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Abstract Landslide susceptibility modelling—a crucial step to-
wards the assessment of landslide hazard and risk—has hitherto
not included the local, transient effects of previous landslides on
susceptibility. In this contribution, we implement such transient
effects, which we term Blandslide path dependency ,̂ for the first
time. Two landslide path dependency variables are used to char-
acterise transient effects: a variable reflecting how likely it is that
an earlier landslide will have a follow-up landslide and a variable
reflecting the decay of transient effects over time. These two
landslide path dependency variables are considered in addition
to a large set of conditioning attributes conventionally used in
landslide susceptibility. Three logistic regression models were
trained and tested fitted to landslide occurrence data from a
multi-temporal landslide inventory: (1) a model with only conven-
tional variables, (2) a model with conventional plus landslide path
dependency variables, and (3) a model with only landslide path
dependency variables. We compare the model performances, dif-
ferences in the number, coefficient and significance of the selected
variables, and the differences in the resulting susceptibility maps.
Although the landslide path dependency variables are highly sig-
nificant and have impacts on the importance of other variables,
the performance of the models and the susceptibility maps do not
substantially differ between conventional and conventional plus
path dependent models. The path dependent landslide suscepti-
bility model, with only two explanatory variables, has lower model
performance, and differently patterned susceptibility map than the
two other models. A simple landslide susceptibility model using
only DEM-derived variables and landslide path dependency vari-
ables performs better than the path dependent landslide suscepti-
bility model, and almost as well as the model with conventional
plus landslide path dependency variables—while avoiding the
need for hard-to-measure variables such as land use or lithology.
Although the predictive power of landslide path dependency var-
iables is lower than those of the most important conventional
variables, our findings provide a clear incentive to further explore
landslide path dependency effects and their potential role in land-
slide susceptibility modelling.

Keywords Conventional landslide susceptibility . Path dependent
landslide susceptibility . Sequential sampling . Non-sequential
sampling . Multi-temporal landslide inventory

Introduction
Landslide susceptibility modelling is a key component in landslide
hazard and risk assessment, crisis management and land use plan-
ning. Landslide susceptibility is the probability of landslide occurrence
in an area based on a set of conditioning attributes (e.g. morphology,
geology, soil) (Brabb 1984). In this context, landslide susceptibility is a
time-invariant concept that purely provides an assessment of where a
landslide is likely to occur (Guzzetti et al. 1999, 2005). Hence, landslide
susceptibility differs from landslide hazard which does consider the

temporal probability of landslide occurrence (Varnes and Commis-
sion on Landslides and Other Mass-Movements-IAEG 1984; Guzzetti
et al. 2005, 2006a) and its magnitude (Guzzetti et al. 2005).

The availability of commercial and open source GIS and of
statistical software (Rossi et al. 2010; Rossi and Reichenbach
2016) has allowed many researchers to construct different empir-
ical models for landslide susceptibility modelling. Direct geomor-
phological mapping, heuristic approaches and quantitative
statistical models have all been used to model susceptibility to
landslides. Within the category of quantitative statistical models,
the last two decades landslide susceptibility modelling has been
the playground for new data integration techniques including
fuzzy logic (Saboya et al. 2006), artificial neural networks
(Kawabata and Bandibas 2009), support vector machines
(Kavzoglu et al. 2014), and random forests (Trigila et al. 2015).
The various approaches applied in these models always involve
estimating the relation between the presence or absence of land-
slides on the one hand, and a generally large set of conditioning
attributes on the other hand. Performance of such models is
usually assessed with a strong emphasis on Receiver Operating
Characteristic (ROC) curves, and area under curve (AUC) values
(Mason and Graham 2002).

