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Abstract This chapter presents the finite element code NOSA-ITACA for static
and modal analyses of masonry structures of architectural interest. NOSA-ITACA
adopts the constitutive equation of masonry-like materials, which considers masonry
a non-linear elastic material with zero tensile strength. The capability of modelling
restoration and consolidation operations makes the code a helpful tool for maintain-
ing historical buildings. In recent years, long–term vibration monitoring turned out
to be an effective non-destructive technique to investigate the dynamic behaviour and
check the health status of historical buildings. Changes in their dynamic properties,
such as natural frequencies, can represent effective damage indicators. The latest
NOSA-ITACA developments are oriented towards structural health monitoring. The
availability of the experimental modal properties of a structure makes it possible to
calibrate its finite element model via model updating procedures. In particular, the
unknown structure’s characteristics, such as materials’ properties and boundary con-
ditions, can be determined by solving a minimum problem whose objective function
is expressed as the discrepancy between experimental frequencies and mode shapes
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and their numerical counterparts. Several case studies are presented to show themain
features of NOSA-ITACA and its effectiveness in the conservation of architectural
heritage.

1 Introduction

NOSA-ITACA is a finite element (FE) software package for the numerical modelling
of the structural behaviour of heritage constructions. The free distribution of the
code [6] is aimed at facilitating the use of mathematical models and numerical
tools in the field of Cultural Heritage and draws its inspiration from the pioneering
experiences of FEAP [29], Code–Aster [30] and Opensees [28] in the broader fields
of computational thermomechanics and earthquake engineering.
The development of the code began in the 80s and has beenmade possible through

the funding of the Italian National Research Council, the Italian Ministry of Univer-
sities and Research, and the region of Tuscany. In particular, within the framework of
the NOSA-ITACA [20], [39] andMOSCARDO projects [22], the code has been sub-
stantially modified and significantly improved with the addition of new FORTRAN
90 modules, and equipped with new finite elements and functionalities, thus enhanc-
ing its application capabilities. NOSA-ITACA incorporates a FE numerical code
(called NOSA, Nonlinear Structural Analysis), entirely developed by the Mechanics
of Materials and Structures Laboratory of the ISTI-CNR (MMS Lab), relies on the
open-source SALOME platform [31] for pre– and post–processing operations and
enables static and dynamic analysis of structures made of linear elastic and masonry
materials. The code adopts the constitutive equation of masonry-like materials [12],
[13] and models masonry as a homogeneous isotropic nonlinear elastic material with
zero or weak tensile strength and infinite or bounded compressive strength [35]. The
package relies on a finite element formulation of the differential equations governing
the statics of masonry structures. Suitable numerical techniques have been devel-
oped [35] based on the Newton–Raphson method for solving the nonlinear system
obtained by discretizing the structure into finite elements. The code enables thermo-
mechanical analysis of masonry-like solids in the presence of thermal loads [35] and
can be applied to modelling restoration and reinforcement operations on construc-
tions of architectural interest. Recent code applications to historical buildings can
be found in [19] and [20].
Recently, numerical methods for constrained generalized eigenvalue problems

have been implemented in NOSA-ITACA to address modal analysis of linear elastic
structures [39]. The latest developments of the code focused on the integration
of numerical simulations with experimental tests. Thus, algorithms for the finite
element model updating, aimed at calibrating the FE model of a structure using its
experimental frequencies andmode shapes have been implemented inNOSA-ITACA
[22], along with a new numerical procedure, which relies on linear perturbation and
allows to model the influence of cracks on the dynamical properties of a masonry
structure [21].
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This chapter describes the main features of the code and its effectiveness in the
field of Cultural Heritage. Section 2 is devoted to a brief description ofNOSA-ITACA
and SALOME. A summary of the constitutive equation of masonry-like materials
implemented in NOSA-ITACA is reported in Section 3. The nonlinear static analysis
of masonry constructions and the modal analysis of linear elastic structures are
addressed in Section 4. Two case studies modelled via NOSA-ITACA are reported
for the sake of illustration: the static analysis of the church of San Francesco in
Lucca and the modal analysis of the Devil’s bridge in Borgo a Mozzano, in which
the software is compared with some commercial codes in terms of reliability of
results and computation time. Sections 5 and 6 are devoted to finite element model
updating and linear perturbation and describe the algorithms recently implemented
in NOSA-ITACA along with some applications.

