@ Consiglio Nazionale delle Ricerche TS I

[P QL ISTITUTO DI INGEGNERIA DEL MARE

INSTITUTE OF MARINE ENGINEERING

[

BEREFEL ISTITUTO DI INGEGNERIA DEL MARE
M WAhwEF INSTITUTE OF MARINE ENGINEERING
RAPPORTO TECNICO INTERNO

Progetto e sviluppo della una piattaforma software Tidal Tools per la modellazione
TITOLO . . . , ,
digitale di turbine idrocinetiche
AUTORE/I Nome Cognome Matricola
1 Pedram Ghorbanpour n.a.
2 Francesco Salvatore 40493
PROGETTO/ Progetto ULYSSES - Underpin LaboratorY for Stdies on Sea Energy Identificativo
RESPONSABILE/I Francesco Salvatore
COMMITTENTE/I CNR
PARTNER/S
PAROLE CHIAVE Energia rinnovab.ile. d.a f(':mti marine; Correnti di marea; turbine idrocinetiche; piattaforma
software; modelli digitali
DIFFUSIONE Privata Riservata Pubblica | X
NOTE Revisione
NOTE GENERALI D’ISTITUTO 23/06/2022

CENTRO DI RICERCA DI APPARTENENZA

CNR - Consiglio Nazionale delle Ricerche

DENOMINAZIONE ISTITUTO

CNR - INM
Istituto di Ingegneria del Mare

SEDE/INDIRIZZO | Via di Vallerano, 139 - 00128 Roma (RM)
TEL | 06 502991 FAX | 065070619
E-MAIL | segreteria.inm@cnr.it PEC | protocollo.inm@pec.cnr.it
WEBSITE | www.inm.cnr.it
DIRETTORE D’ISTITUTO | Dott. Ing. IAFRATI Alessandro

Visto, si approva

Alessan droIL DIRETTORE
lafrati (Nota 15)
27.06.2022

15:44:26

GMT+01:00

E-mail: segreteria.inm@cnr.it

Sede di Roma “Sezione di Acustica e Sensoristica O.M. Corbino”
Area della Ricerca di Tor Vergata
Via del Fosso del Cavaliere, 100 - 00133 Roma

Sede principale: Via di Vallerano, 139 — 00128 Roma
P. IVA 02118311006 — C.F. 80054330586

PEC: protocollo.inm@pec.cnr.it Tel. 06-50299222 - Fax 06-5070619

http://www.inm.cnr.it
Sede di Genova
Area della ricerca di Genova
Via De Marini, 6 — 16149 Genova

Sede di Palermo
Area della ricerca di Palermo
Via Ugo La Malfa, 153 — 90146 Palermo

[P QL ISTITUTO DI INGEGNERIA DEL MARE
R AWE | INSTITUTE OF MARINE ENGINEERING

[
(‘

@ Consiglio Nazionale delle Ricerche

TABELLA DEI CONTRIBUTORI

Autore di Riferimento ai fini della gestione del prodotto

Nome Cognome Matricola
Francesco Salvatore 40493
Autore/i
Nome Cognome Matricola
Pedram Ghorbanpour n.a.
Francesco Salvatore 40493

Nota di Riservatezza:
nessuna

[Qrea=

@ Consiglio Nazionale delle Ricerche T gl

ISTITUTO DI INGEGNERIA DEL MARE
INSTITUTE OF MARINE ENGINEERING

|
(

ERPFE L ISTITUTO DI INGEGNERIA DEL MARE

"

Sh"WAwEF [INSTITUTE OF MARINE ENGINEERING

(

INTERNAL TECHNICAL REPORT

TITLE Design and development of the Tidal Tools software platform for the digital
modelling of hydrokinetic turbines
AUTHOR/S Name Last Name Service Number
1 Pedram Ghorbanpour n.a.
2 Francesco Salvatore 40493
PROJECT Project ULYSSES - Underpin LaboratorY for Stdies on Sea Energy ID Number
Systems DIT.AD019-040
MANAGER/S Francesco Salvatore
CLIENT/S CNR
PARTNER/S -
KEYWORDS Marine renewable energy; Marine currents; Hydrokinetic turbines; software platforms; digital
models
CONFIDENTIALITY Private Restricted Public | X
NOTES Revision
INSTITUTE DETAILS 23/06/2022
ORGANIZATION CNR - Consiglio Nazionale delle Ricerche
CNR - INM

INSTITUTE Istituto di iNgegneria del Mare

OFFICE/ADDRESS | Via di Vallerano, 139 - 00128 Roma (RM)

PHONE | 06 502991 FAX | 065070619

E-MAIL | segreteria.inm@cnr.it PEC | protocollo.inm@pec.cnr.it

WEBSITE | www.inm.cnr.it

INSTITUTE DIRECTOR | Dott. Ing. IAFRATI Alessandro

Approved
The DIRECTOR

£ | ISTITUTO DI INGEGNERIA DEL MARE

(
(

@ Consiglio Nazionale delle Ricerche

AR WAWE | INSTITUTE OF MARINE ENGINEERING
CONTRIBUTORS TABLE
Corresponding Author
Name Last Name Service number
Francesco Salvatore 40493
Author/s
Name Last Name Service number
Pedram Ghorbanpour n.a.
Francesco Salvatore 40493
Confidentiality notes:
No.

(ﬂ _/ra ISTITUTO DI INGEGNERIA DEL MARE
Consiglio Nazionale delle Ricerche AN NWT | INSTITUTE OF MARINE ENGINEERING