The temporal validity of predicted susceptibility levels in land-
slide susceptibility models have been considered indefinitely in all
those approaches. However, there are indications from empirical
studies that susceptibility levels are instead dynamic, such as the
existence of a Brelaxation time^ of the landscape, following a
major event triggering landslides. In the Brelaxation time^, the
effects of external triggers (e.g. earthquake, rainfall) and also the
strengths of ground change over time. These changes were dem-
onstrated with the impacts of four earthquakes (MW 6.6–7.6) on
the rate of landsliding. Marc et al. (2015) showed that the regional
susceptibility of landsliding increases immediately after an earth-
quake, remains high for several months to years, and then returns
to the background susceptibility level. This shows that landslide
susceptibility levels are dynamic and suggests that these changes
need to be reflected in landslide susceptibility modelling.

We recently quantified the duration and strength of path de-
pendency among landslides for the Collazzone study area in cen-
tral Italy (Samia et al. 2017a, b). Path dependency is a concept from
complex system theory stating that the history of a system partly
determines the future state of the system (Phillips 2006). In
landsliding, path dependency means that the history of landslides
at a certain location affects the susceptibility of future landslides at
or near that location (Samia et al. 2017b). We found that in our
study area earlier landslides locally, temporarily, and positively
affect the susceptibility to future landslides. Susceptibility rises
immediately after a first landslide and then decays to the original
susceptibility values over a period of about two decades in the
vicinity of existing landslides (Samia et al. 2017a, b). These results
led us to propose the concept of time-variant landslide
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susceptibility modelling in which a space-time dynamic compo-
nent reflecting landslide history is added to the purely spatial
conditioning attributes that have conventionally been used in
landslide susceptibility modelling (Samia et al. 2017a, b).

Our current work presented in this paper includes—for the first
time—landslide path dependency in landslide susceptibility
modelling, and compares results with conventional landslide sus-
ceptibility modelling. To do this, we use a detailed multi-temporal
landslide inventory containing 16 time slices of mapped landslides
from the Collazzone study area in central Umbria, Italy (Guzzetti
et al. 2006a; Ardizzone et al. 2013).

Study area and data

Study area
The hilly Collazzone study area, in central Umbria, Italy,
covers an area of 78.9 km2 (Fig. 1). The elevation in the area
ranges from 145 to 634 m above sea level, and slope varies
between 0 and 64° derived from a Digital Terrain Model.
Climate is Mediterranean with annual average precipitation
of 885 mm, and snow falls every 2 to 3 years (Rossi et al.
2010). Both forms of precipitation trigger landslides in the
area (Guzzetti et al. 2006a). The majority (57%) of the area

is used as arable land. Forests, urban areas, pastures, and
vineyards are other substantial land uses. Soils have fine to
medium textures and their thicknesses vary from a few
centimetres to more than 1 m (Rossi et al. 2010). A full
description of study area can be found in (Guzzetti et al.
2006b; Galli et al. 2008; Samia et al. 2017b).

Multi-temporal landslide inventory
The Collazzone study area is active in terms of landslide occurrence.
Landslides are regularly mapped andmonitored using interpretation
of aerial photographs, direct field mapping after major external
triggers (e.g. intense rainfall and snowmelt), and also remote sensing
with stereo couples of GEOEYE and Worldview images (Ardizzone
et al. 2013). A multi-temporal landslide inventory based on these
sources is available for the study area, containing 3391 landslides
mapped in 19 different time slices. All landslides in the multi-
temporal landslide inventory are shallow and deep-seated landslides
(Guzzetti et al. 2006b). The first three time slices where the dates of
previous landslides are not well-constrained were not used in this
study. Therefore, the multi-temporal landslide inventory that is used
in this work contains 16 time slices with a total of 2383 landslides (Fig.
1). The time slices range from landslides in 1947 to landslides in April
2014. A detailed description of the multi-temporal landslide

Fig. 1 Multi-temporal landslide inventory including 16 time slices of landslide distribution overlaying a shaded relief image (left map) (adapted from (Samia et al. 2017b)).
Location of Umbria region and of the Collazzone study area (right map). The coordinate system of both maps is EPSG:32633 (www.spatialreference.org). Note that the time
slice from 1939 was only used to compute landslide path dependency variables, and not in landslide susceptibility modelling
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inventory, with information about the preparation and mapping of
time slices of landslides inventories, age of landslides, spatial and
temporal uncertainty of mapped landslides and frequency area rela-
tion of the multi-temporal landslide inventory is given in (Guzzetti
et al. 2006b; Samia et al. 2017b).

