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Abstract 

Landslides triggered by meteorological phenomena occur worldwide and cause extensive and 

severe damages to properties, and life loss. Detailed maps of event landslides can sensibly 

shorten emergency response time, possibly resulting in reduced death tolls. In most cases, 

however, optical post-event images are not always available right after the event, due to dense 

cloud cover. Since Synthetic Aperture Radar (SAR) sensors overcome the limitation of cloud 

cover, in this work we explore the use of C-band Sentinel-1 SAR amplitude images to map event 

landslides. A team of four expert photo-interpreters first defined interpretation criteria of SAR 

amplitude post-event images of the backscatter coefficient (β₀ ) and of the derived images of 

change. The same team mapped two large event landslides occurred in Villa Santa Lucia (Chile) 

and Tonzang (Myanmar). Maps were prepared on a total of 72 images for the Chile test case and 

54 for the Myanmar test case. Images included VV (vertical transmit, vertical receive) and VH 

(vertical transmit, horizontal receive) polarisation, ascending and descending orbits, multilook 

processing, adaptive and moving window filters, post-event images and images of change. In the 

first case, interpreters were asked to map the event landslide on an optical post-event image 

before mapping on SAR images, whereas in Myanmar it was done in the end. Results were 

quantitatively compared to the maps prepared on post-event optical images, assumed as 

benchmark. Results revealed a good agreement between the SAR-derived maps and the 

benchmark. Locally, errors can be due to geometrical distortions, and speckling-like effects. Also 

polarisation plays an important role, as opposed to filtering. Despite the preliminary nature of this 

study, it proved that SAR amplitude derived products are suitable to prepare accurate maps of 

large event landslides, and that they should be further tested to prepare event inventories. 

Keywords 

Event landslides; landslide detection; landslide mapping; Sentinel-1; Synthetic Aperture Radar 

amplitude; Disaster fast response 

1 Introduction 

Landslides can be triggered by natural phenomena such as intense and prolonged rainfall 

(Ardizzone et al., 2012), earthquakes (Santangelo et al., 2019), rapid snow/ice melting (Duhart et 

al., 2019), volcanic eruptions (Francis, 1993), but also by anthropic activities such as mining, 
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quarrying, road building (Jaboyedoff et al., 2016). Landslides are complex physical processes that 

can involve different types of movement depending on lithology, trigger, water content (among the 

main factors). When landslides occur, they leave discernible features on the landscape. The 

ensemble of the features (morphologic and radiometric) that are left by landslides is usually 

referred to as “landslide signature” (Fiorucci et al., 2018; Niculiţă et al., 2016). The morphologic 

and radiometric signatures are exploited by geomorphologists to detect, map and classify 

landslides, both in the field and on remotely sensed imagery (Guzzetti et al., 2012). Depending on 

the considered band of the electromagnetic spectrum, the portion of the landslide signature 

portrayed in the images can be (even sensibly) different.  

Landslides that can be related to a specific triggering event are referred to as event landslides 

(Guzzetti et al., 2012). Landslides of different types and magnitudes can show different 

radiometric signatures, also depending on the type and intensity of the event. For example, 

slow-moving shallow soil slides change very little of the land cover, and are better visible on 

stereoscopic images compared to monoscopic optical images (Fiorucci et al., 2011). On the 

contrary, fast moving earth flows or debris flows cause large changes in the land cover, and can be 

easily detected in monoscopic optical images by interpreters (Fiorucci et al., 2018) or even 

through change detection algorithms (Guzzetti et al., 2012; Mondini et al., 2012). The landslide 

morphological signature is an expression of the type of movement, and is the feature that most of 

all allows interpreters to classify landslides. Of course, deep-seated landslides usually show a more 

pronounced morphological signature than shallow landslides. In general, depending on the type of 

event, and on the type of movement and magnitude of triggered landslides, remote sensing images 

in different ranges of the electromagnetic spectrum, of different types and at different resolutions 

can be more or less suitable for landslide detection and mapping compared to others, and even be 

completely “blind” in some cases. 

The most important criterion that geomorphologists and image interpreters adopt for detecting 

landslide signatures in a landscape is that landslides appear as local anomalies in the general 

continuity of other features. Generally, small landslides (10
2
-10

4
 m

2
) tend to represent anomalies in 

local land cover (e.g., interruption of vegetation), landslides larger than 10
4
 m

2
 tend to represent 

also anomalies of the local morphology (e.g. interruption of the lateral continuity of scarps), 

kilometre-scale landslides may include also anomalies in the local geology (e.g., interruption of 

continuity of geological formations). 

For most events triggered by meteorological phenomena, remote sensing within the optical range 

suffers from limitations due to cloud coverage (Plank et al., 2016; Mondini et al., 2019) in the 

immediate aftermath of the event. This is why growing research efforts are exploring the 

capabilities of the all-weather Synthetic Aperture Radar (SAR) systems to capture evidence that 

may allow geomorphologists to identify and possibly map landslide events, worldwide (Mondini et 

al., 2019), and in presence of clouds (Plank et al., 2016; Mondini et al., 2019).  

SAR systems illuminate the ground with an electromagnetic wave in the microwave spectral 

range, and record the amplitude and the phase of the backscattered signal.  

SAR amplitude derived products, including intensity and some derived backscatter coefficients, 

have been used to identify and map landslides with a photo-interpretative approach since 1995 

(Singhroy, 1995; Vargas Cuervo, 1997; Chorowicz et al., 1998; Singhroy et al., 1998; Mondini et 

al., 2019; ), and only recently with quantitative methods (Mondini, 2017; Konishi and Suga, 

2018a, 2018b; Ge et al., 2019; Uemoto et al., 2019). 

Singhroy, (1995) complemented traditional methods used for landslide inventories in the Lower 
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Fraser Valley, Canada, through a description of the landslide features (i.e. slide scars, rupture line, 

debris lobe), in 6-m resolution C-HH-band, airborne SAR images in combination with Landsat 

Thematic Mapper (TM) optical images. Information on how the image portrays landslide features 

is given when the author describes the debris lobe as appearing in light tones. They claimed, 

however, characterisation and mapping require high resolution imagery, particularly referring to 

SAR data. 

Singhroy et al. (1998) repeated the experiment in the Lower Fraser Valley, Canada, using a 

number of 18 m – 26 m (Range) x 27 m (Azimuth) resolution C-band spaceborne RADARSAT 

SAR images with different viewing geometry. They concluded that RADARSAT incidence 

angles ranging from 40 to 59 degrees were suitable to map block slide scarps and transverse 

ridges, associated with rock slumps and faults. They recommend the high resolution fine mode 

image. 

Cuervo, (1997) used C-band spaceborne ERS-1 stereo-simulated images to map seven landslides 

in Columbia at a scale of, approximately, 1:50.000. The capability of SAR images to emphasise 

landslide features is related to the presence of different tones in the surrounding of the landslide: 

where the ground is smooth the tones are dark; inside the landslide the rough(ness) surface has light 

tones due to high values of surface backscatter. 

Also Chorowicz et al. (1998) showed the efficacy of geomorphological landslide mapping of 

stereo-simulated airborne 12 m resolution C-band ERS-1 or 18 m resolution L-band JERS-1 

images, in Chicamocha valley, Colombia. They described geomorphological features on the stereo 

images as changes in backscatter, and highlighting the limitation of landslide recognition due to 

landslide size and layover. The geomorphic features recognised in the interpretation are scarps, 

convex or concave slopes, horizontally curved steps, and irregularities in stream alignments. 

Those features are detected as anomalies in their context. Despite their lower spatial resolution, 

JERS-1 images were preferred to ERS-1 images due to their more favourable angle of view for 

the preparation of the virtual stereo-couple. 

Furuta and Tomiyama (2008) used the Normalised Sigma-Naught Index NDSI derived from 

spaceborne L-band ALOS SAR images for the identification of a large rock slide triggered by a 

6.4 Mw earthquake occurred in Pakistan, Ziarat, the 29th of October, 2008.  

After more than ten years, Mondini et al. (2019) presented a systematic analysis to assess the 

possibility to detect landslides using measures of change of the backscatter coefficient between 

couples of spaceborne C-band Sentinel-1 SAR images. The dimensionless surface radar 

backscatter coefficient, β0, also called radar brightness coefficient is the Radar Cross Section 

(RCS) per unit area in the radar’s line-of-sight for distributed targets. Compared to σ0 (i.e. sigma 

naught, the backscatter coefficient), the RCS per unit area in the ground range, the local incidence 

angle of the radar signal has no impact on β0, which is, hence, less sensitive to the approximations 

in the local incidence angle estimation (El-Darymli et al., 2014). In their study, 32 single or 

multiple landslide events, different in type, size, topographic aspect, process and geographical, 

geological, and geomorphological settings, were detected thanks to the analysis of variables such 

as the spatial patterns of β₀  changes, caused by the landslide occurrence.  

Despite the scientific advancements in the use of SAR amplitude derived products, a detailed and 
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quantitative analysis of the suitability of these images for landslide visual interpretation is 

lacking, and little effort has been done to establish and describe the criteria used for image 

interpretation, and their connection with the physical parameters recorded in the SAR satellite 

images. 