|
§

Table of Contents
1 INTRODUCTION. . .uciuuctuetunseensensionsrassrassasssns 6
2 TIDALTOOLS — AN OVERVIEWcccuuueceeeiieeeennnnnnneaeseeeeennnssnsssesaeeesnnsssssssssseessnnsssssssessssssnnnssssssssssssnnnnnnns 8
3 THE PLATFORM ARCHITECTUREccccituiieiiasianianiesiesiasiasiossassassossossassosssssassassassassossassassssssssassassassassssas 11
3.1 WHY PYTHON..cctettuuuueeeeereeeeetnnnneeeseseeeessssssnesseesesssssssssssessssssnsssssssssssssssnsssssssssssssssnssnssnssesssssnnnnnnssnns 12
3.2 BACK-END ..eereererennnencsesseeeensnsnssesesssesessnnnsssssssssssesnnssssssssssessnnssssssssssssesnnsssssssssssssssnsnsssssssssnesnnssnssssans 13
3.2.1 DIANGO FRAMEWORKcvveeetreeetteeesteeeseeeseeesseessesasesaseeaseesseseeeesseeesseeasseeasseeenseesnteesnseesseesnseeenseeeseeennnes 14
3.2.2 DATABASE ENGINE.....ccutieiteeeitreeereesteeeteeaseeeseessessseeesee s asseessseesaseesaseesasseasseesnsasensesensseeasseensseeasseeasnseeanns 18
3.2.3 CELERY PARALLEL SERVER. ..uveeeuveeeureeeureeesseeesseeeseeeseeeseeeisesasesanseseeeseeeassseessesassessnsessnseessseesnsesssessnseseseesnsens 20
3.2.4 KEY PYTHON LIBRARIES. ...cuvteiureeeteeeteeeiteeeiteeeiseeeeseseesseessseeasssessasesanseseseeenseseseseasssensssessseessseessseessseessessnses 21
3.3 FRONT-END...ceeeeeerneunnecesseeeeennnnssssesssesessnnssssssssssssssnnsssssesssssssnnssssssssssssesnnssssssssssssssnnsnssssssssssesnnnnnssssans 22
4 HORIZONTAL IMODULES ...cccciteiieeiiensiansransennsensssssssssrssassssssssssssssssssssssnsssnss 24
4.1 USERS MANAGEMENT IIODULE.....cceeeeeetuneneecserseeeeesnsnsnssessssneesnnnssssssssssssnnsssssssssssssssnnsssssssssssssnnnnnnnnnsssns 24
4.1.1 DATABASE STRUCTURE ..vveeeuveeeteeeeteeeetteeeseesseeeseeeseeaseseesesaseesseseseasssessseessseeaseseasseessseesnsesssessnseesnseessessnnns 24
4.2 IMIESSAGING APPLICATION.ccceuuueeesereeerennnsssnesesssessssnssssssessssssssnssssssssssssssssssssssssesssssnnssssssssssssssnnsnssnssssssnes 25
4.2.1 DATABASE STRUCTURE ..cuvteuveetteetteetteetrestsesteesseesseesseesssessessesseseseesseessesssesssesssesssesssesssesssesssessesssesssesssesnseses 25
4.3 AUTOMATIC EMAILING APPLICATION ..ccevvruuueeeeereeeeernnsnssseseeeeesssnssssssssessessssssssessssssssnnssssnsssssssssssnnssnssssses 26
4.4 DATA MANAGEMENT APPLICATION ...eeeeeeennesenesessseeessnsnssssessssssssnnnssssssssssssssnnssssssssssssnnnnsssssssssssssnnnnnnsssssns 26
.41 DATABASE STRUCTURE ..vveeiuveeetteeetreeeseeeeseeeseeeseeesseeeseseesesaeseessaseseassseasseessseeassssasseessseesnsessseesnseesnsesssesennns 26
4.5 FORUM APPLICATION ...eeeerrennnneeceeeeeessesnssssssesssesssssnsssssssessassssnssssssssssssssnsssssssssssssssnsssssssssssssssnnnnnnnnsssns 27
5 VERTICAL MODULES......ccucceeiiiiiuernnnnnnnneiesereesnnnnsssesesesessnnnsssssssssssssnnnssssssssssssssnnsssssssssssssssnnnssassssssannns 28
5.1 TURBINE GEOMETRY AND IMESH TOOL (AUTOBLADE) .ceuuuuueieereereernnnnneeeeeeeeeennnsseesseeeesssnssssssseessssnnnnnnsasaes 28
5.1.1 DATABASE STRUCTURE ...eeiuveeitteeereeeteeeseeeseeeseseaseseassseasseeasss e ssesssesaseeasssensesanssseasssessseessseessseessseessessanns 28
5.2 TURBINE PERFORMANCE SIMULATION (BIEIM)ciiiiiermenniiiieiiinnennnnsseseisnesennnnnssssssesssnnnsssssssssssssnnnnnssssnss 29
5.2.1 DATABASE STRUCTURE ...eccuvieiuteeeteeeteeeseeeiseeeeseeesseseassseasseeasssessasesssesaseeessseseseasssessssessseessseessseessseessessnnns 29
5.3 TURBINE DESIGN TOOL (X-DESIGN)..ceuuererenneereeenseereeenseereennssessesnssesessnssessesnssssesassessssnssessesnssessssnssessssnnnnns 30
5.3.1 DATABASE STRUCTURE «..eeiuvieetreeeteeeteeeteeeeseeeeseeeeseseeseseesseeasssesasesssesessessssasessasseensssessseessssessseessseesseesnnes 30
5.4 TURBINE ANNUAL PRODUCTIVITY (SITESIM) teuuereunerrunereeneerennerennerenserrnserensserassssensessnssssnssssnsessnssssnssssnnsssnns 30
5.4.1 DATABASE STRUCTURE w.veeiuveeetreeeteeeeteeeseeeseeeeseseesesesseseesseeasssesssesasesassesesesesessasssessseessseessseessseesnseesseesnnes 31
5.5 ECONOMIC FEASIBILITY CALCULATION TOOL(ECOSIM)..cuuuiiieuunerirnnneerrennncereennnceseennseessennseessennsessesnssessennnnnns 31
6 CONCLUSIONS. ... cuituueruuerusrusrunsenniensionsrassrassrussrssrassrsssrasssssssssssssssssrasssasssnssossssssrsssrsssrassrsssassrsssrnsssnss 32
7 BIBLIOGRAPHY ...cuiiuuiiuneiusiunseensensionsiansrasssssssssssssrsssrssasssnssssssssssnsssnss 33

(ﬂ _/ra ISTITUTO DI INGEGNERIA DEL MARE
Consiglio Nazionale delle Ricerche AN NWT | INSTITUTE OF MARINE ENGINEERING

|
§

1 Introduction

he present report describes the development and implementation of a computational

platform for the analysis and design of tidal energy turbines. The platform is called
TidalTools and is a web application (website) which is designed to be accessible by remote
connection using a common web browser. Like its name it deals with design, performance
simulation, economic feasibility, etc. problems in the tidal energy industry and particularly it
is designed to perform a horizontal-axis tidal turbine characterization from scratch with some
simple inputs. Results of computational studies are made available as output files in various
formats, plots, and a report of turbine key performance indicators and geometry details is
provided.

The idea of developing this tool was first started on September 2020. The main objective was
to make available to a wide community of users the digital models on tidal energy systems
developed at CNR-INM (INSEAN, until 2018) and grounded on two decades of activity in the
hydrodynamics modelling of rotary wing systems. Core of this computational suite is a
Boundary Integral Equation Model (BIEM) for the analysis of tidal turbine performance and
the mesh generation code (AUTOBLADE) to discretize 3D turbine models for the numerical
solution by BIEM. More recently, these two codes have been integrated into a turbine
parametric design procedure (X-Design) and annual energy production, techno-economic
models have been included.

All the above-mentioned codes have been implemented in the Fortran environment and
design and developing a user interface to these codes was not possible with the same
programming language, so the solution was to use Django (Holovaty 2005), a high-level
Python-written web development framework, to provide database management and
graphical user interface to the computational models linked into the platform. Django is one
of the most used programming languages among the scientists and developers.

One of the key features of this platform other than simulations and analysis is having a
sophisticated database structure to manage all the data that are used as input and are
generated as output in the calculations. In particular, one database is specifically designed to
store all the important information regarding the different oceanic and tidal sites all around
the world. These data can be the velocity, bathymetry, salinity, density measurements in
particular periods of time along with metadata for name, location, coordinates, etc. of the site.

Besides providing the mentioned services to the users, the social media and forum
functionality is also considered in this platform. The objective is to propose TidalTools as the
first and only hub for students and scientists to get in touch, share, collaborate and together
move toward further developments in the tidal energy field.

(ﬂ _/ra ISTITUTO DI INGEGNERIA DEL MARE
Consiglio Nazionale delle Ricerche AN NWT | INSTITUTE OF MARINE ENGINEERING

|
§

The platform is designed as a web application (website) accessible by remote connection
using a common web browser. This layout provides several advantages from both users and
developers sides:

e The users do not have to install any software on their local computers: this prevents
compatibility issues with operating system, graphical libraries in the local computer

¢ No license keys or software is necessary: the user registers online to have access to the
platform

e Developer’s activity to update the software, to fix bugs, to introduce new features can be
done in parallel to users access to the platform

e When a new platform version is released by the developers, the users do not have to
upgrade or install new software. They just receive a message with notification of the
new features.

The platform software is hosted by a server located at CNR-INM.

In the following sections of this report, detailed explanation of all tools and of the interfaces to
manage input and output data through databases and a graphic user interface are given.
Particular attention is given to describe the platform architecture that has been designed to
enable a wide range of functionalities with a modular approach that allows a streamlined
upgrade of the platform as new tools and features will be made available for integration. In
fact, TidalTools is conceived as a long-term project, open to contributions from a wide
community of users and developers.

(ﬂ _/ra ISTITUTO DI INGEGNERIA DEL MARE
Consiglio Nazionale delle Ricerche AN NWT | INSTITUTE OF MARINE ENGINEERING

|
§

2 TidalTools - An overview

TidalTools is an online web application with both computational, data management and
social tools. This section illustrates the structure of the platform and the main tools that are
integrated .