Mapping unit for landslide susceptibility modelling
A subdivision of the study area into mapping units (Fig. 2), i.e.
morpho-hydrological subdivisions of terrain containing a set of
conditions different from neighbouring units, is common for the
preparation of landslide susceptibility maps (Carrara et al. 1995;
Guzzetti et al. 1999, 2006b; Alvioli et al. 2016). We used a set of
previously defined Bslope units^ that divide the study area into
hydrological regions bounded by drainage and divide lines
(Carrara et al. 1991; Alvioli et al. 2016). These slope units have proven
to be a reliable unit to map susceptibility to landslides in our study
area (Guzzetti et al. 2006a, b) and more generally in the Umbria
region in Italy (Carrara et al. 1991; Guzzetti et al. 1999; Cardinali et al.
2002). In total, 894 slope units were identified for our study area.
Along with the preparation of slope units, 30 morphological and
hydrological parameters (Table 1) were created that are part of the set
of conditioning attributes used in this work. A detailed description
regarding the preparation of slope units and their use for suscepti-
bility modelling can be found in (Carrara et al. 1991; Rossi et al. 2010).

Conditioning attributes
To classify the slope units according to their susceptibility to
landslide, we used the same set of 51 conditioning attributes as
previous work (Rossi et al. 2010). This set (Table 1) includes 24
morphological, six hydrological, nine lithological (Fig. 2), three
structural, and eight land use classes (Fig. 2), and one attribute
showing the presence of ancient deep-seated landslides. A detailed
description of the preparation of these attributes and their impor-
tance in landslide susceptibility mapping can be found in (Guzzetti
et al. 2006a, b; Rossi et al. 2010). For this study, additional vari-
ables reflecting landslide path dependency were calculated. These
variables describe the spatial probability of earlier landslide caus-
ing follow-up landslides and landslide susceptibility temporal de-
cay (Table 1 and see BLandslide path dependency variables^).

Methods
We compared (i) conventional landslide susceptibility modelling,
(ii) conventional plus path dependent landslide susceptibility
modelling, and (iii) path dependent landslide susceptibility model-
ling using a forward conditional Multiple Logistic Regression
(MLR) (Fig. 3). We assessed the performance of all three models
with area under curve (AUC) values of the receiver operating
characteristics (ROC) curve. Then, we compared the coefficients
estimated in landslide susceptibility models. Finally, we compared
the predicted susceptibility maps.

Landslide path dependency variables
We computed four landslide path dependency variables in an
attempt to reflect the history of landslides from the multi-
temporal landslide inventory (Fig. 1). The first path depen-
dency variable called susceptibility temporal decay (Table 1)
reflects that the additional local susceptibility due to an ear-
lier landslide decays exponentially, following:

Susceptibility temporal decay ¼ e b*tð Þ ð1Þ

For every slope unit in each time slice, we calculated the
susceptibility temporal decay depending on when a landslide last
time happened in the slope unit, regardless of where in the slope
unit the landslide happened. The susceptibility temporal decay
values range from 0 to 1. Values close to 1 indicate that landslides
happened recently in the slope unit and values close to 0 indicate
that the most recent landslide happened a long time ago. This was
based on our earlier finding of exponential decay in the number of
landslides geographically overlapping with earlier landslides
(Samia et al. 2017a). We found that for the Collazzone study area
the susceptibility is raised immediately after an earlier landslide by
a factor of 15, and then it decreases over time with an exponential
coefficient value of b = − 0.12 ± 0.01 y−1 (Fig. 4). The second vari-
able (Table 1) is the spatial probability of earlier landslides causing
follow-up landslides, which was quantified according to geometric
and topographic attributes of earlier landslides (Samia et al.
2017a). The third variable is the sum of spatial probability of all
landslides that may have happened in the most recent time slice
experiencing follow-up landslides. The fourth variable is an aggre-
gated number combining the probability of follow-up landslides of
all known earlier landslides under the assumption that suscepti-
bility decays exponentially (b = − 0.12) as the following:

Aggregated probability ¼
∑Earlier slide n

Earlier slide i probability of earlier landslidei causing follow−up landslide* e b*tð Þ

ð2Þ
Time differences, spatial association among landslides, and

geometric and topographic attributes of landslides were the key
elements to calculate all these four variables.