Recently, some authors have started to use SAR amplitude derived products for rapid mapping of 

landslides using machine learning approaches (Suga and Konishi, 2012; Mondini, 2017; Konishi 

and Suga, 2018a; Ge et al., 2019; Uemoto et al., 2019; Adriano et al., 2020; Esposito et al., 

2020). Short revisiting time (6 days for Sentinel-1 at middle latitudes, The European Space 

Agency, 2021a), free availability, and global coverage make SAR amplitude products suitable to 

prepare near-real time landslide event inventories on a global scale. Encouraged by the 

unprecedented availability of SAR imagery and the growing interest within the scientific 

community (Mondini et al., 2021), in this work we attempt to (i) formalise criteria used to map 

two event landslides chosen as test cases through heuristic interpretation of SAR images, (ii) 

measure their informative content, and (iii) understand their limitations and potential for event 

landslide mapping, limited to Sentinel-1 C-band SAR amplitude derived products.  

In this paper, we use the word “image” when referring both to the original images acquired by the 

sensors and to the derived images obtained after pre-processing steps. The expression “derived 

image” and “derived products” are used as synonyms and refer only to images obtained from the 

original images through pre-processing steps. 

The paper follows this structure: Section 2 describes SAR amplitude images, the pre-processing, 

and the criteria defined for heuristic interpretation of event landslides. Section 3 presents the 

experiment designed to measure the informative content of the SAR images and to define the 

usability of such images for event landslide mapping. Section 4 presents the two case studies and 

the images available for carrying out the experiment. Section 5 presents the results, while in 

Section 6 a discussion deals with limitations of this study, its applicability and illustrates future 

work. Section 7 summarises the conclusions. 

2 Framework 

2.1 SAR images 

The two Sentinel-1 Synthetic Aperture Radar (SAR) satellites are active systems operating in the 

microwave spectral range. The right side looking Sentinel-1 SAR antenna sends a C-band signal 

with a central frequency of 5.4 GHz (corresponding to a wavelength λ of about 5.5 cm) and 

records the strength of the back scattered echo, and the time to return. Amplitude and phase of the 

echo are stored in the real in-phase component (I) and imaginary quadrature component (Q). 

The instrument can operate in single (horizontal transmit horizontal receive, HH, vertical transmit 

vertical receive, VV), or in dual polarisation (horizontal transmit horizontal receive and 

horizontal transmit vertical receive HH+HV, vertical transmit vertical receive and vertical 

transmit horizontal receive, VV+VH), and in multiple acquisition modes. The default acquisition 

mode over land is the Interferometric Wide swath (IW), in which a good compromise between a 

large swath width (250 km) and a moderate geometric resolution (5 m × 20 m) is achieved (The 

European Space Agency, 2021a). 
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The images can be downloaded for free from the Copernicus Open Access Hub (Copernicus 

Open Access Hub, 2021) maintained by the Copernicus programme. Level-1 data are the products 

intended for most data users, and they can be in Single Look Complex (SLC) or in Ground Range 

Detected (GRD). Both are focused SAR data, the former in SAR geometry, the latter 

multi-looked and projected to ground range using an Earth ellipsoid model. SLC images can be 

calibrated through Look Up Tables (LUT) to obtain β₀  the Radar Cross Section per unit area in 

the radar’s line-of-sight (El-Darymli et al., 2014). Calibration makes it possible to extract 

geophysical parameters from the images and to compare images acquired in different times or 

from different sensors (Freeman, 1992; Oliver and Quegan, 2004). β₀  is mainly influenced by 

the surface parameters including roughness, geometric shape and dielectric properties of the 

target, and it is a function of the radar observation parameters including frequency, polarisation, 

and incidence angle, or its component along the range plane (the plane formed by the satellite, 

target and Earth centre), the projected local incidence angle (PLIA), and it can then be used to get 

information about the imaged surface. 

Two factors can mainly hinder the use of SAR images: the side looking acquisition geometry and 

the speckling-like noise presence. The side looking configuration brings to represent the pixel 

coordinates in sensor geometry, in which the coordinates are the distance from the radar track 

(range) and direction of travel (azimuth), with the spatial resolution changing in relation to radar 

track distance. The original images are then not superimposable to images in ground coordinates. 

Furthermore, geometric distortions including foreshortening, layover, and shadow occur 

particularly in mountainous areas, where landslides are likely to occur. Foreshortening can be 

mitigated through geometric transformations, while layover and shadows can only be estimated, 

masked, or taken into account during the classification processes. 

In the amplitude and in the amplitude derived products, the noise can be high and disturbing. It 

can be explained by the presence of many and different small scatters in every pixel illuminated 

by the beam (Oliver and Quegan, 2004). The noise is usually modelled as a multiplicative 

component of the Radar Cross Section and the problem can be mitigated using SAR specific 

filters (Frost et al., 1982; Lee et al., 1994; Vasile et al., 2006). 

Level-1 Interferometric Wide (IW) Single Look Complex (SLC) Sentinel-1 were used. Images 

are in slant range by azimuth imaging plane, in the image plane of satellite data acquisition. Each 

polarisation channel contains both amplitude and phase information (The European Space 

Agency, 2021b). All the pre-processing steps were performed using the SNAP - ESA Sentinel 

Application Platform version 7.0 (STEP - Scientific Toolbox Exploitation Platform, 2021). 

Images were prepared for the interpretation with different levels of pre-processing. The first level 

included a thermal noise correction (The European Space Agency, 2021c), a calibration to obtain 

the surface radar backscatter coefficient β0 (El-Darymli et al., 2014; The European Space 

Agency, 2021d) for each polarisation channel, a refinement of the orbit state vectors and deburst 

process to re-sample to a common spacing grid in range and azimuth. A second level of 

pre-processing consisted of a multi-looking process with a number of four and one looks 

respectively for the range and azimuth directions to obtain square pixels of about 14.3 m. The 

multi-looking process also reduces the speckling-like presence in the SAR images. To obtain the 

fourth level of pre-processing, images were further filtered using the Frost filter (Frost et al., 

1982) or the Intensity-Driven Adaptive-Neighborhood (IDAN) filter (Vasile et al., 2006). The 

first obtains local estimates in adaptive neighbourhoods using regular moving windows, the last 

in regions previously defined through region growing processes. The IDAN filter should result in 
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a more smoothed signal in homogeneous areas, while the Frost in a better preservation of the big 

discontinuities in the signal. Processing parameters were respectively filter size (X,Y) = (3,3) and 

Damping Factor = 3 for the Frost filter and Number of looks = 1 and Adaptive Neighbour Size = 

50 for the IDAN filter. The fifth and last pre-processing level was devoted to measuring the 

backscatter coefficient changes eventually occurred between the pre- and the post-event image. It 

included a DEM assisted co-registration between any couple of pre- and post-event single 

channel polarisation images using the SRTM 1 Sec HTG DEM (Earth Resources Observation 

And Science (EROS) Center, 2017), Nearest Neighbour post-event resampling, and a natural 

logarithm of the ratio between the just co-registered post- and pre-event single channel 

polarisation images (i.e., 𝑙𝑛(𝛽₀𝑝𝑜𝑠𝑡𝑉𝑉/𝛽₀𝑝𝑟𝑒𝑉𝑉) ). Among the several ways to estimate 

parameter changes between two acquisitions, we chose to compute the ratio of the two images. 

The logarithm helps to reduce the dynamic range in particular when the backscatter is low (close 

to zero) in the pre-event image, and it increases in the post-event image. 

The products obtained from the different pre-processing levels were all orthorectified in 

geographic coordinates using a Range-Doppler method (Small and Schubert, 2008), the SRTM 1 

Sec HTG DEM and resampling methods. The tool applied through the SNAP - ESA Sentinel 

Application Platform is referred to as Terrain Correction. Shadowed and in layover areas were 

also simulated using the same SRTM 1 Sec HTG DEM.  

2.2 Interpretation of SAR amplitude derived products 

In the literature, image interpretation is generally based on a reproducible and rigorous set of 

rules, which is built on a four-stages process (Ray, 1960; van Zuidam, 1986): (i) reading, (ii) 

identification, (iii) classification, (iv) deduction. The first stage requires that the image is read to 

identify the general grain (fine or coarse), pattern (e.g., elongated, curved, straight), tone 

(generally dark or light, with clusters), texture (dotted, parallel, mottled). The second stage 

involves identification of objects, without classifying them. Identification means that within the 

general pattern of the image, the interpreter can discern that clusters of pixels tend to align along 

a given direction and cluster according to a shape, define a regular or irregular pattern, are 

consistently characterised by a grey tone, or by bands of alternating grey tones. Once 

identification takes place, it is possible to apply a classification scheme which assigns a name to 

all the identified objects, usually according to a legend. This step involves the ability to make 

associations between image objects and the real world. The last step includes deduction, and 

involves making inferences on the processes underlying the objects already classified.  