This online platform is developed to target the tidal energy sector (for now) but can be further
developed to include all offshore energies. The aim in development of this tool is to facilitate
the complicated design procedure of a tidal turbine by managing a very few but crucial data.
The rest is being handled in the back-end. Besides the design and computational features, this
tool benefits from a social part that is developed to connect the people in the tidal energy
community. Everyone who is studying, training, working, and doing research in this field can
look at this platform as a hub to exchange ideas, organize event, run polls, get in touch with
each other through a fully encrypted messaging platform. Providing these two features both at
the same platform is what makes the TidalTools unique and one of a kind.

The platform is designed to be accessible by remote connection using a common web browser
from any device with any operating system. The advantage of this approach over the
conventional offline approach is:

1- Users can always have access to the latest version of the code.

2- No huge file to download every time a new version of the platform is being published

3- Not being depended on the operating system

4- User can have access to the code from any device that has a connection to the internet
i.e., Tablets and smartphones.

The platform combines several software elements dedicated to providing the users with
specific services. However, the platform as mentioned, consists of two main parts which are:

1- The Computational Tools:
Where users can perform many tasks like design and performance evaluations of the
horizontal axis tidal turbine.

2- The Social part:
Where users get in touch with each other and share their research with other and the
admins and authors of the platform.

The computational tools available in this platform are developed in CNR-INM in over 20 years
and all has been validated. In the current version of the platform a few numbers of tools are
available. However, Other tools will include in the future by taking advantage of the modular
structure of the platform architecture. The tools that are available now are:

1. AUTOBLADE:
This tool is used to build a three-dimensional (3D) model of a horizontal-axis turbine
and to generate the computational mesh used by the BIEM (Boundary Integral Equation
Model) solver for the prediction of turbine performance (see below). As input, geometry

(ﬂ _/ra ISTITUTO DI INGEGNERIA DEL MARE
Consiglio Nazionale delle Ricerche AN NWT | INSTITUTE OF MARINE ENGINEERING

|
§

parameters to build turbine blade and nacelle surfaces are required by using a specific
data format. As output, turbine surface mesh and 3D models in formats compatible with
popular graphics software (Tecplot, Paraview, Gnuplot) are given. The resulting turbine
3D model and computational mesh can be uploaded to the platform turbine geometry
database.

2. BIEM

This tool is used to evaluate the performance of a horizontal-axis tidal turbine by using a
BIEM (Boundary Integral Equation Model) solver that is valid for steady or unsteady 3D
flows. Turbine performance for user defined operating conditions (mean flow speed,
TSR) and site conditions (vertical velocity profile) are evaluated over a TSR range or for
a single TSR value. As input, the turbine surface mesh by AUTOBLADE is used. A simple
viscous flow correction model allows to estimate performance up to stall, provided that
blade section polars are given as input. Simulations results include thrust, torque, power
curves, blade surface distributions of pressure, risk of cavitation on blade, radial
distributions of induced velocity and effective angle of attack. The output files are
formatted for visualization with popular graphics software. The resulting turbine
performance curves can be uploaded to the platform turbine performance database.

3. X-Design
This tool is used to perform a horizontal axis tidal turbine design from user defined
objectives and constraints. The design follows by an iterative procedure in which X-
Design is interfaced with the AUTOBLADE tool to generate 3D models and grids of guess
turbines, whereas the BIEM tool is used to predict the performance of the guess turbine.
As output the geometry and performance of the designed turbine are given. If the design
is successful, the resulting turbine geometry can be uploaded to the platform turbines
database

4. SiteSim
This tool is used to estimate the power output, the operating conditions (mechanical
loads, RPM) and Annual Energy production (AEP) of a user-defined turbine in a user-
defined tidal site. Both turbine geometry and tidal site resource data are taken from
dedicated platform databases.

5. EcoSim
This tool is used to perform the economic feasibility analysis of a turbine in a particular
site and generate a report that contains all the costs associated with constructing,
operating, and maintaining it. The tool can also provide information like the Levelized
Cost of Energy (LCoE), payback period, and other performance indicators that are used
to perform a Life-Cycle Assessment (LCA) of a given tidal energy project.

Users when register on this platform, can benefit from all there modules. Besides, as mentioned
above they can use social features considered inside the platform to share and contact others,
these features are:

[wra
| B 1)

|

ISTITUTO DI INGEGNERIA DEL MARE
F | INSTITUTE OF MARINE ENGINEERING

H
'<

@ Consiglio Nazionale delle Ricerche

1. Messaging feature
This is the classic messenger that allow users to communicate which each other

2. Forum

Where users can share their research and results that they obtain by using the tools
available in this platform, run polls, promote their research, etc.

In the present document, some of the platform modules will be referred to as Vertical like
computational modules whereas some will be referred to as Horizontal like the users module.
Vertical module is a module that is built to perform a single task and can work solo. However,
a horizontal module is a module which is interacting with other modules and communicate
with other vertical and horizontal modules[Figure 1]. The means of communication in the
platform is provided by the data stored in the database. All the interactions and data storage
and relations between stored data [Figure 2] is explained in the following section.

To summarize, TidalTools is not only an input/output platform but also provides means of
communication and networking.

4 N
| Forum ‘
$
Horizontal | Messenger Tool ‘
modules ¥
| Email — notifying Tool ‘
b

User Management ‘

\ A A)))
>

Vertical

modules

Figure 1 Vertical and Horizontal modules in the TidalTools platform

AN

Sender
¥
' Receiver | Receiver | | Postby |
v v b
Messenger Email - Forum
‘ Tool notifying Tool Tool

f f f

User Management ‘

si 58 38 i 58
SE (22 58 |58 |28

Figure 2 Relating databases in the TidalTools platform

10

(ﬂ _/ra ISTITUTO DI INGEGNERIA DEL MARE
Consiglio Nazionale delle Ricerche AN NWT | INSTITUTE OF MARINE ENGINEERING

|
§

3 The Platform Architecture

Before describing the platform architecture in detail, it is deemed useful to recall some general
concepts that are common in the design and implementation of digital products like the one of
interest here. Like every digital platform, TidalTools has an algorithm architecture and
development process that this section aims to cover. The two most important parts for an
application or in other word a computer program are:

1- Back-end code

Back-end refers to parts of a computer application or a program's code that allow it to
operate and it cannot be accessed by a user. Most data and operating syntax are stored
and accessed in the back-end of a computer system. Typically, the code is comprised of
one or more programming languages. The back end is also called the data access layer of
software and includes any functionality that needs to be accessed and navigated to by
digital means.

2- Front-end code

The layer above the back end is the front-end and it includes all the software that is part
of a user interface. Human or digital users interact directly with various aspects of the
front end of a program, including user-entered data, buttons, programs, websites, and
other features. Most of these features are designed by user experience (UX)
professionals to be accessible, pleasant, and easy to use.

A back-end application or program supports front-end user services, and interfaces with any
required resources. The back-end application may interact directly with the front end, or it
may be called from an intermediate program that mediates front-end and back-end activities.

Usually, the back-end of a platform consists of the codes and libraries that are written in
different programming languages. TidalTools also has its back-end developed using python
and Fortran. The code in the back end consists of FORTRAN executables that are the solvers for
different design and analysis and Python scripts that produce the whole structure of the
platform and provides the means of communication between the user interface and the
computational code in FORTRAN. It worth mentioning that using FORTRAN as a part of the
back-end of a website was never seen before as one of the seniors of AWS states in Quora [1].
On the other hand, most of engineering software developed over the last decades is written in
Fortran 77 or more recent versions. In both academia and industry, continuous developments
on the software is being done using the same language. The necessity to develop interfaces to
exploit a vast knowledge background into modern digital frameworks is then apparent. The
computational platform project described here is an example of this type of effort.

