
Jean-Jacques Rousseau
Bill Kapralos (Eds.)

LN
CS

 1
36

44

Montreal, QC, Canada, August 21–25, 2022
Proceedings, Part II

Pattern Recognition, 
Computer Vision, 
and Image Processing
ICPR 2022 International Workshops 
and Challenges



Lecture Notes in Computer Science 13644
Founding Editors
Gerhard Goos
Juris Hartmanis

Editorial Board Members
Elisa Bertino, Purdue University, West Lafayette, IN, USA
Wen Gao, Peking University, Beijing, China
Bernhard Steffen , TU Dortmund University, Dortmund, Germany
Moti Yung , Columbia University, New York, NY, USA

https://orcid.org/0000-0001-9619-1558
https://orcid.org/0000-0003-0848-0873


The series Lecture Notes in Computer Science (LNCS), including its subseries Lecture
Notes in Artificial Intelligence (LNAI) and Lecture Notes in Bioinformatics (LNBI),
has established itself as a medium for the publication of new developments in computer
science and information technology research, teaching, and education.

LNCS enjoys close cooperation with the computer science R & D community, the
series countsmany renowned academics among its volume editors and paper authors, and
collaborates with prestigious societies. Its mission is to serve this international commu-
nity by providing an invaluable service, mainly focused on the publication of conference
andworkshop proceedings and postproceedings. LNCScommenced publication in 1973.



Jean-Jacques Rousseau · Bill Kapralos
Editors

Pattern Recognition,
Computer Vision,
and Image Processing
ICPR 2022 International Workshops
and Challenges

Montreal, QC, Canada, August 21–25, 2022
Proceedings, Part II



Editors
Jean-Jacques Rousseau
York University
Toronto, ON, Canada

Bill Kapralos
Ontario Tech University
Oshawa, ON, Canada

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-031-37741-9 ISBN 978-3-031-37742-6 (eBook)
https://doi.org/10.1007/978-3-031-37742-6

© Springer Nature Switzerland AG 2023

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors, and the editors are safe to assume that the advice and information in this book
are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the
editors give a warranty, expressed or implied, with respect to the material contained herein or for any errors
or omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

https://orcid.org/0009-0008-7290-1031
https://orcid.org/0000-0003-0434-3847
https://doi.org/10.1007/978-3-031-37742-6


Foreword

The organizers of the 26th International Conference on Pattern Recognition (ICPR 2022)
are delighted to present the Proceedings of the event. The conference took place at Palais
des Congrès de Montréal in Montreal, Canada, and we are thrilled to share the outcomes
of this successful event.

We would like to express our heartfelt gratitude to the International Association for
Pattern Recognition (IAPR) for sponsoring the conference, which allowed us to bring
together a diverse group of researchers and experts in this field. Without their support,
this conference would not have been possible.

We also want to extend our special thanks to the Workshop Chairs who provided
excellent leadership in organizing the workshops. We appreciate the tireless efforts they
put into making the workshops a success.Wewould also like to acknowledge the authors
and presenters of the articles and workshops for their contributions. The high quality of
their work and presentations enriched the conference.

Finally, we would like to thank the attendees for their participation, which made
ICPR 2022 a truly collaborative and inspiring event. We hope that the Proceedings will
serve as a valuable resource for those interested in pattern recognition and inspire future
research in this field.

August 2022 Henrik I. Christensen
Michael Jenkin
Cheng-Lin Liu



Revisiting Ensembling for Improving
the Performance of Deep Learning Models

Antonio Bruno , Davide Moroni(B) , and Massimo Martinelli

Institute of Information Science and Technologies, National Research Council
of Italy, Via Moruzzi, 1, 56124 Pisa, (IT), Italy

{antonio.bruno,davide.moroni,massimo.martinelli}@isti.cnr.it
https://www.isti.cnr.it

Abstract. Ensembling is a very well-known strategy consisting in fus-
ing several different models to achieve a new model for classification or
regression tasks. Over the years, ensembling has been proven to provide
superior performance in various contexts related to pattern recognition
and artificial intelligence. Moreover, the basic ideas that are at the basis
of ensembling have been a source of inspiration for the design of the
most recent deep learning architectures. Indeed, a close analysis of those
architectures shows that some connections among layers and groups of
layers achieve effects similar to those obtainable by bagging, boosting
and stacking, which are the well-known three basic approaches to ensem-
bling. However, we argue that research has not fully leveraged the poten-
tial offered by ensembling. Indeed, this paper investigates some possi-
ble approaches to the combination of weak learners, or sub-components
of weak learners, in the context of bagging. Based on previous results
obtained in specific domains, we extend the approach to a reference
dataset obtaining encouraging results.