Geomorphologists use the classified objects in the images to detect anomalies. For instance, if the 

interpreter has identified a linear element that is classified as the surface evidence of bedding, its 

sudden interruption represents an alert that must be further investigated. Interpreters then use 

collateral elements to test the “landslide hypothesis”. Such elements can be the shape of the grey 

tones clustering and its compatibility with the local morphological context, the pattern of the 

valley bottom, the interruption of other linear and continuous elements (roads or rivers or low 

order divides, boundaries between vegetated and bare areas). After the deduction process, the 

interpreter decides whether a given anomaly in the image is due to a landslide or not (i.e., 

converging evidences, van Zuidam, 1986), and eventually draws the polygon (mapping) that 

maximises the internal consistency of all the elements that refer to a single landslide. 

Interpretation of images remains a process strongly dependent on the interpreter's background 
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and experience, which is particularly true for classification and deduction steps. 

In monoscopic optical images, event landslides are mapped through the portion of their 

radiometric signature which is in the visible wavelength range. In general, visual elements that 

are exploited by geomorphologists are represented by interruption of vegetation, of the lateral 

continuity of linear elements such as fields boundaries, infrastructures, regularity of river paths, 

of bedding traces, of local tectonic alignments. Slow-moving landslides often have a subtler 

fingerprint on the landscape, and can be recognised mainly through analysis of pattern and tone 

changes (Fiorucci et al., 2011). For example, disturbances in the pattern of cultivated fields, 

mottled shadows distribution can indicate areas with hummocky topography, and areas with 

lighter (or darker) colour tones indicate areas where soil moisture is lower (or higher). Also 

vegetation can show changes in colour due to landslide occurrence. When evidence is subtle, 

mapping event landslides can be carried out comparing pre- and post-event images.  

SAR backscatter products are generally represented by a grey tone matrix of backscatter values 

mainly influenced by (i) the PLIA, (ii) surface roughness, and (iii) the dielectric constant, usually 

related to soil moisture (Oliver and Quegan, 2004). Landslides can be read in the grey tone 

matrix in terms of tone, texture, pattern, mottling and grain, and/or their changes, similarly to 

optical images. Event landslides cause changes in the backscatter pattern of an area, and appear 

as local anomalies. Therefore, we can refer to a “radar backscatter signature” of event landslides 

as the combination of these three main components which can reveal the occurrence of a 

landslide in radar amplitude products. Interpreters can tentatively learn how to discern, read and 

interpret such features to infer the presence of event landslides (landslide detection), and to 

delineate landslide borders (landslide mapping), similarly to what is done for optical post-event 

images.  

The difference between the set of rules of the image interpretation process applied to optical 

images and the one applied to radar backscatter images lies in the different informative content of 

the pixels. In radar backscatter images, the interpretation process is based on the three elements 

stated above: orientation angle, surface roughness and dielectric constant as a proxy for soil 

moisture. Compared to optical images, interpretation of SAR images is partly limited by 

geometrical distortions, and speckling-like effects. Also, when passing from optical images to 

radar images, the degree of acquaintance with this type of image is reduced. Therefore, also the 

deductive process has to be based on a reduced set of elements and variables, which increases 

uncertainty and introduces mapping errors. To reduce a large part of the uncertainty, it is 

fundamental that pre-event and post-event images are examined jointly. It can help the 

interpreters spot the changes as areas where a landslide has occurred.  

In general, the backscattering signal is higher (and the image appears whiter) when the PLIA is 

low, when the surface roughness is high (leaving polarisation and wavelength unchanged), and 

when the soil moisture is high. Water appears black. The PLIA mirrors the local morphology, 

since the darker and lighter tones cluster according to the local topographic aspect. When 

comparing pre- and post-event images, increasing water content or surface roughness causes an 

increase in the backscattering signal, as opposed to increasing PLIA. Likely, the change of the 

signal caused by a landslide is a combination of the 3 (and more) factors that can be estimated 

singularly only when ancillary data and inversion models are used. When the factors are 

competing, the ambiguities can be partially overcome by examining the context of the changes 

(e.g. interruption of the lateral continuity of other elements, the shape of the changes).  
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The interpretation process described for post-event images cannot be applied as is to LR images. 

Therefore, we define different criteria to interpret log ratio (LR) images, where clusters of pixels 

of changes pop out from the salt and pepper matrix (i.e. anomalies). Such changes can be caused 

by slope failures but also by snowmelt, rainfall, vegetation cuts, for example. Interpreters identify 

areas where the change has not been random, and decide whether the cluster is a landslide based 

on the shape of the cluster.  

Finally, if necessary, to reduce uncertainty in the interpretation of any of the images described 

above, interpreters can use ancillary information such as Digital Elevation Models to drape the 

images and explore them in 2.5D images (similar to Google Earth™). Such an approach allows 

interpreters to exclude clusters that appear incompatible with the local morphology, as it could be 

in case of clusters elongated across the maximum slope direction. 

2.3 Maps comparison 

We have built an experiment based on two test cases to (i) measure the informative content of the 

SAR images used and (ii) understand the usability of SAR amplitude products for event landslide 

mapping. In the first case, mapping was carried out with a priori knowledge: interpreters mapped 

the landslide first on the optical post-event image and all available ancillary information. In the 

second case, no a priori information was used to map the landslide in the SAR images. In both 

cases, optical post-event maps were used as a benchmark.  

The interpretation process was carried out by the same team of four expert photo-interpreters 

(FB, FF, MC, MS) who had also defined the interpretation criteria before mapping, through an 

iterative process using the a priori knowledge on the ground truth. The mapping was performed 

as a group to reduce subjectivity in the interpretation (Guzzetti et al., 2012). In both test cases, the 

task of the team was to draw the landslide border (mapping) on each image adopting the 

interpretation criteria. This operation was necessary to measure the information content of the 

SAR images against the benchmark. Assuming that our polygon summarises the information 

contained in the single image about that landslide, the deviation of each polygon from the 

benchmark can be attributed almost absolutely to the different information content, i.e. how much 

of the landslide radiometric signature is portrayed in that given image. This concept is the 

rationale for ranking the polygons and the corresponding images based on their comparison to the 

benchmark.  

Comparison of maps to their benchmark was carried out in a pairwise fashion according to the 

error index (𝑀𝐵𝑖) as in Equation 1 (Carrara, 1993; Ardizzone et al., 2002; Santangelo et al., 

2015; Fiorucci et al., 2018;): 

𝑀𝐵𝑖 =
𝐴𝑖 ∪ 𝐵𝑖 − 𝐴𝑖 ∩ 𝐵𝑖

𝐴𝑖 ∪ 𝐵𝑖
    (1) 

where 𝐴𝑖  ∪  𝐵𝑖 represents the area of the union of two landslide polygons,  𝐴𝑖  ∩  𝐵𝑖 is the 

area of the intersection of the two landslide polygons. According to Equation 1, the mismatch 

(𝑀𝐵𝑖) ranges between 0 and 1, where 1 means complete mismatch ( 𝐴𝑖  ∩  𝐵𝑖 = 0, i.e. the 

polygons do not overlap) and 0 complete match (𝐴𝑖  ∪  𝐵𝑖  =  𝐴𝑖  ∩  𝐵𝑖, i.e. the polygons overlap 

perfectly).  

The values of error registered in the first case study were used to rank the products. Under the 

assumption that a high informative content allows interpreters to map the landslide most closely 
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to the benchmark, this ranking orders the images from the lowest to the highest informative 

content. To limit possible learning effects (Fiorucci et al., 2018), in the second test case 

interpreters were asked to map the landslide starting from the image that ranked worst in the first 

test case.  

Finally, it must be considered that the SRTM 1 Arc-Second Global DTM used for Terrain 

Correction (see §2.2) has a coarse resolution (~30 m), which implies that there may be locally 

some geo-location errors and/or geometric distortions related to orthorectification that may 

introduce errors, especially in high mountain areas. However, these errors are not supposed to 

influence the maps comparison, since the images are all coregistered and possible errors would be 

common to all the maps. 

3 Case studies  

The first case study is a rock slide - debris flow - mudflow occurred in Villa Santa Lucia, Los 

Lagos Region, Chile on 16 December 2017. In the 24 hours before the landslide occurrence, a 

120 mm rainfall was recorded after a two-weeks period of anomalous high temperatures which 

induced a rapid snowmelt (Duhart et al., 2019; Mondini et al., 2019). The landslide covers an 

area of 5.06 km
2
, is over 9 km long and its width is around 30 m in its narrowest point and 1,200 

m in its widest. The Santa Lucia landslide (Figure 1) started as a rock slide, developed as a 

debris flow and ended as a mudflow that killed 21 people in the town downhill. The landslide 

estimated volume is 7.2 million cubic meters
 
and its highest speed reached 20 m/s (Duhart et al., 

2019). The landslide travelled downhill along a slope facing towards ESE, it climbed uphill on 

the opposite slope of the Burrito valley for about 1 km, and then flowed into the valley towards 

South, eventually forming a fan-shaped deposit that partially destroyed the Santa Lucia village. 