In the present work, the platform has been designed for operation under Linux operating
system.

11

(@ LLUF
Consiglio Nazionale delle Ricerche T b

(l

£ | ISTITUTO DI INGEGNERIA DEL MARE
F | INSTITUTE OF MARINE ENGINEERING

l

3.1 Why Python

Python is a widely used general-purpose, high level programming language. It was created by
Guido van Rossum in 1991 and further developed by the Python Software Foundation. It was
designed with an emphasis on code readability, and its syntax allows programmers to express
their concepts in fewer lines of code.

Python is a programming language that lets you work quickly and integrate systems more
efficiently.

A Brief History Of Development of
Python Programming Language

1980
1992
1994
' 2oooi l

Figure 3 Python Development History

Python is an interpreted, object-oriented, high-level programming language with dynamic
semantics. Its high-level built-in data structures, combined with dynamic typing and dynamic
binding, makes it very attractive for Rapid Application Development, as well as for use as a
scripting or glue language to connect existing components together. Python is simple, easy to
learn syntax, it emphasizes readability and therefore reduces the cost of program maintenance.
Python supports modules and packages, which encourages program modularity and code
reuse. The Python interpreter and the extensive standard library are available in source or
binary form without charge for all major platforms and can be freely distributed. [2]

Nowadays, Python is very popular among the developers, engineers, and Data Scientists. That’s
why due to its huge community around the world many free source libraries have been
developed are developing every day. Python is used in many areas such as Machine learning
(ML), Artificial intelligence(Al), User interface development, big data analysis etc.

One area where Python shines is web development. Python offers many frameworks from
which to choose from including bottle.py, Flask, CherryPy, Pyramid, Django and web2py. These
frameworks have been used to power some of the world’s most popular sites such as Spotify,
Mozilla, Reddit, the Washington Post and Yelp. [3] For developing the TidalTools platform the
Django Framework is used.

12

r BR FEZE ISTITUTO DI INGEGNERIA DEL MARE
Cl Consiglio Nazionale delle Ricerche AN NWT | INSTITUTE OF MARINE ENGINEERING

(
(

3.2 Back-end

As mentioned at the beginning of this section, this tool uses multiple languages at its back-end.
Part of it is developed in FORTRAN and part of it is written in Python. The syntaxes and
working principles of these two programming languages are not the same and that was the
first barrier in the development of the platform. Luckily, there is a library called F2PY which
interfaces FORTRAN into Python. However, unfortunately, this library proved not adequate to
translate complex codes written in Fortran as those considered for inclusion into the
TidalTools platform. Therefore, a library called TIDALDES has been developed from scratch to
establish this interface between FORTRAN and Python in the back-end and provide the means
of communication between their two parts of the back-end.

This library was developed to be able to generate the input file of the FORTRAN solver then
access to the directory where the Fortran executable is located, execute the code, then read all
the output generated by the code and finally process them in a way the python code can
understand and interact with them.

The working principle of the TIDALDES module is more like a robot that executes some series
of tasks when they are needed. In other words, it mainly and mostly is the python that is
running. But is also important to know the logic behind this interface.

The files that this platform uses are all stored in a particular architecture to make them interact
easily with each other. All the Fortran codes in the back-end are stored in a directory
associated with the solvers name and all those directories are inside a directory called
Fortran_solvers [Figure 4]. Then all the solvers are compiled using GFortran. Then , these
solvers connected to the TIDALDES module.

Fortran_solvers

BIEM-FORTRAN Icav_pfcl5

SITESIM sitesim

AutoBlade autoblade

X _design xdes

Figure 4 Gray boxes show the directory, and the green ones show the Fortran executable

When inside the platform any of the mathematical solvers are called, a subprocess starts in a
particular directory. Then, results are processed by the Fortran interface and then passed to
the Python and then to the database.

To develop the back-end of this platform a web framework called Django is used. This
framework shapes the whole structure of the platform and provides an interface between the

13

@ Consiglio Nazionale delle Ricerche

[P QL ISTITUTO DI INGEGNERIA DEL MARE
R AWE | INSTITUTE OF MARINE ENGINEERING

[
(l

back-end and the database to dynamically get or send data from or to the database. The
structure of the back-end of the platform is shown in Figure 5.

TidalTools

Python side Data Process

SITESIM

Fortran side Fortran_solvers

AutoBlade

BIEM-django app

SlIteSim-django app
computational Modules

Autoblade-django app

Users-django app

Email-django app
Social Platform Modules

Messenger-django app

Forum-django app

Figure 5 Back-end structure of the platform

3.2.1 Django Framework

The TidalTools platform as mentioned before is developed by using Django python. Django is
a back-end framework, but this tool also support a front-end development tool that are not as
good as the ones for the front-end. This tool can connect the back-end code and database
directly to the html code of the Ul and dynamically change data. However, for some of the
features considered for future developments of the platform, front-end engine must be

developed.

TidalTools

init.py
settings.py
urls.py
wsgi.py
asqi.py

L—— manage.py

Figure 6 TidalTools directory and files generated by Django-admin

In the Django development the convention is to call the website a project and the features that
are being developed individually to include in website, are called django applications. when a
project starts, by using the django-admin startproject project name’ command some
default directories and file generate automatically by a library called Django-admin. When a

14

;
(

(ﬂ _/ra ISTITUTO DI INGEGNERIA DEL MARE
Consiglio Nazionale delle Ricerche AN NWT | INSTITUTE OF MARINE ENGINEERING

\

project is being instantiated using django-admin, a directory is being created with the name of
the project as shown in Figure 6. Inside this directory, a directory has also been created with
the same name as the project. This directory contains the configuration files of the project
which are:

1. _init__.py
This is an empty file as you can see below in the image. The function of this file is to tell
the Python interpreter that this directory is a package and involvement of this _init.py_
file in it makes it a python project.

2. Settings.py
[t contains the Django project configuration

3. Urls.py
URL is a universal resource locator; it contains all the endpoints that we should have for
our website. It is used to provide you the address of the resources (images, webpages,
websites, etc.) that are present out there on the internet. In simpler words, this file tells
Django that if a user comes with this URL, direct them to that website or image
whatsoever it is.

4. Wsgi.py
WSGI stands for Web Server Gateway Interface, it describes the way how servers
interact with the applications.

5. Asgi.py
ASGI works like WSGI but comes with some additional functionality. ASGI stands
for Asynchronous Server Gateway Interface. It is now replacing its predecessor WSGI.

Settings.py is the most important file, and it is used for adding all the applications and
middleware applications. This is the main setting file of the Django project. This contains
several variable names, and if you change the value, your application will work accordingly. It
contains sqlite3 as the default database. We can change this database to MySQL, PostgreSQL, or
MongoDB according to the web application we create. It contains some pre-installed apps and
middleware that are there to provide basic functionality. In other words, all the settings related
to the key features of the platform is being handled here.

Besides three different databases, an API interface is also developed for this platform in
Django-rest framework that can be modified from settings of the platform. Whenever a new
module or web application is being added to the platform it must be linked to the platform.
This linking process is also can be done from the settings code. For this reason, every time an
app is added the path to that app should be added to the list of installed_apps inside the
settings.py

Django uses the concept of Projects and apps for managing the codes and presents them in a
readable format. A Django project contains one or more apps within it, which performs the

15

(ﬂ _/ra ISTITUTO DI INGEGNERIA DEL MARE
Consiglio Nazionale delle Ricerche AN NWT | INSTITUTE OF MARINE ENGINEERING

|
§

work simultaneously to provide a smooth flow of the web application. By running the ‘python
manage.py startapp application-name’

In the development of this platform, different applications were developed for different parts
of the platform. In other words, each feature of the platform is developed as a django
application that can be modified without effecting the other features of the platform. This kind
of flexibility is prevised to help developers make tests without effecting the integrity of the
platform. On the other hand, with this approach a particular feature can be shared with others
without sharing the whole code. Among the available applications some are developed to
handle the user log info, and some are developed to provide communicational services and
data process. These modules are:

1. User application

This module deals with user information and user logs. The database associated with
this model is used as a foreign key in the other modules.