2 The NOSA-ITACA code for the structural analysis of masonry
buildings

NOSA-ITACA is free software developed by the MMS lab at ISTI-CNR. It is a finite
element code that combines NOSA (the solver) with the open-source SALOME
platform, suitably modified for pre– and post–processing operations. The current
version of NOSA-ITACA enables conducting both linear and nonlinear static and
modal analyses. The constitutive equations implemented in the code include isotropic
linear elastic materials and masonry-like materials, modelled as nonlinear elastic
materials with weak or zero tensile strength and infinite or bounded compressive
strength. Several boundary conditions and load types can be prescribed, including
multipoint constraints and thermal loads. The code contains an extensive element
library, including beam, plane, shell, three-dimensional and axisymmetric elements
[6].
The downloadable package NOSA-ITACA (www.nosaitaca.it/software/) includes

SALOME v8.3.0, and is available for Ubuntu 16.04, 18.04 and 20.04 and works on
any modern GNU/Linux system. It is possible to run NOSA-ITACA by simply
downloading a compressed file and launching the executable. The solver NOSA,
developed by MMS Lab, has been integrated into the open-source graphic software
SALOME [31]. The NOSA-ITACA code resulting from the integration relies on
SALOME to define the geometry of the structure under examination and visualize
the results of the structural analysis. In particular, the integration implements the
FE code NOSA (developed in Fortran) within the SALOME architecture (developed
mainly in the C/C++ and Python languages) as an additional module like those
already existing (MESH, GEOM, PARAVIS). The SALOME Nosa module allows
the user to define the physical quantities associated to the mesh (materials, elements’
thickness, boundary conditions, loads, type of analysis), display the load applied on
the structure, generate the input file for running and monitoring the finite element
analysis. The module includes a stand-alone version of the FE code as an executable
file nosao and implements a GUI (Graphical User Interface) using Python and Qt 5
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libraries. The GUI communicates with the SALOME kernel and additional modules
(such as MESH) through CORBA interfaces, defined by IDL files. The executable
nosao carries out the numerical analysis using as input the card "crd" created via the
SALOME Nosa module. Moreover, the SALOME Nosa module allows the user to
monitor the analysis and, finally, transmits the results of the numerical study to the
visualization module PARAVIS by creating a "med" output file. Figure 1 shows a
screenshot of a mode shape of the San Frediano bell tower in Lucca visualized by
PARAVIS.

Fig. 1 PARAVIS module, visualization of a mode shape of the San Frediano bell tower.

3 The constitutive equation of masonry-like materials

Worldwide cultural heritage comprises different historical masonry constructions
constituted by various materials such as stones, bricks, mortar, and built using dif-
ferent building techniques. Masonry materials share some common characteristics,
the most relevant being that their response to tension is fundamentally different from
compression, and their mechanical properties depend on the constituent elements
and the construction techniques used. Among the constitutive equations available
in the literature, NOSA-ITACA adopts the constitutive equation of masonry-like (or
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no-tension) materials. This equation is inspired by the work of Heyman [27] on
masonry arches and has been introduced and studied by Di Pasquale [13] and Del
Piero [12].
The constitutive equation ofmasonry-likematerials is based on three fundamental

hypotheses: (i) Infinitesimal elasticity, (ii) A unilateral constraint on the stresses,
which enforce the admissible stresses to belong to the cone of symmetric negative
semidefinite tensors, (iii) An orthogonality condition between stress and fracture
strain. This equation considers masonry as a homogeneous and isotropic nonlinear
elastic material with zero tensile strength and infinite compressive strength and can
realistically model the most significant aspects of masonry’s behaviour.
Let 𝐿𝑖𝑛 be the set of all second-order tensors with the inner product A · B =

𝑡𝑟 (A𝑇B), A,B ∈ 𝐿𝑖𝑛, with A𝑇 the transpose of A. We denote by 𝑆𝑦𝑚 the subspace
of symmetric tensors and by 𝑆𝑦𝑚− and 𝑆𝑦𝑚+ the sets of all negative semidefinite
and positive semidefinite elements of 𝑆𝑦𝑚. Let C be a positive definite symmetric
fourth-order tensor from 𝑆𝑦𝑚 to 𝑆𝑦𝑚 satisfying

A · C[B] = B · C[A], for A,B ∈ 𝑆𝑦𝑚, A · C[A] > 0 for A ≠ 0. (1)

We can consider the inner product ⊙ on 𝑆𝑦𝑚

A ⊙ B = A · C−1 [B], for A,B ∈ 𝑆𝑦𝑚, (2)

and the associated norm ∥ A ∥2
C−1

= A ⊙ A. Given E ∈ 𝑆𝑦𝑚 let us consider the
functional

𝜓(S) =∥ C[E] − S ∥2
C−1

= (C[E] − S) · (E − C−1 [S]). S ∈ 𝑆𝑦𝑚−. (3)

The following proposition holds.