According to Duhart et al (2019), the source area of the Villa Santa Lucia landslide is 

characterised by a Pleistocene volcanic complex mainly composed of deeply altered 

volcanoclastic deposits, and exhibiting a subvertical fracturing. The volcanic sequence is 

sub-horizontal and overlaid on an intrusive mafic sequence. The outcrops show diffuse evidence 

of glacial activity. Structurally, this region is characterised by the presence of a regional fault 

zone (the Liquiñe-Ofqui Fault Zone) whose main superficial expression is the Villa Santa Lucia 

valley. The structural setting, the deep alteration and fracturing conditions of the geological 

layers in this area can be considered the main predisposing factors of the Villa Santa Lucia 

landslide. The high water content due to the rainfall and snowmelt event caused the evolution of 

the initial rock slide into a debris flow - mudflow. 

This landslide has deeply changed the land cover, since a large part of the woods was transported 

downhill. As a result, a very clear morphological and radiometric “scar” was left. In the upper 

part of the landslide, that is along the slope facing ESE, the landslide shows not only a 

radiometric signature/scar but also a strong morphological fingerprint, which consists in a large 

missing volume in the upper part and a large deposit at the foot of the slope. Here, the 

hydrographic network appears destructured, with the main valley being featured by shallow 

ephemeral channels. The area where the landslide climbed uphill the opposite slope appears 

smoother and the main signature is mostly radiometric. In the area where the landslide entered 

the Burrito valley the images are featured by much shadow that hampers to make out the valley 

bottom. Finally, the fan area appears very obvious on optical images. It interrupts the colour and 

pattern of the vegetation, and the roads network, which was locally covered by a three-meter 
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thick mud layer.  

 

Figure 1 - Location map of the Santa Lucia landslide, Chile. Location map source: BingMaps™. 

Post-event image source: PlanetScope OrthoTile taken on 27 February 2018 

(www.planet.com).  

The second case study is a rock slide occurred in early August 2015 in the Tonzang region, Chin 

Division, Myanmar (Figure 2). The Government of the Republic of the Union of Myanmar 

reported that torrential rainfall of the monsoon period hit Myanmar since July 16, and they were 

followed by Cyclone Komen in early August, which caused strong winds and exceptionally 

heavy rains (The World Bank, 2015; Mondini, 2017; Alvioli et al., 2018; Mondini et al., 2019). It 

is reported that in the Chin Division the rainfall event was extreme, exceeding a 1,000 years 

return period event (The World Bank, 2015). 

Such a triggering event caused thousands of landslides (The World Bank, 2015; Alvioli et al., 

2018; Mondini et al., 2019), the largest of which appears to be the Tonzang landslide, which 

covers an area of 6.25 km
2
, is over 6 km long and its width is around 1 km. The Tonzang 

landslide deeply changed the local morphology. Three new lakes developed along the slope 

where it occurred, one large lake developed along the main river which was dammed with an 

estimated 90 m thich deposit, and a new lake was also developed by deposit along the tributary 

that enters the main river from North. There is a long runout probably amplified by the 

contribution of other landslides triggered by the same rainfall event. 

The Tonzang landslide developed within a Cretaceous Flysch sequence that includes limestone 
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layers (Zaw et al; 2017), on an orthoclinal/cataclinal-dip slope. The landslide may therefore have 

started as a translational slide that exploited the primary discontinuities of the stratigraphic 

sequence. 

Like the Chile test case, this landslide deeply changed the local land cover, formerly forested. 

Differently from the Chile test case, the Tonzang landslide developed entirely along a slope 

facing towards NNE (Figure 2). In more detail, it moved towards North in its upper part, and 

towards NE in its lower part. These two sections divide the landslide roughly in two zones of 

comparable size. The landslide caused relevant morphological changes, with a large scarp, 

roughly corresponding to the upper half N-facing, and most of its large missing volume was 

deposited downhill. The head of the deposit shows three small lakes, whereas two lakes formed 

downhill, one along the main river, West of the deposit, and one North of the deposit, along a 

tributary of the main river. Similarly to the Chile event, the hydrographic network appears 

disrupted. 

Figure 2 shows a post-event image acquired by the RapidEye at 6.5 m resolution (5 m 

corresponding to orthorectified images) acquired on 5 January 2016.  

 

Figure 2 - Location map of the Tonzang landslide, Myanmar. Location map source: 

BingMaps™. Post-event image source: RapidEye satellite image with 6.5 m 

resolution (5 m corresponding to orthorectified images) acquired on 5 January 2016. 
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For the Chile test case (Villa Santa Lucia landslide), a total of 72 images were analysed (Figure 

1): 24 images of 𝛽0Log-Ratio were prepared, and 24 couples of pre-event and post-event images, 

whereas for Myanmar (Tonzang landslide) the ascending images in the VH polarisation were 

unavailable. This led to a total of 54 images (Figure 2): 18 images of change (𝛽0Log-Ratio), and 

18 couples of pre-event and post-event images. Table 1 reports the dates of acquisition of the 

original SAR images, the optical images, and the date of occurrence of the landslide event. 

Table 1 - Dates of acquisition of the SAR images for the two sites. Event date is also reported. 

  SAR Optical 

  Pre-event Post-event Post-event 

Landslide Event date Ascending Descending Ascending Descending  

Villa Santa Lucia 16/12/2017 28/11/2017 12/12/2017 22/12/2017 24/12/2017 27/2/2018 

Tonzang Early August 2015 18/7/2015 2/6/2015 11/8/2015 17/11/2015 5/1/2016 

 

 

Figure 3 - Scheme of the SAR images available for the two test cases for the Ascending 

acquisition geometry. Thick lines connect different image characteristics by 

acquisition. Thin lines connect images linked by pre-processing steps. Black outlined 

boxes refer to post-event acquisition, as opposed to non-outlined boxes. Red circles 

mark images not available for the Myanmar test case. Image names are reported 
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according to Table A1. 

 

Figure 4 - Scheme of the SAR images available for the two test cases for the Descending 

acquisition geometry. Thick lines connect different image characteristics by 

acquisition. Thin lines connect images linked by pre-processing steps. Black outlined 

boxes refer to post-event acquisition, as opposed to non-outlined boxes. Image names 

are reported according to Table A1. 

 

Figure 5 and Figure 6 show how the Villa Santa Lucia landslide appears in Ascending (Figure 

5) and Descending (Figure 6) acquisition geometries, according to the multilook pre-processing 

application and the filtering technique. Images are all visualised stretching the histogram between 

the 3
rd

 and 93
rd

 percentile of the pixel values distribution, which was also used for the 

interpretation. 
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Figure 5 - Post-event images (Ascending) of the Villa Santa Lucia landslide (Chile). A to F, 

images in VV polarisation. G to N images in VH polarisation. In the matrix, images 

are represented based on the filter used (none, IDAN and Frost) and the multilook 

pre-processing application. 
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Figure 6 - Post-event images (Descending) of the Villa Santa Lucia landslide (Chile). A to F, 

images in VV polarisation. G to N images in VH polarisation. In the matrix, images 

are represented based on the filter used (none, IDAN and Frost) and the multilook 

pre-processing application. 

Figure 7 and Figure 8 show the Villa Santa Lucia landslide in the images of change of the 

backscatter coefficient. The same histogram stretching has been applied as for the post-event 

images.  
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Figure 7 - Images of change (β0 Log-Ratio), Ascending, of the Villa Santa Lucia landslide 

(Chile). A to F, images in VV polarisation. G to N images in VH polarisation. In the 

matrix, images are represented based on the filter used (none, IDAN and Frost) and 

the multilook pre-processing application. 
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Figure 8 - Images of change (β0 Log-Ratio), Descending, of the Villa Santa Lucia landslide 

(Chile). A to F, images in VV polarisation. G to N images in VH polarisation. In the 

matrix, images are represented based on the filter used (none, IDAN and Frost) and 

the multilook pre-processing application. 

Figures 9 to 11 show how the Tonzang landslide appears in SAR images used for the second test 

case, namely (i) in the Ascending geometry (only VV polarisation was available, Figure 3), both 

post-event (Figure 9A-F) and change of the backscatter coefficient (Figure 9G-N), and (ii) in the 

Descending geometry, both post-event (Figure 10) and change of the backscatter coefficient 
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(Figure 11). In the images, the same histogram stretching was applied as for the Santa Lucia 

landslide (i.e., the Chile test case): histogram stretching between the 3
rd

 and 93
th

 percentile of the 

pixel values distribution, which was also used as base value for the interpretation. 

 

 

Figure 9 - A to F, post-event images (Ascending) of the Tonzang landslide (Myanmar) in VV 

polarisation. G to N, images of change (β0 Log-Ratio) of the same landslide. In the 

matrix, images are represented based on the filter used (none, IDAN and Frost) and 

the multilook pre-processing application. Images in VH polarisation were not 

available (Figure 3). 
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Figure 10 - Post-event images (Descending) of the Tonzang landslide (Myanmar). A to F, 

images in VV polarisation. G to N, images in VH polarisation. In the matrix, images 

are represented based on the filter used (none, IDAN and Frost) and the multilook 

pre-processing application. 
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Figure 11 - Images of change (β0 Log-Ratio), Descending, of the tonzang landslide (Myanmar). 