2. Information application
This module deals with website content and contact us section of the website
3. Data Process Module

This module deals with the storing the data that user publishes to the public and some
machine learning features will later added here to train a model later used to replace
the long process of the mathematical design

Beside the mentioned applications, others are developed to perform a link between the
computational model and the interface. In this case, for each solver a different django
application is developed which are as follows:

1. SiteSim Module
2. AutoBlade Module
3. BIEM Module

4. X-design Module
5. EcoSim

All the mentioned applications are made automatically by using new project command in the
project root directory and they have the structure shown in Figure 7.

16

(VI
.‘“<'

ISTITUTO DI INGEGNERIA DEL MARE
INSTITUTE OF MARINE ENGINEERING

(
(

@ Consiglio Nazionale delle Ricerche

— _init_.py
—— admin.py
[— apps.py
—— views.py
—— urls.py
—— tests.py
—— forms.py
—— tasks.py
— utils.py

signals.py
Figure 7 Django application files

The automatically generated django applications by default contain six important python
scripts that are:

1. _init_.py

This file provides the same functionality as that in the _init_.py file in the Django project
structure. It is an empty file and does not need any modifications. It just represents that
the app directory is a package.

2. Admin.py
Admin.py file is used for registering the Django models into the Django administration.

It is used to display the Django model in the Django admin panel. It performs three
major tasks:

a. Registering models
b. Creating a Superuser
c. Logging in and using the web application

3. Apps.py

Apps.py is a file that is used to help the user include the application configuration for
their app. Users can configure the attributes of their application using the apps.py file.
However, configuring the attributes is a rare task a user ever performs, because most of
the time the default configuration is sufficient to work with.

4. Models.py

Models.py represents the models of web applications in the form of classes. It is
considered the most important aspect of the App file structure. Models define the

17

(ﬂ _/ra ISTITUTO DI INGEGNERIA DEL MARE
Consiglio Nazionale delle Ricerche AN NWT | INSTITUTE OF MARINE ENGINEERING

|
§

structure of the database. It tells about the actual design, relationships between the data
sets, and their attribute constraints.

5. Views.py

Views provide an interface through which a user interacts with a Django web
application. It contains all the views in the form of classes. Some of these are Custom
Filter Views, Class-Based List Views, and Detail Views.

6. Urls.py

It works the same as that of the urls.py in the project file structure. The primary aim
being, linking the user’s URL request to the corresponding pages it is pointing to.

7. Test.py

Tests.py allows the user to write test code for their web applications. It is used to test
the working of the app.

Some of the modules due to the complexity of the back-end of them or demand for parallel
computing have some additional scripts that are:

1. Tasks.py

This script contains a module called Celery which is a parallel computing server
manager developed in python that allows the routing happens in the main server and
the calculations execute in the parallel server so when for example a design procedure
is being executed the routing code and redirect the view to the home page or any other
page. Without this the user should wait for as long as it takes for the code to execute
which is not favorable from the user experience point of view.

2. Utils.py
This part of the code contains the back-end logic of the module.
3. Signals.py

This part of the code monitors the database operations and execute the code when some
certain operation triggers it.

Each application has a folder called templates that contain all the html files that are needed by
that application to load the user interface of the module. This part of the application will be
deeply explained in Front-end sub section of this section.

3.2.2 Database Engine

Django attempts to support as many features as possible on all database back-ends. However,
not all database back-ends are alike. Among them for this platform, SQLite, PostgreSQL

18

\ |
\

(ﬂ _/ra ISTITUTO DI INGEGNERIA DEL MARE
Consiglio Nazionale delle Ricerche AN NWT | INSTITUTE OF MARINE ENGINEERING

|
(

databases connections were developed. As mentioned in the previous subsection all the
configurations regarding the database this platform uses is handled in the settings.py.

In TidalTools, different databases were stablished. These settings allows the platform to
change the engine of the database based on availability. These different databases are as
follows:

1. Local SQLite database(default)

SQLite is a database engine written in the C language. It is not a standalone app; rather,
it is a library that software developers embed in their apps. As such, it belongs to the
family of embedded databases. SQLite supportsan wunlimited number of
simultaneous readers, but it will only allow one writer at any instant in time. For many
situations, this is not a problem. Writers queue up. Each application does its database
work quickly and moves on, and no lock lasts for more than a few dozen milliseconds.
SQLite works great as the database engine for most low to medium traffic websites
(which is to say, most websites). The amount of web traffic that SQLite can handle
depends on how heavily the website uses its database. Generally speaking, any site that
gets fewer than 100K hits/day should work fine with SQLite. The 100K hits/day figure is
a conservative estimate, not a hard upper bound. SQLite has been demonstrated to work
with 10 times that amount of traffic. [4]

2. PostgreSQL (Local server)

PostgreSQL is a powerful, open-source object-relational database system that uses and
extends the SQL language combined with many features that safely store and scale the
most complicated data workloads. The origins of PostgreSQL date back to 1986 as part
of the POSTGRES project at the University of California at Berkeley and has more than
30 years of active development on the core platform.

PostgreSQL has earned a strong reputation for its proven architecture, reliability, data
integrity, robust feature set, extensibility, and the dedication of the open-source
community behind the software to consistently deliver performant and innovative
solutions. PostgreSQL runs on all major operating systems, has been ACID-compliant
since 2001, and has powerful add-ons such as the popular PostGIS geospatial database
extender.

3. Cloud PostgreSQL server Amazon Web Service (AWS)

Amazon web service provides many types of databases but for this particular case the
settings for an online PostgreSQL database was implemented also inside the settings for
future developments

As mentioned, (see above) the SQLite database can support a website with 100k users per day
and is free and open source and is the default database of the Django. Therefore, for this
platform at the beginning this database engine is chosen. However, the future migrations to
any other database engine is also considered when developing the database configurations.

19

"
\»

ISTITUTO DI INGEGNERIA DEL MARE

rRra
INSTITUTE OF MARINE ENGINEERING

| -

(

@ Consiglio Nazionale delle Ricerche 1

q

Each Django application in this platform has its own data tables in the database. The general
visualization of the databases and how they are related to each other is shown in the Figure 8.

TidalTools
D uidd
name char
sender char
owner char omal_afoss chiar reciplent char
& project char subject char subject char
e char Tnussm_comem char body char
F— datotime is_read boolean i | imestamp
last_modifed | ilfield created date | timestamp is_read boolean
Is_executed boolean approved cnar is_deleted_sender boolean
| site_data file approval_date chis is_deleted_by_reciever | boolean
fle is_ighlighted boolean
file:
chat
fle Skl
file D uwidd
fle 1 |~ owner char
file name char
file description |char
) created

datetime
char

UserProfile {
D uuicld
username char
short_iniro char L
location char char
bio char date_added datetime
profile._pic flefield measured_data |file
social linkdin char coumby char
|dara_file
| social_twitter char Ay chat
|dare_aded social website | char ste_name |char
| comment cordinates char
site_type char
data_type char
- start_date timestamp
end_date timestamp
data_file file
ifmre aded | datetime

last_modified
last_madified last modified | datetime
xdes_file name char
output_message design_type char
consule_error is_started baoiean
is_process boolean
is_executed boolean
description char
{ J

Figure 8 Database Entity Relationship Diagram

3.2.3 Celery Parallel server

The back-end of the TidalTools as mentioned consists of two parts, the framework developed
in python and the mathematical solvers are developed in Fortran. The design algorithm (X-
design) and performance simulation (BIEM) based on the number of TSR values and the

20

(ﬂ _/ra ISTITUTO DI INGEGNERIA DEL MARE
Consiglio Nazionale delle Ricerche AN NWT | INSTITUTE OF MARINE ENGINEERING

|
§

dimension of the turbine, take between couple of minutes to half an hour. Therefore, for
providing a smoother experience for the users a parallel computing code was developed. This
code is developed by using the celery library of the python. This aspect is of primary
importance in view of multiple users having access to the platform at same time.

