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Abstract

We study the regularity of noise-induced excitations in the FitzHugh—-Nagumo (FHN) neuronal model subject to excitatory and
inhibitory high-frequency input with and without correlations. For each value of the correlation a relative maximum of spike coherence
can be observed for intermediate noise strengths (coherence resonance). Moreover, the FHN system exhibits an absolute maximum of
coherent spiking for intermediate values of both the noise amplitude and the strength of correlation (double coherence resonance). The
underlying mechanisms can be explained by means of the discrete input statistics.
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1. Introduction

Neuronal models are among the most widely used
dynamics to study the phenomenology of excitable systems
under the influence of noise. Apart from the much simpler
integrate-and-fire (IF) model the four-dimensional Hodg-
kin—Huxley (HH) [6] and its reduction to two dimensions,
the FitzHugh—-Nagumo (FHN) model [4], constitutes the
most common models in theoretical neuroscience. Both
models consist of differential equations that are able to
reproduce observed neuronal behavior such as excitability
and refractoriness. When these models are driven by noise,
a variety of excitation phenomena including stochastic
resonance and coherence resonance has been observed (for
an overview please refer to [10]). Whereas stochastic
resonance [5] refers to an enhanced detectability of weak
(subthreshold) periodic signals for an intermediate amount
of noise, coherence resonance [12] describes the occurrence
of an increased regularity of the response driven by an
appropriately chosen amount of noise, in this case no
external signal is needed. This effect has been observed for
a great variety of neuronal models such as HH [9,11] and
FHN [12].
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In excitable systems the classical coherence resonance
with respect to the noise strength can be explained by the
different dependencies of slow activation and fast excitation
on the noise strength [12,13]. The occurrence of a minimum
in the coefficient of variation (the standard deviation of the
distribution of interspike intervals (ISI) normalized by its
mean) for noise levels in between these extremes is
considered as a key indication for coherence resonance. By
using colored noise instead of white-noise coherence
resonance with respect to the correlation length has also
been observed [1]. In the context of neuronal dynamics
continuous noise is often replaced by discrete noise kicks
reflecting the synaptic input received from excitatory and
inhibitory presynaptic neurons. Theoretical studies using
such correlated input comprise [3,14,15,17]. A comprehen-
sive analysis giving an explanation for coherence resonance
with respect to the correlation in such an environment is still
missing and thus declared the aim of the present study.

2. Model and methods

The FHN model [4] is a two-dimensional reduction of
the HH model with a voltage-like variable V' and a
recovery-like variable W:

dv V3
a=o(r-5-»)
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%—T:V—l—a—i—lo—l(l). (1)
The time-scale separation is set to ¢ = 100 and the
bifurcation parameter is chosen to be a = 1.05. For this
parameter, the dynamics is in the vicinity of a supercritical
Hopf bifurcation (cf. [12]) with only one attractor, a stable
focus fixed point at V' = 1.05 and W = —0.664. If a silent
FHN neuron is forced by just one kick of sufficient
strength it emits a spike and relaxes to its fixed point via a
damped oscillation. Here, we use a much smaller kick
amplitude of AW = 0.0014 and kick rates of » = 0.3. The
dynamics is integrated by employing a fourth-order
Runge-Kutta scheme with a step size of dr=107%.
A spike is identified whenever V(f) overcomes a fixed
detection threshold & = 0.4.

The presynaptic input is modeled as the superposition of
N, excitatory and N; inhibitory trains of post-synaptic
potentials (PSPs)

N, N;
I =AW|Y > ot—1) =Y > ot—1,)], 2)
k=1 1 m=1 n

where 7 and ! are the respective arrival times of the
instantaneous voltage kicks of strength AW. Since the
single-neuron model does not distinguish the origin of its
input, it is sufficient to generate only two over-all kick
trains (one excitatory and one inhibitory) with the given
dependencies and given over-all rates R, and R;. Each of
the two kick trains is considered to be the overlap of N,
excitatory and AN; inhibitory kick trains following a
Poissonian distribution with individual rates r, = R./N.
and r; = R;/N;. Correlated kick trains are generated
by using a refined method based on the idea of shared
input (cf. [14,15,17]). The average fraction of shared
kicks between any two individual trains is given by
the three pair-wise correlation coefficients: excitatory—
excitatory Ce, inhibitory—inhibitory Cj and excitatory—
inhibitory Cs;.