A to F, images in VV polarisation. G to N images in VH polarisation. In the matrix, 

images are represented based on the filter used (none, IDAN and Frost) and the 

multilook pre-processing application. 

4 Results 

The Santa Lucia landslide was mapped by the team of interpreters using the 72 images available 
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(Figure 3, 4). In particular, a total of 48 maps were obtained: 24 through the interpretation of 

post-event images (Figure 5, 6) and 24 through the interpretation of the LR images (Figure 7,8). 

Figure 12 shows the ensemble of the 48 polygons drawn by the interpreters, compared to the 

benchmark (red outlined polygon), obtained through an a priori interpretation of the optical 

post-event image.  

Area of landslide polygons mapped in SAR images ranges between 3.58 km
2
 and 5.41 km

2
 

(σ=0.44 km
2
, μ=4.62 km

2
), with a median of 4.63 km

2
. Area of the benchmark is 5.06 km

2
. 

Figure 12 shows the geographical distribution of landslide polygons mapped in SAR images and 

the benchmark derived from the optical image. Inspection of Figure 12 reveals that the 

dispersion of the SAR derived maps is not homogeneous, but mostly concentrated in the scarp 

area and in the fan area. Inset of Figure 12 shows the degree of geographic dispersion of 

landslide polygons. The inset map is the result of a kernel density estimation run on points 

extracted every 50 meters along the landslide polygons. The kernel density was run using 

v.kernel tool in GRASS GIS (GRASS Development Team, 2017), and shows the number of points 

within a search radius of 100 meters. The density map is used as a proxy of the consistency of the 

maps obtained in SAR images. The higher the density, the closer the landslide borders are to each 

other. The lower the density, the higher the dispersion of the maps. The map has been used to 

separate three domains of the landslides (scarp, body, and fan, separated by dashed black lines in 

Figure 12), based on a combined criterion that takes into account the overall density and 

landslide morphology.  

 

Figure 12 - Main image: comparison of the maps of the Villa Santa Lucia landslide (Chile) 

obtained through interpretation of SAR images (yellow outlined polygons) and the 

benchmark, i.e., the map obtained through interpretation of the optical post-event 
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image (red outlined polygon). For reference, the optical post-event image is shown in 

Figure 1. Inset: kernel density map obtained by running a kernel density over points 

sampled each 50 m along the boundary of landslide polygons mapped in SAR 

images.  

 

 

 

Figure 13 - Distribution of the mismatch between the SAR derived maps of the Villa Santa Lucia 

landslide compared to the benchmark. Data points are ranked by mismatch value (X 

axis), whereas the corresponding SAR images names are reported on the Y axis, 

according to the names listed in Figure 3, Figure 4 and Table A1.  

Plot in Figure 13 shows the distribution of the values of the mismatch between SAR maps and 

the benchmark (MB), and Table 2 summarises the main parameters of its statistical distribution. 

In the plot, each data point is represented based on the SAR image characteristics: multilook 

application (not applied, empty symbols; applied, filled symbols), filter type (Frost, red symbols; 

IDAN, green symbols; None, blue symbol), polarisation (VV, large symbols; VH, small 

symbols), geometry of acquisition (ascending, triangles; descending, squares), and whether 

interpreters used LR images (label “LR”) or post-event images. Inspection of Figure 13 reveals a 
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sharp subdivision (around the 50
th

 percentile) of the mismatch values based on the polarisation, 

with VV images that correspond to the lowest 50% of the MB values distribution. In sub-order, 

descending images (squares) correspond to lower values of mismatch compared to ascending 

ones (triangles). For example, over 40% of the VV images data points correspond to maps 

prepared from descending images. In further sub-order, images of change and images without 

multilook seem to correspond to maps with relatively lower mismatch as opposed to post-event 

images and images with multilook applied.   

Table 2 - Descriptive statistics of the landslide maps prepared for the two test cases. Data are 

also shown separately for the three sectors of the Villa Santa Lucia landslide. 

 

Landslide 

Mismatch, MB 

Min Max Mean Median Sd 

Villa Santa Lucia 0.178 0.387 0.284 0.274 0.058 

Villa Santa Lucia (scarp) 0.245 1.000 0.474 0.369 0.218 

Villa Santa Lucia (body) 0.099 0.258 0.172 0.172 0.039 

Villa Santa Lucia (fan) 0.309 0.842 0.494 0.473 0.123 

Tonzang 0.113 0.294 0.178 0.168 0.050 

 

Figure 14 shows six examples of the maps and their location within the distribution of MB in the 

empirical cumulative distribution function (ECDF). It is evident that different geographical 

mismatches correspond to similar mismatch values. Inspection of the images reveal that the most 

of the mismatch is concentrated in the scarp area and in the fan, whereas the central portion of the 

landslide was delineated almost always close to the benchmark. This evidence is also confirmed 

by inspection of Figure 13. 
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Figure 14 - Comparison of six maps of the Villa Santa Lucia landslide. In each image it is 

shown: the benchmark (cyan outlined polygon), the SAR map (red outlined polygon), 

the mismatch value MB (top right), the location of the MB value within the plot of the 

Empirical Cumulative Distribution Function (ECDF) of the mismatch values (bottom 

left). Left column: post-event images. Right column: corresponding images of 

change. Rows title: name of the image (as in Figure 3, Figure 4 and Table A1).  

The Tonzang landslide was mapped using the 54 images available (Figure 3 and Figure 4). In 

particular, a total of 36 maps were obtained: 18 through the interpretation of post-event images 

(Figure 9A-F,10) and 18 through the interpretation of the LR images (Figure 9G-N,11). Figure 

15 shows the ensemble of the 36 polygons drawn by the interpreters, compared to the benchmark 

(red outlined polygon), obtained through interpretation a posteriori of the optical post-event 

image. 
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Figure 15 - Comparison of the maps of the Tonzang landslide (Myanmar) obtained through 

interpretation of SAR images (yellow outlined polygons) and the benchmark, i.e., the 

map obtained through interpretation of the optical post-event image (red outlined 

polygon). For reference, the optical post-event image is shown in Figure 2. 

Area of landslide polygons mapped in SAR images ranges between 3.82 km
2
 and 5.41 km

2
 

(σ=0.4 km
2
, μ=4.73 km

2
), with a median of 4.77 km

2
. Area of the benchmark is 6.25 km

2
. 

Inspection of Figure 15 reveals that the dispersion of the SAR derived maps is higher in the 

central part of the landslide and at the toe. A few polygons show a large mismatch in the scarp 

area, where a portion of the slope which was not involved in the landslide was included in the 

maps. 

 

Figure 16 shows the distribution of MB for the Tonzang landslide, main values of the statistical 

distribution of MB are reported in Table 1. Inspection of Figure 16 reveals that the images in the 

first quartile of the distribution are all descending (squares) and that the 64% (i.e., 9 out of 14) are 

images of change and/or images in VV polarisation. As for the Chile test case, a quite sharp 

subdivision of the MB distribution can be observed, but, in this case the most discriminant 

characteristic is the acquisition geometry, whereas polarisation plays a secondary role. In 

particular, only one value out of the first 50
th

 percentile of MB distribution corresponds to a map 

produced from an ascending image. Furthermore, images of change correspond mostly to low 
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mismatch values, since 66.7% of maps produced from LR images have MB smaller than 0.2. 

Polarisation seems to play a minor role in the clustering of values of MB. Interestingly, the two 

images with the lowest mismatch are VH, which contrasts with the evidence of the Chile test 

case. 

 

 

 

 

 

 

 

Figure 16 - Distribution of the mismatch between the SAR derived maps of the Tonzang 

landslide compared to the benchmark. Data points are ranked by mismatch value (X 

axis), whereas the corresponding SAR images names are reported on the Y axis, 

according to the names listed in Figure 3, Figure 4 and Table A1.  
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Three main remarks have to be done. First, the experiment was led on two test cases, which were 

chosen because (i) they were detected in previous studies using SAR, and ranked as good test 

cases for testing landslide mapping (Mondini et al., 2019), (ii) they occurred in the observation 

time span of Sentinel-1 images, (iii) the Chile test case was an ideal training case to test images 

and interpreters capability in a range of different slope aspects, different landslide signatures, 

different land covers (iv) the Tonzang landslide is a large landslide that can be considered a 

simpler case compared to the Villa Santa Lucia landslide, and hence more appropriate for testing 

images and interpreters in preparing landslide maps simulating a landslide event scenario (v) they 

are large enough to guarantee that the resolution of the images is not an issue.  

Second, the mismatch resulting from the comparison of each map with the benchmark has a 

component related to the relative positioning of SAR and optical images and a component related 

to the interpretation and mapping process, including unavoidable errors due to shadowing or 

layover. Since the SAR stacks are perfectly co-registered, the first component can be neglected 

because it is irrelevant to rank the relative mismatch (MB) between the landslide maps.  