Celery is an open-source asynchronous task queue or job queue which is based on distributed
message passing. While it supports scheduling, its focus is on operations in real time. Task
queues are used as a mechanism to distribute work across threads or machines. A task queue’s
input is a unit of work called a task. Dedicated worker processes constantly monitor task
queues for new work to perform. Celery communicates via messages, usually using a broker to
mediate between clients and workers. To initiate a task the client adds a message to the queue,
the broker then delivers that message to a worker. A Celery system can consist of multiple
workers and brokers, giving way to high availability and horizontal scaling. [5]

The approach used in the TidalTools platform development was to develop task managers for
both design algorithm and BIEM code. The broker which is used to provide means of
communication between celery and the platform is Redis. Redis is an in-memory data structure
store, used as a distributed, in-memory key-value database, cache, and message broker, with
optional durability. With this approach celery can assign a CPU core (Worker) per operation
which will guarantee a robust and smooth calculations for the users of the platform. In other
words, celery will manage threads instead of operation system.

3.2.4 Key Python Libraries

For developing this online tool, many pythons’ open-source libraries is used. Django and Celery
were the most important ones since the foundation of the system was built using those
libraries. However, some libraries also used to data process, data visualizations’, and automatic
pdf or excel report generations these libraries are as follows:

1. Pandas
pandas is a software library written for the Python programming language for data
manipulation and analysis. In particular, it offers data structures and operations for
manipulating numerical tables and time series. [6]

2. NumPy
NumPy is a library for the Python programming language, adding support for large,
multi-dimensional arrays and matrices, along with a large collection of high-level
mathematical functions to operate on these arrays. [7]

3. Matplotlib
Matplotlib is a plotting library for the Python programming language and its numerical
mathematics extension NumPy. It provides an object-oriented API for embedding plots
into applications using general-purpose GUI toolkits like Tkinter, wxPython, Qt, or GTK.

[8]

4. Seaborn

21

(ﬂ _/ra ISTITUTO DI INGEGNERIA DEL MARE
Consiglio Nazionale delle Ricerche AN NWT | INSTITUTE OF MARINE ENGINEERING

|
§

Seaborn is a library that uses Matplotlib underneath to plot graphs. It will be used to
visualize random distributions. [9]

5. PyPDF3
PyPDF3 is a pure-python PDF library capable of splitting, merging together, cropping,
and transforming the pages of PDF files. It can also add custom data, viewing options,
and passwords to PDF files. It can retrieve text and metadata from PDFs as well as
merge entire files together. [10]

3.3 Front-end

So far, the architecture of the code and the directories for developing the back-end of the
platform explained. However, the most powerful back-end is useless without a powerful front-
end. In development of TidalTools, no particular front-end engine used. Django framework has
a tool implemented in it which uses jinja template engine that can connect the back-end to the
front-end and dynamically change the information that are being displayed. Also, the
information entered by the user when filing a text field or a form is handled at the front-end
and then to the back-end.

To develop the front end of this code different front-end languages were used which are:

1- HTML
The Hypertext Markup Language or HTML is the standard markup language for
documents designed to be displayed in a web browser.

2- CSS
Cascading Style Sheets is a style sheet language used for describing the presentation of a

document written in a markup language such as HTML. CSS is a cornerstone technology
of the World Wide Web, alongside HTML and JavaScript.

3- JavaScript
JavaScript, often abbreviated]S, is a programming language that is one of the core
technologies of the World Wide Web, alongside HTML and CSS. Over 97% of websites
use JavaScript on the client side for web page behavior, often incorporating third-party
libraries.

4- Jinja Template engine
Jinja is a web template engine for the Python programming language. It was created by
Armin Ronacher and is licensed under a BSD License. Jinja is like the Django template
engine but provides Python-like expressions while ensuring that the templates are
evaluated in a sandbox.

In order to develop the front-end of a website, all of the above-mentioned parts shod be
considered in the development phase. For TidalTools since a jinja template engine is used,
html files were developed in a different manner. In TidalTools a reference html and CSS was

22

(ﬂ _/ra ISTITUTO DI INGEGNERIA DEL MARE
Consiglio Nazionale delle Ricerche AN NWT | INSTITUTE OF MARINE ENGINEERING

|
§

developed. The base html codes were developed for navbar and html body. In these two html
files all the dependencies and inheritances from CSS and JavaScript codes were done. Then,
different jinja blocks were defined inside the template html files for later interactions with
different applications.

Then, for every sub application that TidalTools has, different html files were developed but
the complexity of these html files were not like that of the main template html because thanks
to ninja template engine, all the settings and CSS configurations are inherited from the base
template. To develop views on the platform a similar approach was used for almost all of the
different pages which is as follows:

First, Models.py is where the database is created then tables are added to admins.py to make
them available in the admin panel of the platform. Then if the view should display any forms to
get data from user, the forms associated with the database tables are made inside the forms.py.

Then a view function for each one page the application is developed in views.py and bonded
with the associated template html file inside the “templates” directory. Finally, these views are
connected to a URL inside the urls.py file.

The data to be displayed on the browser is passed by views.py file to the html template through
JSON metadata. first the metadata is handled by jinja and all the jinja variables in html file are
replaced by the associated values given in the metadata

This approach is how every application of the platform was developed. Then these modules are
called inside the main engine of the platform inside the setting.py and directly all the functions,
routings, database tables, etc. has been added to the platform.

In this section a general explanation of the code and GUI architecture was given. However, in
the following parts of this section more detailed explanation about the modules, database
tables and the back-end functionality of each solver is given.

23

[P QL ISTITUTO DI INGEGNERIA DEL MARE
R AWE | INSTITUTE OF MARINE ENGINEERING

[
(l

@ Consiglio Nazionale delle Ricerche

4 Horizontal modules

As mentioned in the previous section, horizontal modules are those that are interacting with
other modules and communicate with other vertical and horizontal modules. In TidalTools, five
horizontal modules were developed which are:

1- User Management

2- Messaging application

3- Emailing application

4- Data management application
5- Forum application

These modules (Django Applications) are interacting with each other to keep the track of
operations and manage that users information and all computational tools (Vertical modules)
are connect to them in different manners, as explained in this section and in the Vertical
Modules section.

4.1 Users Management Module

Django by default has a user module. However, this module is mainly being over-written or
inherited from to write a new one for projects because it takes a limited amount of data. In
TidalTools platform the approach was to develop its own user module and use the native
module as a parent and inherit the methods such as user registry, login, logout, and user
authentications from the django user model.

Therefore, a module (django application) was developed to deal with user management using
django users module as a parent to this module.

4.1.1 Database Structure

The database which is particularly developed for storing the user data is called “UserProfile”.
This table is connected to the users module from username field of it (foreign key). This
inheritance provide the platform with having different user access levels and more which is
shown in Figure 9.

UserProfile

D uuid4

username char

short intro char

location char

bio char 1D uuid4
profile_pic filefield first_name |char
social linkdin |char last_name |char
social twitter char uername char
social website |char email char
social github char created ar |limestamp
is cnr boolean L +

Figure 9 User Module Database entity relationship diagram

24

@ BERFWLLE ISTITUTO DI INGEGNERIA DEL MARE
Consiglio Nazionale delle Ricerche AN NWT | INSTITUTE OF MARINE ENGINEERING
UserProfile Skill }
iD uuid4 D uuidd
username char owner char
short intro char name char
location char description |char
bio char created timestamp
profile_pic filefield

social_linkdin
social twitter
social website

social github

Is_cnr

char
char
char
char

boolean

T

Figure 10 Skills Database entity relationship diagram

All the information regarding users and their skill is stored in the mentioned tables in the
database.