Keywords: Ensembling · bagging · machine learning · deep learning ·
image classification · convolutional neural networks

1 Introduction

Representation learning and deep learning have achieved amazing results in the
last decades, obtaining unparalleled performance under challenging tasks such
as image classification and object detection [13]. After the first impressive leap,
many works have been of incremental nature in the previous years, often focused
on architecture engineering for achieving minor improvements over a sensible
increase in complexity. Indeed, the performance gain versus the computational
increment ratio has become less attractive. Therefore, research has moved to find
optimal tradeoffs between accuracy and computational load [17]. This is also
motivated by the widespread adoption of deep learning paradigms that calls for
the sustainable use of artificial intelligence (AI). AI has operational costs than
can be directly measurable in energy consumption, having therefore a relevant
c© Springer Nature Switzerland AG 2023
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environmental footprint [16]. Ensembling is a well-known approach that enables
using a collection of different models (e.g., classifiers or regressors) to obtain a
new model having other (and generally superior) performance with respect to
predefined metrics. Ensembling has a long history that dates back even before
the birth of machine learning. Indeed, it is customary to state that the first
application of Ensembling is majority voting in statistics as in the claim of the
theorem by Marquis de Condorcet: in 1785 he proved that if the probability
of each voter being correct is more than one-half and the voters are indepen-
dent, then the addition of more voters increases the likelihood of the majority
vote being correct (see, e.g., [2]). Long after that, Ensembling has been used to
turn weak models into superior models showing encouraging results in several
domains. It has been reported that ensemble models often become in the first
place in public competitions such as those promoted by Kaggle [1]. The relation-
ship between deep learning and Ensembling is at least twofold. From one side,
basic constructions of Ensembling known as bagging, boosting and stacking have
somehow influenced architectures commonly used in deep learning and the way
they are trained. For instance, residual networks behave like ensembles of rela-
tively shallow networks [18]. On the other side, thanks to Ensembling strategies,
deep learning models can be used as basic models to build more complex models.
This paper focuses on this second aspect by recapping Ensembling and its role in
deep learning, exploring several directions. Based on previous results obtained in
a specific domain, preliminary results are then reported on a benchmark dataset.
This paper extends the short paper [3].