In this study, we restrict ourselves to cases with one type
of correlations only (i.e., C,; and either Ce or Cj are set to
zero). Thus, the two kick trains can be created separately:
the uncorrelated kick train is generated from a Poissonian
distribution with the desired rate R, (where x can stand for
excitatory or inhibitory). The kick train with correlations
C.>0) is obtained from a Poissonian distribution with the
desired rate R,, and the amplitudes w of the single kicks are
successively drawn from the binomial distribution with the
probability p = C,, and the total number of neurons
n=N,:

(N\‘) — NX!

w Ni—w
Py = m Cxx(l - C«’C«’C) : (3)

The average strength of excitatory and inhibitory kicks (in
units of AW) is thus given by the expectation value of the
binomial distribution W, = Ce. * No and W; = C;; * N;.
Note that by using this procedure the C,, are, apart from
statistical fluctuations, identical to the Pearson correlation

coefficients obtained for the average net spike counts of
pairs of neurons (cf. [15]).

The mean current ] = CAWr(N. — N;) is proportional
to the average net count pu= (N.— N;)ATr within a
temporal window. Since in our simulations we always set
re =ri =r and N, = N; = N we have a balanced synaptic
input. Thus, the neuron is driven by fluctuations and not
by a drift towards threshold, a condition that renders the
neuron more sensitive to input correlations [15]. By varying
the number of presynaptic neurons N, we can control both
the variance of the net count Q*> = ATr(N. + Nj) and the
variance of the current. In agreement with [3,15] the latter
is proportional to ¢ =r(A W)Z(CeeNg 4+ (1 — Cee)Ne+
CiiNi2 4+ (1 — Cjj))N;). Thus the properties of the input are
completely determined by the variance and the correlation.
An increase of the variance is equivalent to an increase of
the number of neurons. For uncorrelated noise this leads to
an increase of the kick frequency while for fixed positive
correlation it causes an increase of the kick amplitude
(whereas the frequency of the correlated kicks remains
constant). For constant variance the kick amplitude
increases and the kick frequency decreases with the
correlation. Due to the influence of the number of neurons,
the frequency of the uncorrelated kicks also decreases with
increasing correlation.

In the following, we characterize the coherence in the
neuronal response in dependence on both of these
parameters. The variance is increased equidistantly on a
logarithmic scale, while the correlation is changed in steps
of 0.1 from full-excitatory correlation to full-inhibitory
correlation (including the intermediate case of no correla-
tion at all). As an indicator of coherence resonance we
employ the coefficient of variation Cy = \/var(tis1)/{tis)
from the distribution of ISIs #1s;. This quantity attains the
value 0 for a perfectly periodic response and the value 1 for
Poissonian output. Similar results have been obtained with
the correlation time 7. of the ISI time series and with
conditional entropies.

3. Results

The Cvy of the neuronal response exhibits a minimum for
intermediate values of the variance for the whole range of
correlations (cf. Fig. 1). But not only the value and the
position of this minimum are shifted for different correla-
tions, also the underlying mechanisms are completely
different, as we will show in the following starting with
the extreme case of full correlation. For this case we can
assume that the uncorrelated input constitutes a quasi-
continuous background since the correlated kicks are
emitted with a lower rate (which for fixed correlation is
independent of the variance) but higher amplitude (which
increases with the variance).

For the case of full correlation in the excitatory input the
ISI-distribution remains Poissonian for all variances
(cf. Fig. 2), although the course of the Cy has a z-like
shape. For low variance we have an activation process
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Fig. 1. Coefficient of variation Cy versus variance for different values of the

(iic#, dotted lines) or no correlation at all (eic0.0, thick line).

following Kramer’s law and since the mean ISI-interval
(tis1) is much larger than the refractory time 7., the Cy is
according to Cy°" = 1 — t,¢/(t1s1) close to 1 (Fig. 2a).
With increasing variance (i.e., increasing amplitude of the
kicks) we observe a sudden decrease of the Cy at the
amplitude for which one kick can be enough to trigger a
spike (depending on the voltage at the time of the kick).
This decrease comes to an end and we have a minimum of
the Cy (Fig. 2b) at the variance for which in principle each
kick is sufficient to cross the seperatrix which acts as a
threshold in the state space of the FHN model (cf. [8]).
From then on, the Poissonian shape follows from an
almost 1:1 synchronization between excitatory kicks and
spikes. The increase of the Cy with the variance is due to
the fact that the still increasing amplitudes lead to a
decrease of the refractory time (Fig. 2c¢).