Third, despite some possible accidental and systematic interpretation errors (that will be 

discussed in detail), we show that no severe biases by inconsistencies in the interpretation or by 

learning affect the results. The experiment was carried out by a team of four expert 

photo-interpreters (FB, FF, MC, MS). The formalisation of interpretation criteria as well as the 

mapping were carried out as a group and not individually, since previous research indicates 

“discussion” approaches as a tool to reduce subjectivity in the interpretation (Guzzetti et al., 

2012; Santangelo et al., 2014). Despite the advantages of such approach, it has to be stated that 

some inconsistencies have occurred due to limited acquaintance with SAR amplitude derived 

products and limited access to ancillary data that could have reduced the ambiguities in case of 

doubts in the interpretation. Our data show that the highest mismatch for the entire map of the 

two landslides (Table 2) is equal to 0.387, a value which is lower than the mismatch usually 

obtained by maps produced by different interpreters (Ardizzone et al., 2002) and comparable to 

the mismatch characterising maps produced by the same interpreter using different techniques 

(Santangelo et al., 2010, 2015) or images (Fiorucci et al., 2018). This proves that bias by 

systematic inconsistencies in the application of interpretation criteria is limited in this 

experiment. Single cases will be discussed in detail. Furthermore, mismatch data (MB) were plot 

according to the images viewing chronological order (Figure 17, Table A1) to understand if any 

bias by learning effect is present in our results. Inspection of Figure 17A reveals that interpreters 

were not influenced by their a priori knowledge of the landslide, as demonstrated by the sharp 

separation of data points by polarisation (i.e. by symbol size). Had the interpreters used their a 

priori knowledge to map the landslide, this trend would not have occurred, since interpreters read 

VV and VH images in an alternating sequence. Furthermore, Figure 17B shows that in the 

Myanmar test case (i) negative trends occur within data points grouped again by polarisation, (ii) 

a sudden increase in MB marks the transition from VH to VV images, which again proves that 

learning effect is very limited, (iii) despite their order, descending images are systematically 

better performing than ascending ones. Since interpreters had no a priori knowledge in this case, 

we maintain that an increasing performance (i.e., lower MB values towards right in the plot of 

Figure 17B) indicate more an increasing amount of information about this landslide than a 

learning process, which would be more a constant performance.  
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Figure 17 - Distribution of MB (A) for the Villa Santa Lucia landslide and (B) for the Tonzang 

landslide. Data points are ordered by images viewing chronological order (X axis). 

5 Discussion 

5.1 Landslide detection and mapping in SAR backscatter products 

In SAR images, the values of amplitude, and of the derived products, depend on the physical 

parameters of the backscattering land surface, including roughness, dielectric constant (i.e. soil 

moisture), and parameters related to the acquisition systems. In a single image, spatial changes in 

the amplitude can indicate different land covers, or local differences of the land cover physical 

properties, while temporal changes can be due to a sudden modification of the land cover, and 

these changes can be caused by the presence (in the first case), or the occurrence of a landslide 

(in the second case). These changes are seen by the interpreter as a variation of tones in the 

product and they can be used in the photo interpretative process, mirroring what is usually done 

when optical panchromatic or single channel images are used to detect/map landslides. A few 

pre-processing steps are meant to highlight, or smooth these changes of tones. 

 

In the interpretation of the signal, also the PLIA variations should be taken into account. Other 
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conditions being equal, returns are normally stronger at low PLIAs and decrease with increasing 

incidence angles and then local changes in the backscattering properties in mountainous areas can 

be experienced according to the local morphology. The PLIA can be estimated using DEMs, and 

in general it is suitable to represent the pre-event conditions. Landslides can introduce variations 

difficult to extract from the image.  

 

Figure 18 shows the landslide borders overlaid to the PLIA for the Chile test case. Inspection of 

the figure reveals that, locally, some errors appear to be common to groups of images, and cluster 

by acquisition geometry. For example, in the fan area, in descending images (white arrow in 

Figure 18D) the feeding channel is affected by a systematic error. Interpreters have consistently 

misinterpreted an element of the image that appeared white both in the post-event images and in 

the images of change (e.g., Figure 14A,E). That area corresponds to a nearly flat surface, 

possibly a river terrace on the hydrographic right of the valley. Figure 18C,D shows that the 

PLIA is very low in that location (15° - 20°) compared to the surrounding area (35° - 50°). 

Comparison of pre- and post-event images shows that pixel values have generally increased, 

which explains why this area was highlighted also in LR images (e.g., Figure 14B,F). To avoid 

this type of error, it is suggested that mapping be carried out by systematically checking not only 

changes in pixel values, but also pattern changes. By doing so, interpreters can avoid to include 

areas where the structure of the surface has not changed.  

A systematic error is also found in the escarpment area, where the landslide scarp was mapped 

further upstream than its actual location (black arrow in Figure 18D). This happened only on 

descending LR VH images, where interpreters included an element which is morphologically 

compatible with the escarpment of a large landslide, given its position and curvature (e.g., Figure 

14B,E). This is a case of morphological convergence (Bucci et al., 2013; Gutiérrez and Soldati, 

2018), an ambiguity that is also common when mapping on stereoscopic optical images. We 

interpret this mapping error as the result of morphology, which causes the PLIA to be very low, 

and polarisation, since VH images are often characterised by a coarser grain of the images, which 

appears to the interpreters as a lower resolution image. To avoid this type of error, it is necessary 

to use other ancillary data that can reduce ambiguity. We suggest that images of different 

polarisation and acquisition geometry be compared when mapping event landslides on SAR 

amplitude derived products. However, it must be said that there is not always enough information 

to map landslides without uncertainty (Santangelo et al., 2015). 
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Figure 18 - Maps of the Projected Local Incidence Angle (PLIA) of the Chile test case, 

Ascending (A, B) and Descending (C and D). Benchmark and SAR maps are shown 

for reference. Figure B shows only maps prepared using ascending images; D shows 

only maps prepared on descending images. White arrow indicates a systematic error 

in the area of the feeding channel of the fan. Black arrow indicates a systematic error 

in the scarp area. 

 

Comparing the PLIA in the ascending and descending images of the Chile test case, it appears 

also that the landslide borders are more clustered in descending images, where the PLIA is lower 

almost everywhere compared to ascending images. Our interpretation of this evidence is that the 

stronger returns of the SAR amplitude signal translate in a sharper contrast where change has 

occurred compared to undisturbed areas, which helps interpreters to be consistent. The Tonzang 

landslide (Myanmar test case, Figure 19) deeply modified the local morphology, hence the effect 

of the pre-event PLIA on landslide maps must be interpreted mindfully. In the upper part of the 

landslide, where the pre-event morphology can be considered at least not completely disrupted, it 

can be observed that the landslide maps are more clustered on the right side for descending 

geometry, as opposed to the ascending geometry. This evidence is opposite to the Chile test case, 

where the borders tend to cluster over lower values of PLIA. Whereas on one hand we consider 

this an evidence that there were not enough elements to univocally draw the landslide border in 

those locations of the Tonzang landslide, it is not clear here whether this was caused by little 
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changes in the backscatter coefficient, or by the PLIA that caused pixel values to show a quite 

uniform and strong response. The same evidence can be found in Figure 19D, where interpreters 

incorrectly included an area in the scarp (black arrow in Figure 19D). Further research is needed 

to disentangle PLIA effect and magnitude of change of backscatter coefficient in affecting 

interpreters’ ability to map landslides. We underline that this experiment was designed to explore 

the use of different images to map event landslides, hence a systematic comparison of different 

images for producing a single map was out of the scope of the study. When it comes to landslide 

mapping, instead, interpreters should use all the available images to reduce uncertainty and draw 

the landslide border most coherent with all the information available.  

 

 

Figure 19 - Maps of the Projected Local Incidence Angle (PLIA) of the Myanmar test case, 

Ascending (A, B) and Descending (C and D). Benchmark and SAR maps are shown 

for reference. Figure B shows only maps prepared using ascending images; D shows 

only maps prepared on descending images. Black arrow indicates a systematic error 

in the scarp area. 

5.2 Evaluation of informative content of SAR backscatter products 

Comparison of the mismatch (MB) in the two test cases reveals that MB is not unambiguously 
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attributed to a single factor. In the Villa Santa Lucia landslide, the most influencing factor is the 

polarisation, with VV data points that cluster in the low mismatch part of the plot (Figure 13). In 

the Tonzang landslide, the most influencing factor is the acquisition geometry (Figure 16).  

Unlike the Tonzang landslide, the Villa Santa Lucia landslide can be divided in three areas that 

show large morphological differences, and where the geographical dispersion of mapped 

landslide borders differs sensibly. Therefore, to further analyse the mismatch data, we have 

computed the mismatch also within the three different sectors of the Villa Santa Lucia landslide 

(Figure 12). In particular, Figures 20-22 show plots of the mismatch for each landslide sector, 

namely scarp (Figure 20), body (Figure 21), and fan (Figure 22). Descriptive statistics on the 

maps in the three sectors of the landslide are also reported in Table 2. Inspection of the figures 

confirms that the central sector (Figure 21) is the one with the least dispersion, i.e., the highest 

consistency of the maps to the benchmark.  