2 Related Works

Ensembling generally refers to machine learning approaches in which a set of
weak learners (or basic models) is turned into a strong learner (or ensemble
model). The set of weak learners might consist of homogenous models (i.e., they
are all from the same family or architecture) or might be heterogeneous, i.e., the
basic models belong to different machine learning paradigms. The basic example
is to put together multiple models trained for solving the same classification or
regression task and then combine them together in some fashion, e.g., by per-
forming majority voting in the case of classification or averaging in the case of
regression. The scope of performing Ensembling is generally related to the desire
to reduce the bias or variance that affects a machine learning task [7]. As it is
well known, a very simple model might have a great error in achieving good per-
formance on a dataset, even during training. This is generally linked to the low
representation capabilities of simple models that cannot capture all the complex
patterns in the training datasets. Such error during training is referred to as
the bias of the model. By converse, very complex models have many degrees of
freedom to adhere to the training dataset completely and obtain excellent per-
formance during training. However, they capture not only the relevant features
of the problem but also learn insignificant features of the training dataset. This
results in relatively poor performance during test and validation: the model is
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overfitted to the training dataset and does not reach good general results, hav-
ing scarce generalization capabilities. We refer to this issue, as saying that the
model has high variance. The three basic approaches to performing Ensembling
are bagging, boosting, and stacking. In general, bagging reduces the variance
among the base classifiers, while boosting-based ensembles lead to bias and vari-
ance reduction. Stacking is commonly used as a bias-reducing technique. In more
detail, bagging is performed by subdividing the training datasets into different
subsets according to some criteria, e.g., balancing class distributions inside each
subset or other forms of equalization. Then, each subset of the training set is
used to train a weak classifier. Any such classifier ideally has a low bias on the
training set but possibly high variance. Using a fusion layer, the outputs of the
single classifiers are combined by performing (weighted) voting or performing
a weighted average. The model given by the fusion of the weak classifiers is
called a strong classifier, and it potentially exhibits lower variance. Notice that
the weak classifiers might be trained independently and in parallel. Very often,
such classifiers share the same architecture. In boosting instead, weak classifiers
are very simple and low complexity but are trained cleverly, for example, using
cascading. Adaboost [15] is one of the most popular approaches in which each
classifier is trained so as to properly deal with the examples in the training set on
which previous weak classifiers have failed. The boosting concept is also known
to be the backbone behind well-known architectures like Deep Residual networks
[10]. Finally, stacking often considers heterogeneous weak learners. Training is
performed in parallel, while a final combination is obtained by training a meta-
model to output a prediction based on the different weak models’ predictions.
Deep convex nets (DCN) [6] are recognized to be a deep learning architecture
composed of a variable number of modules stacked together to form the deep
architecture. In general, all of these approaches have been used in conjunction
with deep learning models. The review [9] presents some recent literature on the
subject systematically.

3 Methodology

As seen in the previous section, ensemble and deep learning have a twofold
relationship. This section aims to briefly report some experiments on Ensembling
that is worthwhile exploring for optimising deep learning models.

1. Varying the number of classifiers. After having fixed a deep learning architec-
ture, such architecture can be regarded as a weak model. Different training
runs starting with random weights might result in different classifiers. Major-
ity voting can be applied in this case as shown in Fig. 1. The dependence of
the performance with respect to the number of classifiers might be studied.

2. Sampling strategies and balancing. Besides performing training of all the weak
learners on the full training set as described before, procedures for sampling
can be applied. For instance, using disjoint datasets for each weak classifier
helps have a set of independent classifiers. In addition, stratification can be
applied to keep the same class frequencies in each subset; conversely, it might
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be interesting to explore the possibilities given by training each classifier to
make it specialised in addressing a special class.

3. Control size and model complexity. The ensembling approaches can be per-
formed by keeping track of the model size and model complexity; this can
help understand the heuristics for the optimal choice of the weak learners’
dimensions and the ensemble size.

4. Stacking at the deep feature levels. In many cases, the first layers of a deep
network perform feature extraction, while the final layers, usually fully con-
nected, perform classification/regression. A possibility in ensembling is given
by stacking weak models by removing the final classification layers from each
one and training an ad hoc meta classifier as shown in Fig. 2.

5. Learning strategies. Given the trained ensemble, it is still possible to fine-tune
the model parameters by properly training the model, freezing or not some
of the overall network layers.

Fig. 1. Majority voting can be applied to fuse the output of multiple weak learners and
obtain a strong one. In the figure, we consider a variable number of N weak classifiers
(trained for instance using special partitions of the training data), each one producing
in output a confidence level vector for k classes. Majority voting or other schemes for
combination might be used and the dependence of the performance with respect to the
number N of weak classifiers might be studied.

4 Experimental Results

In this section, we report preliminary experimental results obtained by follow-
ing the methodology discussed in Sect. 3. In all the experiments we used as a
basic weak learner a convolutional neural network belonging to the EfficientNet
family [17]. This is a family of eight neural networks named b0, b1,. . ., b7 featur-
ing different complexity, where b0 is the most simple model (5, 5M parameters)
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Fig. 2. A different and innovative approach to ensembling of deep weak classifier is
reported pictorially in the figure. After having trained each weak classifier indepen-
dently, only the convolutional layers are kept while the final decision layers of each
classifier are disregarded. In summary, we keep a sequence of N weak feature extractor
modules, each one producing a M -dimensional deep feature vector. These modules can
be turned into an ensemble by adding a trainable final decision layer, e.g. made of
fully-connected networks, having an input size equal to N ·M .