Only the first two of these landslide path dependency variables
were used in landslide susceptibility modelling because the third
and fourth variables were very strongly correlated with the second
variable (r > 0.6) for our dataset. However, they may be less cor-
related and hence useful in other settings with multi-temporal
landslide inventory.

Sequential and non-sequential splitting of multi-temporal landslide
inventory for training and testing
Usually, in landslide susceptibility modelling, a mono-temporal
landslide inventory (i.e. a geomorphological) (Guzzetti et al.
2012) is divided randomly into a training and a testing dataset,
with a ratio of 70% of the data for training and 30% of the data for
validation (Tien Bui et al. 2016). In previous studies that used
almost the same multi-temporal landslide inventory as we do in
this work, older time slices have been used for training and
younger time slices for testing (Rossi et al. 2010). We named this
approach Bsequential splitting^ (Fig. 3, Table 2) and we used it as a
first splitting approach in this work, with the 7 oldest time slices
from 1947 to 1991 (covering a period of 44 years) used for training,
and the 9 most recent time slices from 1997 to 2014 (covering a
period of 17 years) used for testing.

However, this method of splitting is not well-suited where an
estimation of the effects of landslide path dependency is required.
Note that the landsliding history of the area is not known before the
earliest time slice in 1939. That means that for this time slice, the value
of the temporal decay susceptibility (Table 1) is unknown, and that
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also subsequent old time slices may miss an important part of the
landslide history of the area. Thus, sequential splitting leads to a
narrower distribution of times since previous landslides in the

training dataset than in the testing dataset. A model based on the
training dataset may hence be uncertain about the role of the time
passed since a previous landslide, especially for longer times passed.

Fig. 2 Slope units and slope (a), geology (b), land use (c), and bedding attitude with respect to slope (d) in the Collazzone study area
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Table 1 Conditioning attributes used in conventional landslide susceptibility modelling (Rossi et al. 2010) and landslide path dependency variables

Category Conditioning attributes (independent variables or classes)

Land use Arable, built area, forest, grass, orchard, road, vineyard, water

Old landslides Deposit of ancient deep-seated landslide

Lithology Recent alluvial deposit, clay, conglomerate, limestone, marl, sand, sand-silt, sandstone, travertine

Slope direction Slope unit facing N-NE, slope unit facing S-SE, slope unit facing S-SW, concave profile downslope, concave–convex profile
downslope, downslope concave slope, slope unit mean terrain gradient, slope unit rectilinear profile, slope unit slope (lower
portion), slope unit terrain gradient (intermediate portion), slope unit terrain gradient (upper portion), slope unit terrain
gradient standard deviation, slope unit with convex slope (downslope profile), slope unit with convex–concave slope
(downslope profile), slope unit with irregular slope (downslope profile), aspect (D8 notation),

Hydrological Drainage basins total area upstream the slope unit, drainage channel mean slope, slope unit drainage channel length, slope unit
drainage channel magnitude, slope unit drainage channel order, slope unit area

Geomorphological Standard deviation of terrain unit length, slope unit elevation standard deviation, slope unit length, slope unit mean elevation,
slope unit surface roughness index, maximum orientation of the slope unit, minimum orientation of the slope unit, mean
slope angle of the slope unit squared

Structural Anaclinal slope, cataclinal slope, orthogonal slope

Landslide path
dependency

Susceptibility temporal decay, spatial probability of earlier landslides causing follow-up landslides

Fig. 3 Flowchart of methods used. For difference between sequential split and non-sequential split see section BSequential and non-sequential splitting of multi-temporal
landslide inventory for training and testing^
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Additionally, in recent times, time slices are closer together in time
due to more frequent availability of high quality remote sensing
imagery. The corresponding lack of very short temporal separations
in the training dataset will hamper accurate estimation of the role of
time as well. More generally, the path dependency paradigm creates
room for thought that the conventional space-focussed susceptibility
rules change over time. If so, a model trained on an old dataset may
not be accurate for a recent dataset.