4.2 Messaging application

This module is developed to provide communication means among the users of the platform.
Users can use this feature to exchange ideas and get in touch with the admins and developers
of the platform. For this reason, a table in database was developed to store the needed
information.

4.2.1 Database Structure

The database structure of the messaging application is demonstrated in Figure 11. This table
uses UserProfile as foreign key for sender and receiver fields.

Other filed inside Messaging app database are as follows:

1.

Subject

This field is a character field that contains the subject of the message

Message Body

This field is text field that contains the main message body of the message

Creation Date

This field is date-time field that contains the creation date of the message

Is_read

It is a Boolean field that by default is False but if the receiver reads the message

becomes true.

Is_deleted_by_sender

It is a Boolean field that by default is False but if the sender deletes the message

becomes true.

Is_deleted_by_receiver

25

@ R|FEQEZ ISTITUTO DI INGEGNERIA DEL MARE
Cl Consiglio Nazionale delle Ricerche AN NWT | INSTITUTE OF MARINE ENGINEERING

[
(l

It is a Boolean field that by default is False but if the receiver deletes the message
becomes true.

UserProfile Messages

D | uuida [[»] uuid4
username char ——| sender char
short_intro char ;—< recipient char
location char subject char
bio char body char
profile pic filefield created timestamp
social linkdin char is read boolean
social twitter char is_deleted sender boolean
social website |char is deleted by reciever |boolean
social github char

is cnr boolean

Figure 11 Messaging Module Database entity relationship diagram

4.3 Automatic Emailing Application

This application was developed to automatically send emails to the users based on the
operations they perform. This application doesn’t have any database tables since it doesn’t
need to store any sort of data. However, it is connected to the users table because it uses the
email address provided by the user at the registration to send them emails. The operations that
trigger this application are:

Registering on the platform.

Receiving a message inside the platform form a user.
Successful termination of the Design process.
Successful termination of the BIEM code. -

BN

4.4 Data management application

This application is developed the data of the materials that was published by the users after
using any tool inside the platform. In other word, if a user for example use X-design to design a
turbine and decides to publish the resulting performance information to the community after
publishing it the data will referenced in this table so other users can use it to perform other
analysis.

4.4.1 Database Structure

The database designed for storing the related data for this application has seven tables. As said
before, when user publish a project the output of the project is being added here.

Besides, this application handles the tidal sites data which are used by computational tools.
Users can upload site data that they have and use them in the projects. The tables available in
this database are shown in Figure 12.

The tables are:

1. Turbine Data

26

@ Consiglio Nazionale delle Ricerche

[P QL ISTITUTO DI INGEGNERIA DEL MARE
R AWE | INSTITUTE OF MARINE ENGINEERING

[
(‘

7.

This table store the turbine performance data which are generated by X-design tool.
More datils are in next subsection.

Site Data
This table stores the tidal or oceanic site data. This table is populated with default data
and the data provided by the user.

Inflow Velocity Profile
This Table stores the velocity profile data.

Geometry File
This table stored turbine computational grid data which is generated by AutoBlade tool
as input for BIEM. More details are in next subsection.

Polar Data
This table stores the blade profile data which is generated by the X-foil application

Radial Data
This table stores basic information to build a 3D model of turbine geometry as input for
AUTOBLADE. Specifically, radial distribution of blade geometry parameters are given.

Chordwise Data

This table stores basic information to build a 3D model of turbine geometry as input for

AUTOBLADE. Specifically, chordwise distribution of blade sectional offsets are

given.

Figure 12 Data Management Database entity relationship diagram

4.5 Forum Application

This application is not fully developed yet but it is foreseen inside the platform architecture to
provide the means of communication, networking, and knowledge exchange for the users of
the platform.

27

[P QL ISTITUTO DI INGEGNERIA DEL MARE
R AWE | INSTITUTE OF MARINE ENGINEERING

[
(‘

@ Consiglio Nazionale delle Ricerche

5 Vertical Modules

Vertical module as explained in previous sections is more of a particular module that only deals
with specific problems and doesn’t interact with other modules to perform a task. In the
current version of the TidalTools platform there are four computational modules (Django
applications) developed as explained in this section. All the vertical modules are interacting
with the Users Management Module to organize the users and their projects accordingly.

5.1 Turbine Geometry and Mesh Tool (AutoBlade)

The AUTOBLADE tool allows to generate a 3D geometry with a fully automated mesh over the
blade and hub of a horizontal-axis turbine. This computational tool can be both a part of a
turbine design procedure (see below) or can be used solo. As explained in the introduction
part, TidalTools aims to reduce the complexity of using the computational codes that are
linked in it for users who do not have a specific theoretical knowledge. To this aim, a minimal
input structure has been designed, whereas input parameters requiring some knowledge of the
methodology implemented into the software are not requested.

5.1.1 Database Structure

This Module uses a complex relative database due to its different features for Expert of Basic
user. The term expert in this platform refers to a module access procedure that uses more
input data since it is developed for more professional use. However, the basic user type just
work with few key input data. Figure 13 shows the entity relationship diagram of the
AutoBlade database.

This database also interacts with the Data management application database. This tool uses the
data stored in Chord wise data and Radial data from Data management database.

[wigd
owner char |
project char
last_modified daretime
€ radlal_data|fie |
-_&7 chordwise_data |file
] | cusick [WN file |
owner |ehar input_file fiie
; name |char | st file |
UserProfiie ‘ data_type |char ::::M file
iD uuicd |10 uuicid data_file Emr- dup_file file: |
username char owner char ‘ date_aded |datetime geo_file file
short_intra | ehar created daretime comment | char pie_tile |tie |
location char |w:m- ‘ ’
bio char name char
profile_pic filefield |“.-_|w. int ‘ Radial Data File] L4
social_linkdin |char description | char D uuidd ——é‘m |d" ‘
social_twitter | char IM Type ‘ p— char project char
social_website | char is_process | boolean o, char ‘M Im ‘
social_github | char |h_wll¢‘ boolean ‘ data file |t last_modified |datetime
|is_enr boolean |#s_published | boolean date_aded |datetime {‘mﬂd_ﬂﬂ IM' ‘
+ + e enar & chorwise_data |file
: L fie |
input_file file:
|piace st [me |
rotor_stf file:
‘aa_nc |ie ‘
peo file file:
pit_fle fle

Figure 13 AutoBlade Computational Tool Database Entity Relationship Diagram

28

[P QL ISTITUTO DI INGEGNERIA DEL MARE
R AWE | INSTITUTE OF MARINE ENGINEERING

@ Consiglio Nazionale delle Ricerche

i
(

5.2 Turbine Performance Simulation (BIEM)

This tool is developed to perform turbine performance simulations for user’s defined operating
conditions. Results include thrust, torque and power curves associated with the turbine and
other quantities describing blade loading, risk of cavitation, induced velocity. This tool like the
AutoBlade provides two different types of input data one simplified for Basic users and the
other one advanced for professional use. Besides two different input options, this code can also
run either for a single operating condition (single TSR value) or for a range of operating
conditions (list of TSR values).

5.2.1 Database Structure

The database of this tool consists of 3 tables however it also interacts with the database of the
Data management application database and uses data stored inside the following tables:

1. Geometry files data
2. Inflow velocity profile
3. Polar file

The tables inside the database of this module(Django-application) consists of 3 tables which
are:

1- BIEM Project
Store the main project data which later other two tables will connect to this through a
foreign key.