while b7 (66, 7M parameters) is the most complex. Such networks are obtained
through a process of aggregate scaling across depth, width and resolution dimen-
sions starting from an archetype based on the inverted bottleneck MBConv, first
introduced in MobileNet [14]. The aggregate scaling is performed in a uniform
way so as to optimise according to some heuristics the performance of the net-
work. For this characteristic, EfficientNet is an excellent building block to study
ensembling strategies. Notice that in our experiments we use transfer learning.
In more detail, all the EfficientNet models we used as weak classifiers share the
weights of pre-trained models from ImageNet [5].

To show concretely some possibilities, we report two examples. The first
regards an application to a specific dataset for precision agriculture, i.e. the
PlantVillage dataset [12], which contains images of plants, either healthy or
with a wide range of diseases. The dataset has been analyzed in a recent study
[4], which we recap here. A second example is given by a popular benchmark
dataset, i.e. the CIFAR-100 dataset [11], which consists of 60000 32×32 colour
images divided in 100 classes, with 600 images per class. The 100 classes in the
CIFAR-100 are grouped into 20 superclasses. Each image comes with a “fine”
(the class it belongss to) and a “coarse” label (the superclass to which it belongs).
In the experiments, the fine-grained version with 100 classes has been used.
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For the first example, using particular and ad hoc tricks explained in the
paper [4], we were able to obtain the results reported in Table 1 for a single weak
model trained end-to-end.

Table 1. Table with best Weighted F1-score results, for each EfficientNet variant. Best
values are in bold.

Model Test Valid Train

EfficientNet-b0 99.6995 99.8454 99.9960

EfficientNet-b1 99.5793 99.8454 100.000

EfficientNet-b2 99.5192 99.7681 99.9140

EfficientNet-b3 99.6394 99.8712 99.9860

EfficientNet-b4 99.6995 99.8454 99.9980

EfficientNet-b5 99.7596 99.7939 99.9920

EfficientNet-b6 99.7596 99.8712 99.9880

EfficientNet-b7 99.5192 99.8454 99.9960

Then ensembling was applied using the methodology depicted in Fig. 2. Given
the generally good performance of the models reported in Table 1 and aiming at
reduced complexity, we restricted to performing ensembling (i) only on b0 models
and (ii) using the minimum number of weak learners, i.e. only two learners.
As a combination layer for the ensemble, we used the final layer of the weak
learners scaled to accommodate the input of two learners. Five runs of training
were conducted to train the combination layers keeping frozen the deep feature
extractor module of each weak classifier. The results demonstrate a 100% F1-
score in training and test for all the five runs, while in validation four runs
achieved 100% performance but one, which featured a 99.998% performance.

Similar tests were conducted on the more challenging CIFAR-100 dataset,
where the ensemble model was able to reach a 96.808% with an improvement
of 0.728% over the previous state-of-the-art [8]. We notice that the proposed
ensemble has ≈ 11M parameters with respect to the previous state-of-the-art
model which had ≈ 480M parameters. For what regards floating point oper-
ations, the proposed ensemble features ≈ 0.9G FLOPS by contrast with the
≈ 299G FLOPS required by the previous model. This shows that the proposed
methodology is effective in producing accurate models with lower complexity in
the CIFAR-100 case.

5 Conclusions

This short paper has explored several directions for introducing Ensembling
in the deep learning context. The approaches and the involved ideas are well-
grounded in previous knowledge and guarantees connected to Ensembling in
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machine learning, yet there are many possible pathways and combinations to
explore. In some preliminary experiments, we studied an adaptive ensembling
based on bagging, making it possible to achieve 100% accuracy on a known
dataset in agricultural applications [12]. Other experiments on a well know
benchmark dataset have shown a significant boost in performance over the
state-of-the-art coupled with a reduction of complexity. Further experiments
are underway to show the applicability range of the proposed method and the
results will be reported in the next future.
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