For these reasons, we also employed a Bnon-sequential
splitting^ approach, which to our knowledge is novel in the
realm of landslide susceptibility modelling. The non-
sequential selection of time slices from the multi-temporal
landslide inventory (Fig. 1, Table 2) prioritises an equal range
of temporal separations between time slices in the training
and the testing datasets, to avoid the disadvantages men-
tioned above. On the downside, this approach makes it more
difficult to have approximately equal numbers of slope units
with and without landslides in both datasets. For the training
dataset, the 1st, 2nd, 5th, 6th, 9th, 10th, 13th, and 14th time
slices were used (covering a period of 63 years). Note that the
first time slice here refers to 1947—the first time slice for
which a partial history of landsliding is known. For the
testing dataset, the 3rd, 4th, 7th, 8th, 11th, 12th, 15th, and
16th time slices were used (covering a period of 49 years)
(Table 2).

Multiple logistic regression model
Logistic regression is the most widely used statistical model in
landslide susceptibility modelling (Mancini et al. 2010; Martinović
et al. 2016). In logistic regression, a set of explanatory
(independent) variables explains variation in the binary depen-
dent variable (Menard 2000). In landslide susceptibility modelling,
explanatory variables are, e.g. slope and geology, and the depen-
dent variable is the presence or absence of landslides in the
mapping unit of choice. The relation between independent vari-
ables and dependent variable is used to classify the mapping units
(slope unit or pixel) of an area to different levels of susceptibility
to landslides. In this context, each mapping unit has a probability
of landslide occurrence (ρ) in the range from 0 to 1 (Martinović
et al. 2016):

ρ ¼ ln
1

1þ e−z

� �
; ð3Þ

where z is a linear combination of coefficients related to indepen-
dent variables selected by logistic regression according to their
importance and significance reflected as:

z ¼ β0 þ β1 X1 þ β2 X2 þ…þ βn Xn ð4Þ

where β0 is the intercept of the model, β1, β2, and βn are the
coefficients of independent variables, and X1, X2, Xn are indepen-
dent variables selected by the model.

Landslide susceptibility modelling
Conventional landslide susceptibility modelling was performed
using a set of 51 previously used conditioning attributes (Rossi
et al. 2010) (Table 1). The conventional plus path dependent land-
slide susceptibility modelling was performed using the same 51
conditioning attributes, plus spatial probability of earlier land-
slides causing follow-up landslides and susceptibility temporal
decay variables describing landslide path dependency (Table 1).
Path dependent landslide susceptibility modelling was performed
using only the two new landslide path dependency variables
(Table 1). The number of slope units without landslides is more
than the number of slope units with landslides (Fig. 3). To make a

Fig. 4 Temporal response of landslide path dependency with an exponential decay (Samia et al. 2017a)

Table 2 Sequential and non-sequential splitting of time slices of the multi-
temporal landslide inventory to be used in conventional, conventional plus path
dependent and purely path dependent landslide susceptibility modelling

Selection of
training and
testing datasets

Time slices in the
training dataset

Time slices in the
testing dataset

Sequential
splitting

1947, 1954, 1965,
1977, 1981, 1985,
1991

1997, 1999, May 2004,
Dec 2004, Dec 2005,
March 2010,
May 2010, April
2013, April 2014