The same mechanism is active in the case of lower
correlation in the excitation with the only difference that
the minimum of the Cvy is shifted to lower values and
higher variances (cf. right parts of Fig. 3 and its inset). The
shift to lower values occurs since for lower correlation the
frequency of the spike-provoking kicks is higher leading to
a lower fi5r and thus also to a lower Cy while the shift to
higher variances is due to the decrease of the average kick
amplitude with decreasing correlation. Still the minimum is
attained when the whole distribution of kick amplitudes
has crossed the threshold, however, now the transition to
1:1 synchronization is more smooth since the Kkick
amplitudes now follow a binomial distribution so that the
variance region for which only a part of the kicks suffices
to trigger a spike gets broader. In this manner for
increasing variances the minimum is obtained for smaller
and smaller correlations (cf. Fig. 1) such that for a fixed
variance we observe a minimum of the Cy for an
intermediate value of the correlation. This is coherence

correlation coefficients: only excitatory (eec#, solid lines), only inhibitory

resonance with respect to the correlation length. During
this shift of the transition point to higher variances
(cf. inset of Fig. 3) the frequency of the uncorrelated
inhibitory kicks increases more and more (the quasi-
continuous inhibitory background current gets stronger
effectively shifting the bifurcation parameter a to higher
values) so that for a certain excitatory correlation even at
high variances one kick is rarely enough to trigger a spike.
Thus at this correlation we observe a dip in Fig. 3. This
point satisfies three conditions: the amplitudes of corre-
lated excitatory kick are high enough to reach 1:1
synchronization, the frequency of the correlated excitatory
kicks is so low that the Poissonian tail almost disappears
and, finally, the variance of the minimum and thus the
frequency of inhibitory kicks are so low that they allow 1:1
synchronization.

A completely different mechanism is responsible for the
case of full correlation in the inhibitory input (cf. Fig. 4).
Spiking sets in at quite high variances only when the rate of
the uncorrelated excitatory kicks (which form the under-
lying current driving the neurons towards threshold) has
become high enough to recover from the last inhibitory
kick and to reach the spiking threshold before the next
inhibitory kick. Resembling an activation process the ISI
distribution is Poissonian with a Cy close to 1 (Fig. 4a).
For higher variances the increasing excitatory background
renders the mean ISI shorter and shorter (and so the value
of the Cy gets smaller) until a regime of almost repetitive
firing is reached (Fig. 4b). Finally the increasing amplitude
of the inhibitory kicks leads to a quantization reflected by a
multi-modality in the ISI histogram and a corresponding
increase in the Cy (Fig. 4c¢).

This quantization is due to the fact that each inhibitory
kick (except the ones in the refractory time) disturbs the
repetitive firing, delays the next spike and thus prolongs the
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Fig. 2. Full excitatory correlation: ISI-histogram for three different variances. (a) Low variance: activation process, (b) intermediate variance (minimum
of Cy): 1:1 synchronization with high refractory time, (c) high variance: 1:1 synchronization with reduced refractory time. Dashed lines mark the mean ISI.

Please note the different x-scale for the first histogram.
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Fig. 3. Minimum value of the Cy versus correlation. Inset: variance at which the minimum value of the Cy is obtained versus correlation.

ISI (the quasi-continuous excitatory background first has
to recover the last inhibitory kick before it can continue to
drive the neuron towards threshold). The ISI-histogram
can be regarded as a superposition of many peaks (each
peak corresponding to a fixed number of kicks per spikes
K) which generally overlap substantially as can be seen
from the vertical projections of the point clouds in the inset
of Fig. 5. Only for high variances and correlations the
quantization is so high that the importance of the number
of kicks overshadows the importance of their position (i.e.,
the distance between the center of masses of different
clouds becomes higher than the horizontal spreading in

each cloud). This leads to the multi-peak ISI-histogram
observed in Fig. 4c.

From the proportionality between the ISI-length and
the number of inhibitory kicks, the average delay per
inhibitory kick (D) can be estimated (cf. Fig. 5, inset). This
quantity, together with the number of inhibitory kicks per
spike K, is sufficient to yield a remarkably exact estimate of
the course of the Cy (cf. Fig. 1):

D)AK + AD(K
Cv = \var(tis)/{tis1) = <z)rp+?r—D><K<>>’ v
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Fig. 4. Full inhibitory correlation: ISI-histogram for three different variances. (a) Low variance: activation process, (b) intermediate variance (minimum
of Cy): repetitive firing with only small quantization, (c) high variance: repetitive firing with multiple peaks due to quantization. Dashed lines mark the
mean ISI. Please note the different x-scale for the first histogram.
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Fig. 5. Average delay per inhibitory kick (D) versus variance for different values of inhibitory correlation. Inset: exemplary scatter plot of the number of
kicks K in a given ISI versus the length of the respective ISI (inhibitory correlation Cj = 0.6 and maximum noise strength ¢ = 0.06, data obtained from
6000 ISIs). Black crosses mark the center of mass for each number of kicks; thick black crosses highlight the ones with the highest statistics (i.e., those
inside the main peak of the ISI histogram) that are used to estimate the average delay per kick (D) as the inverse of the derivative of the linear fit.

