Santi 

et al. 2012), and LST was obtained from the AMSR2 Tb at Ka band, in V pol (Owe et al. 2001). The 

replacement of the SMAP L band radar with the S-1 SAR at C band was evidently the most challenging 

issue, being C band more affected by the disturbing effect of vegetation than L band, which is instead 

more related to SMC. An L band SAR sensor as the ALOS-2 PALSAR would be more suitable for 



this scope; however, the availability of ALOS-2 images over Italy is scarce, thus introducing a further 

limitation for validating the algorithm. On the other hand, Das et al. (2016) have pointed out the 

possibility of using Sl-1 for replacing the missing SMAP radar acquisitions.  

These changes imposed a retraining of the two ANN (ANN1 and ANN2), in order to account for 

the differences between satellite and airborne acquisitions, keeping nevertheless unchanged the 

algorithm architecture with respect to the SMEX02 implementation. Considering the limited amount 

of data available, the definition of the training set was relatively challenging, since we had to comply 

with the opposite needs of having data enough to train the ANN and as many as possible to have a 

statistically significant test of the algorithm. As for SMEX02, data simulated by tau-omega and WCM 

models contributed to increase the training set: 10% of the available dataset (about 500 points) was 

combined with an equal number of simulated data for training, while the test was carried out on the 

remaining 90% of experimental data, not involved in the training process.  

The obtained results are represented in the scatterplots of Figure 8, separated by ascending and 

descending orbits. The plots represent the estimated SMC vs. the SWBM distributed SMC. Along with 

ANN1 (3rd column) and ANN2 (4th column), the 2nd column shows the results obtained by another 

ANN implementation that considers SMAP data only and the 1st column shows official L2 enhanced 

SMAP SMC 9 Km product, included as a term of comparison for evaluating the effectiveness of the 

proposed technique. Although the limited amount of data available and the small extension of the test 

area do not allow drawing too general conclusions, the obtained results appear promising. The 

comparison between scatterplots in the 1st and 2nd columns shows that the ANN trained with SMAP 

data only provides slightly better results than the official product in the area. When including in the 

comparison the results shown in 3rd and 4th columns, is also evident that the inclusion of S-1 data 

(ANN1), although scarcely related to SMC on their own, allowed a certain improvement of the 

retrieval accuracy with respect to the use of SMAP data alone. The obtained R and RMSE are 

summarized in Table 3. 



Table 3. R and RMSE obtained in ascending and descending orbits for the considered satellite combinations 

  SMAP Official SMAP ANN SMAP+S-1 SMAP+AMSR2+S-1 

Asc. 
R 0.69 0.79 0.85 0.87 

RMSE (m3/m3) 0.039 0.029 0.025 0.023 

Desc. 
R 0.68 0.78 0.82 0.84 

RMSE (m3/m3) 0.04 0.029 0.026 0.025 

 

ANN1 probably represents the most interesting implementation, since it has the same inputs of the 

original SMAP radar and radiometer algorithm. Finally, the inclusion of ancillary information on PWC 

and LST from AMSR2 (ANN2 - right column), allowed a further accuracy improvement, although 

smaller than the one obtained for SMEX02. This is mainly due to the homogeneity of the area, which 

makes the effect of ancillary information from AMSR2 less relevant. For inhomogeneous landscapes, 

characterized by the presence of different vegetation covers, the ancillary information on PWC and 

LST may instead have a significant effect on the algorithm performances. This is confirmed when 

considering the upper left part of the area, which is characterized by mixed agricultural and urban 

areas. The maps of R and RMSE, computed at each pixel of the grid and displayed in Figure 9 and 

Figure 10, show indeed that the synergy of SMAP with S-1 and AMSR2 does improve appreciably 

the retrieval accuracy in this sub-area, with respect of both (ANN and official) SMC products based 

on SMAP data only. 

The main limitation for extending the applicability of the proposed technique to global scale relies 

on the availability of S-1 data and the satellite revisiting time, which is actually between 6 and 12 days 

and depends on the planning updates. The synergy between SMAP and AMSR2 is instead less 

problematic, being both satellites operating in sun synchronous orbits with a frequent coverage of the 

entire earth surface.  
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Figure 8. ANN algorithm test using satellite data in ascending (upper line) and descending (lower line) orbits, using disaggregated SMAP data alone 2), disaggregated 
SMAP + S1 (3 – ANN1 configuration), and adding also PIX and TbVKa from AMSR2 (4 – ANN2 configuration). As term of comparison, the 1st column shows the results 

obtained using the official L2 enhanced SMAP 9Km SMC product. 
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Figure 9. Maps of R in ascending (upper line) and descending (lower line) orbits, using disaggregated SMAP data alone 2), disaggregated SMAP + S1 (3 – ANN1 
configuration), and SMAP + S-1 + AMSR2 (4 – ANN2 configuration). As term of comparison, the 1st column shows the results obtained using the official L2 enhanced SMAP 

9Km SMC product. 
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Figure 10. Maps of RMSE  in ascending (upper line) and descending (lower line) orbits, using disaggregated SMAP data alone 2), disaggregated SMAP + S1 (3 – ANN1 
configuration), and SMAP + S-1 + AMSR2 (4 – ANN2 configuration). As term of comparison, the 1st column shows the results obtained using the official L2 enhanced SMAP 

9Km SMC product. 

 



5 CONCLUSIONS 

An algorithm based on Artificial Neural Networks (ANN) for retrieving SMC from synergic active 

and passive microwave acquisitions has been discussed. The algorithm was aimed at generating a SMC 

product at a resolution of 0.1°x0.1° (approx. 10Km x 10Km). PALS and PSR acquisitions from 

SMEX02 and forward EM models simulations were considered for defining and training the algorithm, 

which was implemented in two configurations, ANN1 and ANN2, the latter accounting for ancillary 

information on LST and PWC. The algorithm was then adapted to satellite data and tested considering 

one year of overlapped SMAP, S-1 and AMSR2 acquisitions collected on an agricultural area in 

northern Italy. The missing SMAP radar acquisitions have been replaced by S-1 data, while the 

ancillary information on PWC and LST has been derived from AMSR2. SMAP and AMSR2 data were 

disaggregated at a resolution of 0.1°x0.1° by using the SFIM disaggregation and S-1 acquisitions were 

downsampled to the same resolution. The “official” L2 SMAP enhanced SMC 9km product was 

considered in the same area and for the same dates as a term of comparison for evaluating the obtained 

results.  

The obtained results were encouraging, and the synergy with S-1 and AMSR2 allowed increasing 

R from about 0.68 of the official SMAP enhanced product, to about 0.84 for ANN1 and 0.86 for ANN2 

(SMAP+S-1+AMSR2), with a corresponding decrease of RMSE from about 0.040 m3/m3 to about 

0.025 m3/m3 (ANN1) and 0.024 m3/m3 (ANN2). Although ANN1 reached slightly less accurate results 

than ANN2, it is probably the most interesting implementation, since it is the closest in terms of inputs 

to the original SMAP radar and radiometer algorithm. The synergy effect was particularly evident in 

a sub area in which the agricultural fields are mixed with urban areas, thus limiting the performance 

of the retrieval based on SMAP data only.  

It should be remarked that the test area is rather small and the available dataset is not sufficient for 

drawing global considerations; however, the proposed technique appeared promising for obtaining a 

combined radar/radiometer product at improved spatial resolution and enhanced accuracy with respect 



to the SMAP SMC product. The main limitation for generalizing this technique to a global application 

is represented by the limited revisiting of S-1. 
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