 

 

Figure 20 - Distribution of the mismatch between the SAR derived maps of the scarp of the Villa 

Santa Lucia landslide compared to the benchmark. Data points are ranked by 

mismatch value (X axis), whereas the corresponding SAR images names are reported 

on the Y axis, according to the names listed in Figure 3, Figure 4 and Table A1. 

Inset: detail of the scarp of the landslide in the optical post-event image (for details 

refer to caption of Figure 1). 
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Surprisingly, as opposed to the Villa Santa Lucia landslide, VH images seem to provide more 

information for an accurate mapping in the Myanmar test case (error is on average ~40% smaller, 

from ~0.35 to ~0.20, Figure 19). Our hypothesis is that VH images are more sensitive than VV 

images to the surface roughness at the scale of the wavelength (~ 5cm), which may be an 

indicator of the granulometry of the deposit and/or indicate diffuse erosion of the surface at such 

scale. The same reason may explain why the VH images were so poorly performing in the fan 

area of the Villa Santa Lucia landslide (Figure 22), where the deposit is mainly constituted by 

mud.  

 

 

 

 

Figure 21 - Distribution of the mismatch between the SAR derived maps of the central part of 

the Villa Santa Lucia landslide compared to the benchmark. Data points are ranked 

by mismatch value (X axis), whereas the corresponding SAR images names are 

reported on the Y axis, according to the names listed in Figure 3, Figure 4 and Table 

A1. Inset: detail of the body of the landslide in the optical post-event image (for 

details refer to caption of Figure 1). 

Furthermore, in the Villa Santa Lucia landslide, VH images would allow an internal 

Jo
ur

na
l P

re
-p

ro
of

Journal Pre-proof



Santangelo et al. Sentinel-1 SAR amplitude images interpretation  

 

 

release 4, version 1 18 October 2021 34/43 

 

characterisation based on evidence of ephemeral channels and diffuse erosion in the central 

portion of the landslide. Further inspection of Figures 20-22 reveals that VH images are 

systematically worse performing in the scarp (Figure 20) and fan area (Figure 22), whereas in 

the central part of the landslide (Figure 21), the general behaviour is more similar to the 

Myanmar test case (Figure 16). Here acquisition geometry is the most influential factor and 

descending images are systematically better than ascending, with polarisation playing a minor 

role. We interpret this behaviour as the result of some similarities in the morphological and 

radiometric signatures of the Tonzang landslide and the central part of the Villa Santa Lucia 

landslide, where a mostly regular slope, complete removal of vegetation, absence of snow, 

presence of deposit material, and favourable aspect direction with respect to the acquisition 

geometry characterise the landslide.  

 

 

Figure 22 - Distribution of the mismatch between the SAR derived maps of the fan of the Villa 

Santa Lucia landslide compared to the benchmark. Data points are ranked by 

mismatch value (X axis), whereas the corresponding SAR images names are reported 

on the Y axis, according to the names listed in Figure 3, Figure 4 and Table A1. 

Inset: detail of the fan of the landslide in the optical post-event image (for details 

refer to caption of Figure 1). 

Plots of MB also reveal that in both case studies, images of change (LR) are often better 

performing compared to the corresponding post-event images. In particular, it is evident that LR 

does not mitigate the effect of polarisation or acquisition geometry, i.e., within groups of MB data 
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points pertaining to the same acquisition geometry or polarisation, LR images frequently show 

the lowest values of mismatch (Figures 13, 16). On the other hand, it seems that LR has a higher 

impact on the mismatch than the application of multilook or filters, which is shown by data 

points that cluster by LR more than by filters or multilook application. When mapping on LR 

images, interpreters could not but read a signal of change of the backscatter coefficient, having no 

possibility to contextualise that signal within the local morphology. For instance, white areas 

indicate areas where β0 has increased, which could be due to increase in soil moisture, but also to 

morphological changes that may lower the PLIA. Despite a good overall performance in 

highlighting the landslide borders, interpreters are more at ease with images that show absolute 

values instead of differences, i.e. they prefer having information to filter out (i.e. raw images) 

than having it done from an algorithm (Razak et al., 2013).  

 

Further inspection of mismatch of SAR maps compared to the benchmark also revealed that 

filters (including multilook) applied to images played a minor role in influencing the mapping 

results, compared to acquisition geometry and polarisation. This is evident in both case studies 

(Figures 13, 16). Referring to detection, where change is more helpful to identifying and 

preparing a first mapping (delineation of the landslide border) of the landslide, IDAN is more 

helpful in emphasizing the border itself, as opposed to Frost filter. On the contrary, the Frost 

filter helps more in the refined mapping, which is more easily done on post-event images, where 

also the morphological context is perceived by interpreters. In this case, IDAN introduces a 

strong generalisation that does not help when interpreters look for details. The effect of 

generalisation of IDAN filtered images is even stronger when applied to multilook images. 

Inspection of Figures 5-8 B,E,H,M, and Figures 9-11 B,E,H,M reveals that images where 

IDAN was applied to multilook appear blurred. In these cases, the anomaly caused by the 

landslide is enhanced compared to the surroundings, which helps detection, but details are 

hidden, hampering accurate mapping. It has to be stated that in this work filters were applied 

using a single parametrisation. Results here commented refer only to this specific case and cannot 

be considered general, but need to be specifically investigated. 

5.3 Evaluating SAR amplitude derived product for event landslide mapping 

In this experiment, interpreters worked on a single landslide without a priori knowledge, the 

Tonzang landslide, mapping one border for each image. Results showed that, at worst, error was 

equal to 0.294, whereas the median error was 0.168 (Table 2). We acknowledge that the Tonzang 

landslide has a strong radiometric and morphologic signature, which could make such results 

case specific and hardly generalizable. Comparison of results for the Villa Santa Lucia landslide 

reveals that overall MB values were greater than the Tonzang landslide, despite interpreters 

having previous knowledge of it. However, if sectors of the Villa Santa Lucia landslide are 

considered, some similarities emerge in the central part, where it shows a signature and values of 

MB (Table 2) comparable to the Tonzang landslide, whereas larger mismatch values occurred in 

the scarp and fan areas. A preliminary hypothesis is that C-band SAR amplitude derived products 

can be successfully applied where landslides have a radiometric and morphologic signature that 

causes the radar signal to be sharply different from the surroundings. It may correspond to areas 

where vegetation has been completely removed, and/or morphology has changed (hence also the 

PLIA). On the other hand, worse performances are to be expected when, for example, a snowmelt 
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event takes place (as for the scarp of the Chile test case) between pre- and post-event image 

acquisition, which introduces noise (Mondini et al., 2019). Similar results can be expected when 

the surface roughness is finer or coarser than the scale of the wavelength (~5 cm), which limits 

the interaction of the microwaves with the imaged surface, as for the fan of the Chile test case. 

Mondini et al., (2019) stated that in several cases analysed worldwide, they could detect not only 

single known event landslides, but also landslide events (i.e. populations of event landslides), 

Myanmar being one of these. Furthermore, their work did not allow for an estimation of a 

minimum landslide size for detection of event landslides in Sentinel-1 images. We confirm that 

specific experiments are needed to evaluate such a threshold, both for detection and mapping, 

which would make clear to what degree of completeness (Guzzetti et al., 2012) event inventories 

can be prepared using SAR amplitude derived products.  

 

Finally, it has to be stated that our results only refer to the specific wavelength (~5 cm) of C-band 

images at the spatial resolution of 15 m. Other bands would interact with objects at different 

scales. It is yet not clear whether comparison of different bands would allow for landslide 

classification (i.e., mud flows Vs debris flows). Also polarisation plays an important role in 

landslide mapping. It was shown that VH images were generally worse than VV, possibly 

because VH signal is in general weaker and the borders resulted somewhat fuzzier to interpreters. 

On the other hand, VH allowed interpreters to identify elements internal to the landslides that 

could help geomorphologists characterise the landslides internally based on the pattern of the 

surface roughness at the scale of the wavelength. Further research is needed to gain more 

experience on different bands, polarimetric composition, possibly with full polarimetric images 

(Watanabe et al., 2012; Yamaguchi, 2012), different environments, different landslide types, 

different resolutions, filters tuning. Such efforts are needed to better understand to what extent 

SAR images can effectively support landslide emergency response under severe climatic 

emergencies, when optical images cannot be available due to cloud cover.  

6 Conclusions 

In this paper, we explore the use of Sentinel-1 SAR amplitude derived products for event 

landslide mapping. SAR images included ascending and descending orbits, and a dual-pol 

acquisition mode (VV and VH). Criteria for interpretation of SAR amplitude derived products to 

map event landslides, both on post-event images and images of change (LR) of the backscatter 

coefficient were proposed, and their application led to results comparable to what usually 

obtained using optical post-event images, even when interpreters have no a priori knowledge of 

the landslide. This opens to the possibility of using such images for fast emergency response 

activities. However, results indicate also that interpretation of SAR images can be affected by 

geometrical distortions. In this experiment, interpreters kept the maps bound to the evidence 

provided by each single image, limiting as much as possible any learning from other images. In 

operational contexts, interpreters should reduce the amount of uncertainty by comparing groups 

of images, including all the factors that were separately examined in this work. We suggest that 

in landslide event emergency scenarios interpreters analyse and compare multiple images to 

reduce the sources of ambiguity that may affect mapping accuracy. For expert interpretation in 

emergency scenarios, we suggest that images of change be used for landslide detection and 

preliminary mapping. Then, interpreters should refine the preliminary mapping by comparing 
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pre- and post-event images, from different (i) orbits, to reduce geometric issues due to the PLIA, 

shadowing and layover, and (ii) polarisations to make inferences about the surface roughness. 