Proposition 1 For E ∈ 𝑆𝑦𝑚 there exists a unique T ∈ 𝑆𝑦𝑚− satisfying the following
three equivalent statements

(i) T minimizes functional 𝜓

𝜓(T) ≤ 𝜓(S), for each S ∈ 𝑆𝑦𝑚−. (4)

(ii) T satisfies the variational inequality

(C[E] − T) ⊙ (S − T) ≤ 0, ∀S ∈ 𝑆𝑦𝑚−. (5)

(iii) T satisfies the following complementarity problem

E − C−1 [T] ∈ 𝑆𝑦𝑚+, T · (E − C−1 [T]) = 0. (6)

𝑆𝑦𝑚− is a convex closed cone of 𝑆𝑦𝑚, then the proposition follows from the
minimum norm theorem [8] and T is the projection of C[E] onto 𝑆𝑦𝑚− with respect
to the inner product ⊙ in 𝑆𝑦𝑚

T = 𝑃𝑆𝑦𝑚− (C[E]). (7)
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Thus, given the elasticity tensor C, which contains the mechanical properties of
thematerial (as Young’smodulus and Poisson’s ratio), and the strain tensorE ∈ 𝑆𝑦𝑚,
the stress tensor T corresponding to E is the projection defined in (7). The strain E
is the sum of an elastic part C−1 [T], which depends linearly on T, and an inelastic
part E − C−1 [T], which belongs to the normal cone to 𝑆𝑦𝑚− at T in virtue of (6).
E − C−1 [T] is also called fracture strain because cracks are expected to be present
in the regions in which it is different from zero. We can consider the stress function
T̂ from 𝑆𝑦𝑚 to 𝑆𝑦𝑚− defined by

T̂(E) = T, with T = 𝑃𝑆𝑦𝑚− (C[E]).

The function T̂ is non-linear, homogeneous of degree 1, monotone, Lipschitz con-
tinuous and Fréchet differentiable on a open dense subset of 𝑆𝑦𝑚 [12], [35], [38].
If the elasticity tensor C is isotropic [26] then C[A] = 2𝜇A + 𝜆𝑡𝑟 (A)I, where

𝜇 and 𝜆 are the Lamé moduli of the material satisfying the inequalities 𝜇 > 0 and
2𝜇 + 3𝜆 > 0. In this case, by using the fact that E, T and the fracture strain are
coaxial, it is possible to calculate explicitly T̂(E) and its derivative 𝐷𝐸T̂(E), which
is a symmetric positive semidefinite fourth-order tensor [35]. The latter will be used
for the numerical solution of the static and dynamic problems of masonry structures.
It is well known that the mechanical behaviour of masonry constructions can

be affected by thermal variations. A first contribution on the behaviour of masonry
bridges subjected to thermal variations is given in [25], reporting on several masonry
arch bridges that presented lowering of the crown during winter and rising during
summer. More recent papers report the presence of cracks in masonry monuments
and bridges, which can be ascribed to daily and seasonal thermal fluctuations [44],
[7], [43]. Thus, tomodel the influence of temperature variations on the stress field, the
crack distribution, and the dynamic properties of masonry structures, the constitutive
equation of masonry-like materials can be generalized to consider the presence of
thermal dilatation. So, we denote by 𝜃 the temperature, 𝜃0 the reference temperature,
C(𝜃) the elasticity tensor (the mechanical properties may depend on temperature),
𝛼(𝜃 − 𝜃0)I is the thermal expansion due to the thermal variation 𝜃 − 𝜃0, with 𝛼
the coefficient of thermal expansion. As in the isothermal case, given the elasticity
tensor C(𝜃) and the infinitesimal strain tensor E and temperature 𝜃, the stress tensor
T corresponding toE and 𝜃 is the projection ofC(𝜃) [E−𝛼(𝜃−𝜃0)I] onto 𝑆𝑦𝑚− with
respect to the scalar product ⊙ in 𝑆𝑦𝑚 defined by C(𝜃)−1. The constitutive equation
of masonry-like materials under non isothermal conditions has been implemented
in NOSA-ITACA to model the behaviour of masonry buildings subjected to thermal
loads [35].