2- Basic user project
Stores the project with simpler input data

3- Expertuser project
Stores the project with more complex input data

Figure 14 BIEM Computational Tool Database Entity Relationship Diagram

29

[P QL ISTITUTO DI INGEGNERIA DEL MARE
R AWE | INSTITUTE OF MARINE ENGINEERING

[
(‘

@ Consiglio Nazionale delle Ricerche

5.3 Turbine Design Tool (X-design)

The design algorithm used in the back-end of the platform is a robust design algorithm
developed from scratch in CNR-INM. Like every design algorithm it involves a complex
iterative procedure in which multiple solvers interact by exchanging input/output data. In
order to adapt design parameters to a wide range of design problems, the design algorithm can
manage a complex input data structure (files and parameters). However, as in the case of the
AUTOBLADE and BIEM solvers, a simplified input structure is provided to basic users, whereas
the parameters that are less case dependent are controlled by a dedicated interface in the back
end. This way, a non-expert user can perform a full design of a turbine from scratch.

5.3.1 Database Structure

Since this project can perform the design based on a target power [kW] or a target dimension
[rotor diameter] two different tables were developed for storing the input data. Then these two
tables are connected to the main project table on the Project field to connect the input data to
stablish the link between the project and its input file. The Database Entity Relationship
Diagram is shown in Figure 15.

D uuid4
roject char
UserProfile prof
D uuidd
iD uuidd last_modified datetime
username char
—€ owner char xdes_file file
short_intro char
created datetime output_message |char
location char
last_modified | datetime consule_error char
bio char L -
X name char
profile_pic filefield
design_type char
social_linkdin |char D uuidd
; " is_started boolean
social_twitter |char
is_process boolean €pm;ecl char
social_website | char
N is_executed boolean last_modified datetime
social_github |char
description char last_modified datetime
is_cnr boolean L J xdes. file file
:E ; output_message |char

consule_error char

Figure 15 X-Design Tool Database Entity Relationship Diagram

5.4 Turbine Annual Productivity (SiteSim)

This tool is developed to perform the analysis of the turbines annual energy production using
the power curve generated by BIEM code and by using the data available in the site resource
database of the website. The tool also evaluates a number of turbine mechanical performance
parameters during operation in variable speed (Maximum Power Point Tracking, MPPT) and in
overspeed (rated power) regimes. However, in the future development plans users can also use
their own site resource data to perform these simulations. In this module when user wants to
start a project, they have a chance to have as many sub projects as they want for each project.
The idea behind this approach was to give users an opportunity to organize their projects
based on sites or turbine types. In other words, a project can start for a site and then in sub
projects user can evaluate the performance of the different turbines in that site and keep them
all in one project or vice versa.

30

;
(

[P QL ISTITUTO DI INGEGNERIA DEL MARE
R AWE | INSTITUTE OF MARINE ENGINEERING

@ Consiglio Nazionale delle Ricerche

5.4.1 Database Structure

The data base of this module interacts with the Data management module and uses the data
stored in Turbine data and Site data tables. Other than that, it has two tables that are project
and sub project. Figure 16 shows the Database Entity Relationship Diagram for this module.

Site Data

o uuicd

owner char

date_added datetime

measured_data |file

country char

city char

site_name char

cordinates char

site_type char

darta_type char D o
UserProfile Start_date timestamp P, shar
1) idd end_date timestamp | G project char

username char 't name char

short_intro |char created datetime
last_modifed filefield
is_executed boolean
site_data file:

] turbine_data file
input_file file:

focation char

(2} wudd

bio char

owner char

profile_pic |filefield

social_linkdin |char project_name |char

Description | char

social_twitter |char

created datetime

social_website |char output chat

_ln.:r modified |datetime fist_poed file

-l: list_rpm file:

list_v file:

social_github |char

is_enr boolean

list_mppt file:

D uuidd

table v file:
awner char

performance_data | file
manudacturer char
model char
axis_type char
date_added datetime

Figure 16 SiteSim Tool Database Entity Relationship Diagram

5.5 Economic Feasibility Calculation Tool(EcoSim)

This tool is used to perform the economic feasibility analysis of a turbine in a particular site
and generate a report that contains all the costs associated with constructing, operating, and
maintaining it. The tool can also provide information like the Levelized Cost of Energy (LCoE),
payback period, and other performance indicators that are used to perform a Life-Cycle
Assessment (LCA) of a given tidal energy project.

This tool is still at development stage and is not available yet inside the platform, but it will be
available soon after validation tests will be completed. However, the platform structure to host
this tool has been implemented in the same fashion of all the other computational tools that are
already available.

31

@ R|FEQEZ ISTITUTO DI INGEGNERIA DEL MARE
Cl Consiglio Nazionale delle Ricerche AN NWT | INSTITUTE OF MARINE ENGINEERING

[
(l

6 Conclusions

In this report, the development and implementation of a computational platform for the
analysis and design of tidal energy turbines has been described. The platform is called
TidalTools and is a multi-user web application (website) which is designed to be accessible by
remote connection using a common web browser. It deals with design, performance
simulation, economic feasibility, etc. problems in the tidal energy industry and particularly it is
designed to perform a horizontal-axis tidal turbine characterization from scratch with some
simple inputs. The platform integrates computational tools that have been developed and
extensively validated at CNR-INM (formerly INSEAN) over the last two decades. Through the
platform, these tools will be made available to users from academia and industry in the tidal
energy sector.

The work described in the report is part of a long-term project in which the present platform
version represents the first release of a digital tool that in the future can be extended to deal
with a wider range of applications in the renewable energy sector.

32

@ R|FEQEZ ISTITUTO DI INGEGNERIA DEL MARE
Cl Consiglio Nazionale delle Ricerche AN NWT | INSTITUTE OF MARINE ENGINEERING

[
(l

7 Bibliography

[1]]. Andrews, "Quora," [Online]. Available: https://www.quora.com/How-do-popular-
websites-use-multiple-programming-languages-for-their-backend-system-How-do-these-
programming-languages-communicate-with-each-other-in-a-single-website.

[2] P.S.Foundation, "Python," [Online]. Available: https://www.python.org.
[3] R.Python.[Online]. Available: https://realpython.com/tutorials/web-dev/.
[4] SQLite, "SQLite," [Online]. Available: https://www.sqlite.org/whentouse.html.

[5] Celery, "Celery," [Online]. Available: https://docs.celeryq.dev/en/stable/getting-
started/introduction.html.

[6] P.Documentation, "Pandas," [Online]. Available: https://pandas.pydata.org.
[7] Numpy, "NumPy," [Online]. Available: https://numpy.org.

[8] Matplotlib, "Matplotlib," [Online]. Available: https://matplotlib.org.

[9] Seaborn, "Seaborn,” [Online]. Available: https://seaborn.pydata.org.

[10] SFneal, "PyPDF3," [Online]. Available: https://github.com/sfneal /PyPDF3.

[11] https://www.postgresql.org/about/. [Online].

33

	1 Introduction
	2 TidalTools – An overview
	3 The Platform Architecture
	3.1 Why Python
	3.2 Back-end
	3.2.1 Django Framework
	3.2.2 Database Engine
	3.2.3 Celery Parallel server
	3.2.4 Key Python Libraries

	3.3 Front-end

	4 Horizontal modules
	4.1 Users Management Module
	4.1.1 Database Structure

	4.2 Messaging application
	4.2.1 Database Structure

	4.3 Automatic Emailing Application
	4.4 Data management application
	4.4.1 Database Structure

	4.5 Forum Application

	5 Vertical Modules
	5.1 Turbine Geometry and Mesh Tool (AutoBlade)
	5.1.1 Database Structure

	5.2 Turbine Performance Simulation (BIEM)
	5.2.1 Database Structure

	5.3 Turbine Design Tool (X-design)
	5.3.1 Database Structure

	5.4 Turbine Annual Productivity (SiteSim)
	5.4.1 Database Structure

	5.5 Economic Feasibility Calculation Tool(EcoSim)

	6 Conclusions
	7 Bibliography

		2022-06-27T16:44:26+0200
	Alessandro Iafrati