with f, being the ISI expected for repetitive firing without
inhibitory disturbance (i.e., the point where the fit in the
inset of Fig. 5 crosses the x-axis). Only for high variances
the estimate is too a little too low since there the standard
deviation within each of the multiple peaks should be taken
into account as well. In this estimate the coherence

resonance is reflected by the minima of the average delay
per inhibitory kick (D) for each correlation (cf. Fig. 5).
Comparing different correlations, for the highest var-
iances the minimum of the Cy is obtained for the full
inhibitory correlation (cf. Fig. 1). Although here the
quantization is by far more pronounced, the higher
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amplitude is less effective in disturbing than the high
frequency since for the latter there are more kicks in the
small time window between the end of the refractory time
and the next spike. For decreasing inhibitory correlation, the
repetitive firing state is reached already for lower variances
since the rate of the uncorrelated excitatory kicks increases
with decreasing correlation. Also the minimum of the Cy
decreases since for lower correlation (in particular at lower
variances) we have lower amplitudes of the correlated kicks
and thus less quantization. For the lowest correlation we do
not even reach the state of repetitive firing (and thus the Cy
does not reach very low values) since the frequency of the
correlated kicks is so high that it disturbs significantly even
in the short interval between the end of the refractory time
and the beginning of the spike (for lowest correlation the
average frequency ratio between the uncorrelated excitatory
and the correlated inhibitory kicks is minimal).

Since for all correlations the minimum of the Cy is
attained for intermediate values of the variance we have
coherence resonance with respect to the noise strength.
Except for some very low and for the highest variances the
minimum is also obtained for an intermediate value of the
correlation, thus we observe coherence resonance with
respect to the correlation length. Furthermore, since the
overall absolute minimum is obtained for intermediate
values of both the noise strength and the correlation, we
have a double coherence resonance (DCR). Also this
prominent point satisfies three conditions: the frequency
of the excitatory background is high enough to allow
repetitive firing, whereas both the frequency and the
amplitude of the correlated inhibitory kicks are low enough
not to disturb (quantize) too much (the trade-off between
the frequency and the amplitude is optimal).

The results shown here have been obtained for an input
rate r = 0.3. Results for different rates can be related to
these values by a parameter transformation. The important
parameter is not the correlation C,, but (T) = Cy/r =
C.(t), the average interval between the correlated kicks
(with 7 being the average interval between the uncorrelated
kicks). For cases with identical (7} also the average
amplitude u = NC,, of correlated kicks is independent
of the rate, however, the standard deviation o=
v/ NCy(1 — Cyy) of the binomial amplitude distribution
is lower for the case in which both correlation and rate are
lower. For correlated inhibitory kicks this does not make a
difference but for correlations in the excitatory input the
crossing of the spike triggering threshold is affected. The
dip is most pronounced for the case of highest correlation
and highest rate since there the complete 1:1 synchroniza-
tion is already reached at the lower variances where the
refractory time and also the mean are still rather large and
thus the Cy is still quite low.

4. Conclusion

By means of a new discrete method to generate
correlated pre-synaptic input we could explain the double

coherence resonances in the FitzHugh—Nagumo model.
Starting from the two extreme cases of full correlation in
excitation and inhibition we could disclose the different
mechanisms responsible for the minimum in the Cy: for
fixed excitatory correlation the occurrence of the minimum
is a pure kick amplitude effect whereas the decrease of
the minimum Cvy with decreasing correlation is due to the
change in the frequency of the correlated kicks. The
increase for very low correlations is an effect of the change
in the frequency of the uncorrelated kicks. Different
dependencies are observed for fixed inhibitory correlation
where the occurrence of the minimum in the Cy is a
combined effect of the uncorrelated excitatory frequency
and the correlated inhibitory kick amplitude. The decrease
of the minimum Cy with decreasing correlation is due to
the change in the frequency of the correlated kicks whereas
the increase for very low correlations is an effect of the
change in the frequency of the uncorrelated kicks. The
uncorrelated case marks the smooth transition from one
kind of correlation to the other and can thus be understood
as the lower limit case for both kinds of correlated inputs.

We believe that the present results can be useful to gain
some deeper understanding on the role of correlations in
neuronal coding [7,16]. Future work will include the
application of this and more complicated correlation
schemes (e.g., schemes including cross-correlations between
excitation and inhibition) to more realistic neuronal models
in order to simulate the role of correlations in the high-
conductance state of neocortical neurons in vivo [2].
Another promising direction of research could be the
analysis of correlation effects on synchronization proper-
ties of neuronal networks.
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