4 Static and modal analysis

NOSA-ITACA relies on a finite element formulation of the partial differential equa-
tions governing the equilibrium of linear elastic and masonry buildings.
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Let us consider a body1 B whose boundary 𝜕B comprises two complementary
and disjoined portions 𝜕B1 and 𝜕B2. B is made of a masonry-like material with
constitutive equation (7). The equilibrium problem for a body B subjected to the
loads (b, s0), with the body force b defined over B, and the surface force s0 defined
over 𝜕B2, is to find a triple (u, E, T) consisting of one vector and two tensor fields
defined over B, which satisfy the following equations[35]

𝑑𝑖𝑣T + b = 0, E =
∇u + ∇u𝑇

2
, T = T̂(E), on B, (8)

u = 0 on 𝜕B1, Tn = s0 on 𝜕B2. (9)

The equilibrium problem (8)-(9) has been addressed in [2], [18], [35], [42], [34],
where it is shown that the existence of a solution (u,E,T) is not guaranteed for all load
conditions. Moreover, if an equilibrium solution exists, it may not be unique in terms
of displacements, and given two solutions, the corresponding stress fields coincide.
In order to study real problems, the equilibrium problem of masonry structures can
be solved via the finite element method. Suitable numerical techniques have been
developed [35] based on the Newton-Raphson method for solving the nonlinear
system obtained by discretizing the body B into finite elements. Their application is
based on the explicit expression for𝐷𝐸T̂(E), which is needed to calculate the tangent
stiffness matrix𝐾𝑇 . Thus, an iterative procedure has been implemented into the finite
element code NOSA [35]. Given the hyperelasticity of masonry-like materials, the
solution of the equilibrium problem does not depend on the choice of the loading
process, at least in terms of stress. For numerical reasons, to avoid convergence
problems, it is strongly recommended to assign the load incrementally. The linear
algebraic system obtained at each iteration of each load increment is solved with
a frontal solver [32], which does not require building the whole assembled system
matrix. Since 𝐷𝐸T̂(E) is positive semidefinite, in order to avoid the occurrence of
null pivot during the solution of the system, a regularization method is applied [37],
and 𝐷𝐸T̂(E) is replaced by 𝜀 C at those Gauss points where it vanishes, with 𝜀 a
suitably small real number.
Recently, numerical methods for generalized eigenvalue problems have been im-

plemented in NOSA-ITACA to address themodal analysis of linear elastic structures.
In particular, [39] describes the procedure implemented for solving the constrained
generalized eigenvalue problem

𝐾 v = 𝜔2 𝑀 v, 𝑇v = 0, (10)

where 𝐾 and 𝑀 ∈ R𝑛×𝑛 and 𝑇 ∈ R𝑚×𝑛 with 𝑚 ≪ 𝑛. 𝐾 and 𝑀 are the stiffness
and mass matrices of the finite element assemblage, 𝐾 is symmetric and positive
semidefinite, 𝑀 is symmetric and positive definite, and both are banded with the
bandwidth depending on the numbering of the finite element nodal points. The
integer 𝑛 is the total number of degrees of freedom of the system and is generally

1 A body is a regular region of the three-dimensional Euclidean space having boundary 𝜕B , with
outward unit normal n [26].
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very large since it depends on the discretization of the problem. The second condition
in (10) expresses the fixed constraints and the master-slave relations assigned to the
displacements of the structure. Restriction of the matrix 𝐾 to the null subspace of
R𝑛 defined by 𝑇 is positive definite. Solving (10) provides the natural frequencies
𝑓𝑖 = 𝜔𝑖/2𝜋 and mode shapes v(𝑖) of the structure. Algorithms implemented in
NOSA-ITACA take into account both the sparsity of the matrices and the features
of master-slave constraints (tying or multipoint constraints). They are based on the
open-source packages SPARSKIT [41], for managing matrices in sparse format
(storage, matrix-vector products), and ARPACK [33], which implements a method
based on Lanczos factorization combined with spectral techniques that improve
convergence. In order to make the code faster and able to compete with other state-
of-the-art software, the inner solver of NOSA-ITACA has been paired with MUMPS
[1], a direct sparse multi-frontal code both fast and well-tested by the numerical
community.