Interestingly, interpretation mitigated the speckling-like effects, which suggests that use of 

different filters is weakly influential on mapping results, with some advantage offered by 

adaptive filters (IDAN) for detection. Finally, it must be stated that, due to the geographically 

limited test cases, this work has to be considered a preliminary study which cannot support the 

definition of worldwide valid operational guidelines for event landslide inventory making. 

Nevertheless, we maintain that our findings allowed collecting first insights on which images 

characteristics of SAR amplitude derived products maximise the evidence of event landslides of 

similar size and type as the ones analysed in the two test cases. Building on such findings, future 

works may explore potential and limitations for preparing event landslide inventories. 
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12 Appendix 

Table A1 - Names and characteristics of the images used in this paper. The first column indicates 

the ascending (Asc) or descending (Desc) orbit; the column Time Step reports 

whether the images are pre-event (Pre) or post-event (Post); the column Pol indicates 

the polarisation (VV or VH); the fourth column (ML) reports whether for that image 

Multilook has been performed; in the fifth column (Filt) it is reported “No” for 

non-filtered images, and “Frost” or “IDAN” to indicate the filter used; the column LR 

indicates whether the image is an image of change (Log-Ratio). In the column “Image 

name” it is reported the name assigned to each image, according to Figure 3 and 

Figure 4. In the last two columns, where applicable, it is reported the order in which 

the images were shown to interpreters. Ranking is ordered from lowest to highest for 

Chile, whereas for Myanmar it is possible to read the rank number compared to the 

images of Chile. Order of Myanmar images was decided based on results of 

comparison between SAR images based maps and the benchmark, so that images 

with higher mapping error were interpreted first. See text for further explanation. 

 
Orbit Time step Pol ML FILT LR Image name Order [#], Chile Order [#], Myanmar 

Asc Pre VV Yes No No Asc_Pre_ML_NoFILT_VV 1 18 

Asc Post VV Yes No No Asc_ML_NoFILT_VV 1 18 

Asc Post VV Yes No Yes Asc_LR_ML_NoFILT_VV 2 24 

Asc Pre VH Yes No No Asc_Pre_ML_NoFILT_VH 3 NA 

Asc Post VH Yes No No Asc_ML_NoFILT_VH 3 NA 

Asc Post VH Yes No Yes Asc_LR_ML_NoFILT_VH 4 NA 

Asc Pre VV Yes IDAN No Asc_Pre_ML_IDAN_VV 5 26 

Asc Post VV Yes IDAN No Asc_ML_IDAN_VV 5 26 

Asc Post VV Yes IDAN Yes Asc_LR_ML_IDAN_VV 6 15 

Asc Pre VH Yes IDAN No Asc_Pre_ML_IDAN_VH 7 NA 

Asc Post VH Yes IDAN No Asc_ML_IDAN_VH 7 NA 

Asc Post VH Yes IDAN Yes Asc_LR_ML_IDAN_VH 8 NA 

Asc Pre VV Yes Frost No Asc_Pre_ML_Frost_VV 9 20 

Asc Post VV Yes Frost No Asc_ML_Frost_VV 9 20 
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Asc Post VV Yes Frost Yes Asc_LR_ML_Frost_VV 10 21 

Asc Pre VH Yes Frost No Asc_Pre_ML_Frost_VH 11 NA 

Asc Post VH Yes Frost No Asc_ML_Frost_VH 11 NA 

Asc Post VH Yes Frost Yes Asc_LR_ML_Frost_VH 12 NA 

Asc Pre VV No No No Asc_Pre_NoML_NoFILT_VV 13 16 

Asc Post VV No No No Asc_NoML_NoFILT_VV 13 16 

Asc Post VV No No Yes Asc_LR_NoML_NoFILT_VV 14 25 

Asc Pre VH No No No Asc_Pre_NoML_NoFILT_VH 15 NA 

Asc Post VH No No No Asc_NoML_NoFILT_VH 15 NA 

Asc Post VH No No Yes Asc_LR_NoML_NoFILT_VH 16 NA 

Asc Pre VV No IDAN No Asc_Pre_NoML_IDAN_VV 17 17 

Asc Post VV No IDAN No Asc_NoML_IDAN_VV 17 17 

Asc Post VV No IDAN Yes Asc_LR_NoML_IDAN_VV 18 23 

Asc Pre VH No IDAN No Asc_Pre_NoML_IDAN_VH 19 NA 

Asc Post VH No IDAN No Asc_NoML_IDAN_VH 19 NA 

Asc Post VH No IDAN Yes Asc_LR_NoML_IDAN_VH 20 NA 

Asc Pre VV No Frost No Asc_Pre_NoML_Frost_VV 21 22 

Asc Post VV No Frost No Asc_NoML_Frost_VV 21 22 

Asc Post VV No Frost Yes Asc_LR_NoML_Frost_VV 22 14 

Asc Pre VH No Frost No Asc_Pre_NoML_Frost_VH 23 NA 

Asc Post VH No Frost No Asc_NoML_Frost_VH 23 NA 

Asc Post VH No Frost Yes Asc_LR_NoML_Frost_VH 24 NA 

Desc Pre VV Yes No No Desc_Pre_ML_NoFILT_VV 25 30 

Desc Post VV Yes No No Desc_ML_NoFILT_VV 25 30 

Desc Post VV Yes No Yes Desc_LR_ML_NoFILT_VV 26 33 

Desc Pre VH Yes No No Desc_Pre_ML_NoFILT_VH 27 2 

Desc Post VH Yes No No Desc_ML_NoFILT_VH 27 2 

Desc Post VH Yes No Yes Desc_LR_ML_NoFILT_VH 28 10 

Desc Pre VV Yes IDAN No Desc_Pre_ML_IDAN_VV 29 19 

Desc Post VV Yes IDAN No Desc_ML_IDAN_VV 29 19 

Desc Post VV Yes IDAN Yes Desc_LR_ML_IDAN_VV 30 27 

Desc Pre VH Yes IDAN No Desc_Pre_ML_IDAN_VH 31 3 

Desc Post VH Yes IDAN No Desc_ML_IDAN_VH 31 3 

Desc Post VH Yes IDAN Yes Desc_LR_ML_IDAN_VH 32 4 

Desc Pre VV Yes Frost No Desc_Pre_ML_Frost_VV 33 29 

Desc Post VV Yes Frost No Desc_ML_Frost_VV 33 29 

Desc Post VV Yes Frost Yes Desc_LR_ML_Frost_VV 34 28 

Desc Pre VH Yes Frost No Desc_Pre_ML_Frost_VH 35 6 

Desc Post VH Yes Frost No Desc_ML_Frost_VH 35 6 

Desc Post VH Yes Frost Yes Desc_LR_ML_Frost_VH 36 9 

Desc Pre VV No No No Desc_Pre_NoML_NoFILT_VV 37 31 

Desc Post VV No No No Desc_NoML_NoFILT_VV 37 31 

Desc Post VV No No Yes Desc_LR_NoML_NoFILT_VV 38 35 

Desc Pre VH No No No Desc_Pre_NoML_NoFILT_VH 39 11 

Desc Post VH No No No Desc_NoML_NoFILT_VH 39 11 

Desc Post VH No No Yes Desc_LR_NoML_NoFILT_VH 40 7 

Desc Pre VV No IDAN No Desc_Pre_NoML_IDAN_VV 41 32 

Desc Post VV No IDAN No Desc_NoML_IDAN_VV 41 32 

Desc Post VV No IDAN Yes Desc_LR_NoML_IDAN_VV 42 34 

Desc Pre VH No IDAN No Desc_Pre_NoML_IDAN_VH 43 5 

Desc Post VH No IDAN No Desc_NoML_IDAN_VH 43 5 

Desc Post VH No IDAN Yes Desc_LR_NoML_IDAN_VH 44 8 

Desc Pre VV No Frost No Desc_Pre_NoML_Frost_VV 45 13 

Desc Post VV No Frost No Desc_NoML_Frost_VV 45 13 

Desc Post VV No Frost Yes Desc_LR_NoML_Frost_VV 46 36 

Desc Pre VH No Frost No Desc_Pre_NoML_Frost_VH 47 1 

Desc Post VH No Frost No Desc_NoML_Frost_VH 47 1 

Desc Post VH No Frost Yes Desc_LR_NoML_Frost_VH 48 12 
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Highlights 

 Explored the use of C-band SAR amplitude images to map event landslides 

 Interpretation criteria of brightness coefficient (β0) post-event and change images 

 Geometries, polarisation and local incidence angle mostly influence mapping results 

 Images of change should be used for preliminary mapping and post-event for refining 

 Results open to efficient event landslide mapping in emergency scenarios 
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