4.1 The case study of the San Francesco Church

The results of some nonlinear structural analyses of the church of San Francesco
in Lucca (Italy) are sketched to highlight the performance of NOSA-ITACA. The
church is a typical single-nave Franciscan masonry building, about 70 m long, 16 m
wide and 19 m high. The nave is closed on the west by the façade overlooking the
San Francesco square (Fig.2) and on the east by the apse. The northern wall leans
against the portico of the monastery cloister; the southern wall is instead completely
free and runs along the street named via della Quarquonia. The earliest walls of the
church date back to the 13th century, but the building underwent several changes
and enlargements over the centuries [19]. The perimeter walls are mainly made of
masonry bricks and lime mortar, except for the top of the longitudinal walls, where
a band of poor quality masonry is present. At the end of the nineties, the southern
wall presented large out-of-plane deflections and extensive cracks involving the
masonry over the windows and near the facade. Some reinforcement operations,
mainly aimed at improving the quality of the masonry and the connections between
the walls, were concluded in July 2013. Because of the slenderness of the nave
walls, it was decided to increase the building’s resistance to horizontal actions.
Thus, a metal framework was constructed at roof level to brace the structure, and
the roof layer was stiffened through a crossed double-layer wooden deck. Numerical
simulations were conducted via the NOSA-ITACA code to assess the effectiveness
of the reinforcement operations [19] in light of current Italian regulations [15], [10],
[14]. The church was subjected to the permanent and horizontal out-of-plane loads
assigned incrementally and modelling equivalent static seismic actions. Figure 3
shows the fracture strain in the southern wall before (middle) and after (bottom)
the strengthening intervention. The numerical results correspond to the fifth load
increment (middle) and the seventh load increment (bottom), at which the church,
respectively without and with reinforcement, reaches the life-safety ultimate limit
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state. The fracture strain distribution calculated before the strengthening intervention
matches the actual crack pattern (top), exhibiting vertical cracks between the façade
and the lateral wall and over the windows. The figure highlights the benefits of
the reinforcements, which reduced the values of both the fracture strain and the
extension of the cracked region. In addition, the maximum value of the horizontal
displacements, reached at the top of the longitudinal walls, is reduced by about 40%
passing from the unreinforced to the reinforced case, while the maximum value of
the compressive stress 𝑇𝑧𝑧 at the base of the church’s walls, shown in Figure 4 vs. the
total horizontal load 𝐻, is reduced by 30%. Therefore, the numerical analysis shows
that applying the metal framework increases the church’s resistance to horizontal
actions and improves its global stability.

Fig. 2 Lucca, San Francesco square and the façade of San Francesco church.
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Fig. 3 San Francesco church: actual crack distribution in the southern wall before restoration (top),
fracture strain before (middle) and after (bottom) restoration (equivalent static analysis).

Fig. 4 Maximum values of compressive stress 𝑇𝑧𝑧 versus the horizontal load 𝐻 applied to the
church.
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4.2 The case study of the Maddalena Bridge

In the following, a benchmark conducted on the case study of the Maddalena Bridge
(Figure 5) in Borgo a Mozzano (Lucca) is described [3]. The bridge finite element
model was analyzed via four different codes: NOSA-ITACA, Marc [36], SAP2000
(v14, [11]) and Code–Aster (v. LGPL 2016, [30]). The experiments, aimed at com-
paring the results of modal analysis, were performed on a server with an i7-920
CPU running at 2.67 GHz and 8GB of RAM. The performance of the four codes is
compared in Table 1. The first ten natural frequencies evaluated by NOSA-ITACA
and Marc are essentially coincident, and NOSA-ITACA, SAP2000 and Code–Aster
yield very similar results. A comparison via the Modal Assurance Criterion (MAC)
index [9] between the eigenvectors calculated with the different codes is also per-
formed . The MAC values evaluated using the NOSA-ITACA eigenvectors and the
eigenvectors calculated by the other codes all turn out to be greater than 0.98 (a
MAC value near 1 indicates two almost parallel vectors). The experimental values
of the natural frequencies are also available and reported in the last column of the
table. Table 2 reports the computation times for the four codes. In terms of execution
speed, Marc and Code–Aster outperform NOSA-ITACA, and SAP2000 turns out to
be the slowest code. Table 2 also shows the number of degrees of freedom of the
three models before and after the projection step (which in this context amounts to
imposing the boundary conditions).

5 Ambient vibration test and finite element model updating

In order to assess the structural behaviour of historical monuments, numerical mod-
elling can be integrated by experimental tests. In the ambient vibration tests, the
vibrations induced by natural and anthropic sources (earthquakes, wind, traffic,
crowd movements, et cetera) are recorded using a sensor network (accelerometers,
velocimeters) installed on a historical building. Data recorded during the monitoring
campaign are analyzed and processed using suitable numerical procedures that de-

Fig. 5 The Maddalena bridge and its FE discretization.
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Table 1 TheMaddalena Bridge. Comparison between the frequencies computed by NOSA-ITACA
( 𝑓N),Marc 2013 ( 𝑓M), SAP2000 v14 ( 𝑓S) andCode–Aster v. LGPL2016 ( 𝑓C), 𝑑NM = | 𝑓N− 𝑓M |/ 𝑓N,
𝑑NS = | 𝑓N − 𝑓S |/ 𝑓N, 𝑑NC = | 𝑓N − 𝑓C |/ 𝑓N.

𝑓N [𝐻𝑧 ] 𝑓M [𝐻𝑧 ] 𝑓S [𝐻𝑧 ] 𝑓C [𝐻𝑧 ] 𝛿NM [%] 𝛿NS [%] 𝛿NC [%] 𝑓exp [𝐻𝑧 ]
1 3.200 3.200 3.185 3.200 0.000 0.469 0.001 3.370
2 5.129 5.129 5.103 5.129 0.000 0.499 0.007 5.055
3 5.483 5.473 5.443 5.483 0.183 0.735 0.001 5.400
4 6.752 6.751 6.724 6.752 0.015 0.422 0.006 –
5 7.169 7.169 7.141 7.169 0.000 0.386 0.005 7.059
6 8.467 8.467 8.421 8.467 0.000 0.542 0.003 8.800
7 9.538 9.538 9.480 9.538 0.000 0.606 0.004 9.186
8 10.576 10.576 10.509 10.576 0.000 0.634 0.001 –
9 12.233 12.233 12.198 12.233 0.000 0.286 0.003 –
10 13.119 13.119 13.031 13.119 0.000 0.671 0.002 13.044

Table 2 Computation times for twenty of the smallest eigenvalues of the projected problem with
NOSA-ITACA, Marc 2013, SAP2000 v14 and Code-Aster v. LGPL 2016, using the same Lanczos
method accuracy settings. The number of degrees of freedom before and after the projection step
are reported in the last two columns.

NOSA-ITACA Marc SAP2000 Code-Aster No. DOF No. proj. DOF
165.59 s 83.04 s 369.00 s 121.96 s 169,830 155,312

termine the structure’s dynamic properties, such as frequencies, damping ratio and
mode shapes. This approach is known as Operational Modal Analysis [9].
Using experimentalmodal properties of a structuremakes it is possible to calibrate

its finite element model via model updating procedures. The goal of finite element
model updating is to determine the unknown characteristics of a structure, such as
materials’ properties, boundary conditions, et cetera by matching experimental and
numerical frequencies and mode shapes [16].
We assume that the stiffness 𝐾 (x) and mass 𝑀 (x) matrices of the finite element

model depend on a parameters vector x belonging to the box Ω ⊂ R𝑝 , we solve
the generalized eigenvalue problem (10) for 𝐾 (x) and 𝑀 (x) and we calculate the
frequencies 𝑓1 (x),... , 𝑓𝑞 (x) and the corresponding eigenvectors v1 (x),..., v𝑞 (x). We
consider the function

𝜙(x) =
𝑞∑︁
𝑖=1

𝑤2𝑖 [ 𝑓𝑖 − 𝑓𝑖 (x)]2 + 𝑤2𝑞+𝑖 [1 − 𝛾𝑖 (x)]2, (11)

which measures the distance between the experimental frequencies 𝑓𝑖 and mode
shapes v̂𝑖 and the numerical counterparts 𝑓𝑖 (x) and v𝑖 (x). Quantities 𝛾𝑖 (x) are the
absolute value of the cosine of the angle between the numerical and experimental
mode shapes (the square root of the Modal Assurance Criterion defined in [9]).
Scalars 𝑤𝑖 are the weights that should be given to each frequency and mode shape in
the optimization scheme (usually, 𝑤𝑖 = 𝑓 −1

𝑖
, for 𝑖 = 1, ..., 𝑞 and 𝑤𝑖 = 0 or 𝑤𝑖 = 0.1 for

𝑖 = 𝑞+1, ..., 2𝑞). Then we minimize the objective function 𝜙 and we calculate a local
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optimal value of x in Ω. The minimum problem we must solve is a nonlinear least
square problem and the numerical procedure implemented in theNOSA-ITACAcode
to minimize function 𝜙 is based on a trust region scheme [22], [23]. By modifying
the Lanczos’s projection scheme used to compute the first (smallest) eigenvalues
(and corresponding eigenvectors), we obtain local parametric reduced-order models
that, embedded in the trust-region scheme, are the basis for an efficient algorithm
that minimizes the objective function, starting from a point x𝑠 belonging to Ω.
The model updating algorithm integrated within NOSA-ITACA reduces the over-

all computation time and can manage the large-scale problems encountered in the
applications, where a large number of degrees of freedom are involved. It is worth
noting that in many applications found in the literature, the finite element code (usu-
ally a commercial one) is used as a black-box function, and the optimization problem
is solved using a general-purpose optimizer. The procedure implemented in NOSA-
ITACA turned out to be faster than a black-box approach. Moreover, information
about the reliability of the minimum point and its sensitivity to noisy experimental
data can be obtained from the singular value decomposition of the Jacobian of the
residual function (the difference between numerical and experimental frequencies)
evaluated at the minimum point [23], [24].
To show the capabilities of the model updating procedure implemented in NOSA-

ITACA, we consider the case study of the Clock Tower in Lucca shown in Figure 6.
The tower dates back to the 13–th century [23], it is 48.4 m high, with a rectangular
cross section of about 5.1 x 7.1 m and walls of a thickness varying from about 1.77
m at the base to 0.85 m at the top.
From November 2017 to March 2018 the ambient vibrations of the tower were

monitored via four seismic stations adopting different layouts and four natural vibra-
tion frequencies and mode shapes were identified. The tower structure is discretized
into 11,383 eight-node brick elements, the tie rods and wooden roofs are modelled
using beam elements, for a total of 45,511 degrees of freedom. We assume that the
structure is made of two different materials constituting the bell chamber (Material
1) and the tower (Material 2), respectively (figure 6). Poisson’s ratio is fixed to 0.2,
the mass densities are 𝜌1 = 1, 700 kg/m3, 𝜌2 = 2, 100 kg/m3 and the Young’s moduli
𝐸1 and 𝐸2 are assumed to vary between 1 GPa and 6 GPa. For x = (𝐸1, 𝐸2), the
minimum point of function (11) calculated by NOSA-ITACA assuming 𝑤𝑖 = 𝑓 −1

𝑖
,

𝑖 = 1, ..., 4, 𝑤5 = 𝑤6 = 0.1 and 𝑤7 = 𝑤8 = 0, has coordinates 𝐸𝑜𝑝𝑡

1 = 1.9288 GPa
and 𝐸𝑜𝑝𝑡

2 = 3.0451. Figure 7 shows a plot of the objective function 𝜙 and Figure 8
shows the convergence of the numerical frequencies to the experimental ones during
the process. Finally, Table 3 reports the experimental frequencies, the numerical fre-
quencies calculated at the minimum point (𝐸𝑜𝑝𝑡

1 , 𝐸
𝑜𝑝𝑡

2 ) and their relative errors. The
total computation time was 27.15 s against 175.41 s required to minimize function
𝜙 with a general purpose optimizer (using the SQP solver of Matlab 2013b coupled
with NOSA–ITACA as a black–box function).
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Table 3 Results of the optimization algorithm: experimental and numerical frequencies and relative
errors.

Mode Shape Exp. freq. [Hz] Num. freq. [Hz] Relative error (%)
1 1.05 1.0440 0.57
2 1.30 1.31229 0.99
3 4.19 4.1884 0.04
4 4.50 4.4522 1.06

6 Structural health monitoring and linear perturbation

In recent years, continuous long-term vibration monitoring turned out to be an
effective non-destructive technique to investigate the dynamic behaviour and check
the health status of historical buildings. Long-term monitoring campaigns have
shown that changes in the dynamic properties, such as natural frequencies and
mode shapes, can represent effective damage indicators. In particular, experimental
frequencies are sensitive to structural changes, but they also depend on environmental
parameters, such as temperature and humidity. The long term dynamic monitoring of
the San Frediano bell tower in Lucca reported in [4] has highlighted that frequencies
tend to increase with temperature, with a variation during the year of 5-6 percent.

Fig. 6 The Clock Tower in Lucca (in the foreground on the left) and its finite element discretization
(on the right).
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This behaviour can be explained by the closure of cracks due to thermal dilatation
in the materials constituting the tower, which tends to increase its stiffness. Once the
influence of environmental factors has been considered, the changes in the dynamic
properties over time can represent effective structural damage indicators, as shown
in [17], reporting the results of a 15-month dynamic monitoring of the Gabbia tower
in Mantova. During the monitoring period, the tower was subjected to a far-field
seismic event, the Garfagnana earthquake in June 2013, characterized by a peak
acceleration of about 20 cm/s2, exceeding 40-50 times the highest amplitude of the
usually observed ambient vibrations. The natural frequencies of the tower exhibit
fluctuations induced by temperature and a sudden decrease of the modal frequencies
on 21/06/2013, corresponding to the occurrence of the seismic event and associated
to the damage in the tower after the Garfagnana earthquake.
The dependence of frequencies on structural changes is also highlighted in the

paper [40], describing the results of some monitoring campaigns conducted on
the Mogadouro clock tower in Portugal, dating back to the XVI century. Many deep
cracks characterized the tower structure, that was therefore subjected to rehabilitation
works in 2005, including the walls consolidation and the installation of tie-rods.
To evaluate the structural response before and after rehabilitation, two ambient
vibration tests were carried out. A comparison between the first seven frequencies
of the tower before and after the consolidation works revealed a significant increase
in the frequency values. Such results reflect the actual structural conditions of the
tower, i.e. a lower-stiffness building with many cracks before rehabilitation and a
higher-stiffness building after rehabilitation.

Fig. 7 Objective function 𝜙 vs. (𝐸1, 𝐸2) .
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The latest NOSA-ITACA developments and applications are motivated by the
above results and are oriented towards structural health monitoring. Our goal is to
model the influence that both the nonlinear behaviour of the masonry material and
the presence of cracked regions can have on the dynamic properties of masonry
structures. The method implemented in NOSA-ITACA [21] is based on linear per-
turbation analysis, an approach adopted in mechanical and aerospace engineering
to consider the effect of cracks on the vibration frequencies. Linear perturbation
allows calculating the natural frequencies and mode shapes of masonry buildings
in the presence of cracks. Given the structure under examination, discretized into
finite elements, and given the mechanical properties of the constituent materials to-
gether with the kinematic constraints and loads acting on the structure, the procedure
implemented in NOSA-ITACA consists of the following steps [21].
Step 1. The solution to the nonlinear equilibrium problem of the structure is

calculated and the tangent stiffness matrix 𝐾𝑇 to be used in the next step is evaluated.
Step 2. A modal analysis about the equilibrium solution is performed by using

the tangent stiffness matrix 𝐾𝑇 calculated in the last iteration of step 1, before the
convergence is reached. The generalized eigenvalue problem (10) is then solved,
with the tangent stiffness matrix 𝐾𝑇 in place of the elastic stiffness matrix 𝐾 .
The incremental approach used by NOSA-ITACA allows the user to perform

modal analysis at the initial step (standard modal analysis considering the materials
as linear elastic), before application of any load to the structure, and then for different
loading steps, thus assessing the effects of the presence of cracks on the structure’s
dynamic properties. The new procedure provides for more realistic simulations of the
dynamic behaviour ofmasonry structures [5] and, when combinedwith experimental

Fig. 8 Convergence history.
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data, it can help in damage detection. Moreover, the dependence of the natural
frequencies on external loads (both mechanical and thermal) can be assessed and
used to interpret data from long-term monitoring campaigns.
In the following, we report the results of a linear perturbation analysis conducted

on the San Frediano bell tower considering the temperature variations experimented
by the tower during the monitoring period [4].
For each thermal load increment, the solution to the equilibrium problem is

determined and the natural frequencies 𝑓1 and 𝑓2 are calculated. Figure 9 shows the
correlation of the first two experimental frequencies with air temperature in Lucca’s
historic centre and describes the influence of temperature on the tower’s modal
properties.
As found in other long-term vibration monitoring campaigns on historical towers

[17], frequencies tend to increase with temperature. This behaviour is confirmed
from a numerical point of view by the trend of black squares in the figure, which
represent the frequency values yielded by the nonlinear FE analysis of the tower
subjected to incremental thermal variations.
The numerical simulation supports the hypothesis that an increase in temperature

induces a reduction in the fracture strains within the masonry, thus increasing the
structure’s global stiffness. Similar behaviour is described in [25] for static loads,
reporting closing/opening of cracks in bridges and vaults during the summer/winter.

7 Conclusions

This chapter describes the software NOSA-ITACA for the structural analysis of his-
torical masonry constructions. NOSA-ITACA is the result of integrating NOSA, a
FE code developed by the Mechanics of Materials and Structures Laboratory (MMS
Lab) of ISTI-CNR, into the open-source graphical platform SALOME. The software
adopts the constitutive equation of masonry-like materials, which models masonry
as a homogeneous isotropic non-linear elastic material with zero or weak tensile
strength and infinite or bounded compressive strength and enables static analysisis
of structures made of linear elastic and masonry materials. NOSA-ITACA, whose
first developments date back to the 80s, has been substantially modified in the last
years, leading to a new release (NOSA-ITACA 1.1). Special attention has been given
to modal analysis and model updating to support recent research activities of the
MMS Lab, focused on the dynamic identification of ancient masonry buildings.
These changes have contributed to making the performance of NOSA-ITACA com-
parable to state-of-the-art commercial software. NOSA-ITACA contains an extensive
element library, including beam, plane, shell, three-dimensional and axisymmetric
elements. In addition to perform static analyses under different loads and boundary
conditions, also in the presence of thermal variations, NOSA-ITACA can be applied
to modelling restoration and reinforcement operations on constructions of architec-
tural interest. The latest developments of NOSA-ITACA are oriented to combine
numerical simulations and structural health monitoring of historical buildings. Al-
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gorithms for model updating and linear perturbation have been integrated into the
package to calibrate finite element models using experimental data and assess the
influence of damage on the dynamical properties of constructions.
The code is at the disposal of private and public bodies operating in the

conservation and safeguarding of cultural heritage. The package is available at
http://www.nosaitaca.it/software/ and works on any modern GNU/Linux system.
It is now possible to run NOSA-ITACA 1.1 simply by downloading a compressed
file and launching the executable.
The development ofNOSA-ITACA is awork in progress, according to the research

lines of the MMS Lab. Future work aims to expand the element library, generalize
the constitutive model and introduce new algorithms for model updating.
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Fig. 9 The San Frediano bell tower, first and second natural frequency vs temperature.
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