Non-sequential
splitting

1947, 1954, 1981,
1985, 1999,
May 2004,
March 2010,
May 2010

1965, 1977, 1991,
1997, Dec 2004,
Dec 2005, April
2013, April 2014
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dataset with equal numbers of slope units with and without land-
slides, all slope units with landslides and a random but equal
number of slope units without landslides were selected. To explore
the effect of this random selection, it was repeated 10 times. After
preparation of the 10 training datasets with sequential splitting, and 10
training datasets with non-sequential splitting, we applied logistic
regression to all 20. We imposed an entry probability of 0.05 and a
removal probability of 0.06 to reduce the risk of overfitting in the
model. To avoid multicollinearity, we allowed only inter-variable
correlations less than 0.6. Then, the contingency tables were comput-
ed to show the True positive (slope units with landslide and predicted
with landslide), true negative (slope units without landslide and
predicted without landslide), false positive (slope units without land-
slide but predicted with landslide), and false negative (slope unites
with landslide and predicted without landslide) (Jolliffe and
Stephenson 2003). Finally, the area under curve values (AUC), quan-
tifying the accuracy of performance of predicted models (Mason and
Graham 2002; Fawcett 2006), and the Akaike Information Criterion
(AIC) which quantifies the goodness of fit while penalising for the
complexity of the model (Akaike 1974; Petschko et al. 2012) were
computed for the training datasets. To test the models, the models
were applied to the 20 testing datasets, and again contingency tables
and the AUC values for these testing datasets were calculated. The
coefficients of variables selected by logistic regression in conventional
landslide susceptibility were compared with the coefficients of vari-
ables selected by logistic regression in conventional plus path

dependent landslide susceptibility. Finally, we averaged the probability
of landslide occurrence in the 10 training and 10 testing datasets and
used this to map susceptibility to landslides.

Results

Model performance
In our test case, conventional plus path dependent landslide sus-
ceptibility modelling resulted in similar model performance to
conventional landslide susceptibility modelling. This was true for
both sequential and non-sequential splitting of the multi-temporal
landslide inventory (Table 3). In sequential splitting, the best
training result was obtained with conventional plus path depen-
dent landslide susceptibility modelling with highest AUC =
0.775 ± 0.006 (Table 3, Fig. 5) and lowest Akaike information
criterion (AIC) = 2281 ± 23. In non-sequential splitting, the best
training result was obtained again with conventional plus path
dependent landslide susceptibility modelling with highest AUC =
0.767 ± 0.007 and lowest AIC = 1515 ± 15.

The best testing result was obtained with conventional plus
path dependent landslide susceptibility for the non-sequential
splitting, with AUC = 0.754 ± 0.012 (Table 3 and Fig. 5). The land-
slide susceptibility model using only landslide path dependency
variables performed acceptably as well, with best AUC = 0.688 ±
0.009 for training in non-sequential splitting, and AUC = 0.682 ±
0.022 for testing in the sequential splitting (Table 3).

Table 3 Area under curve (AUC) and Akaike Information Criterion (AIC) values in conventional, conventional plus path dependent, and path dependent landslide
susceptibility modelling in sequential and non-sequential splitting

AUC and AIC values Conventional susceptibility Conventional plus path dependent
susceptibility

Path dependent susceptibility

Sequential Non-sequential Sequential Non-sequential Sequential Non-sequential

AUC training 0.773 ± 0.008 0.763 ± 0.008 0.775 ± 0.006 0.767 ± 0.007 0.662 ± 0.007 0.688 ± 0.009

AIC training 2287 ± 26 1523 ± 23 2281 ± 23 1515 ± 15 2586 ± 16 1671 ± 13

AUC testing 0.730 ± 0.007 0.753 ± 0.011 0.733 ± 0.012 0.754 ± 0.012 0.682 ± 0.022 0.673 ± 0.007

1 - Specificity

1.00.80.60.40.20.0
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Fig. 5 Examples of receiver operating characteristic (ROC) curves with highest AUC values for training in conventional plus path dependent landslide susceptibility
modelling for the sequential splitting (right) and for testing in conventional plus path dependent landslide susceptibility modelling for the non-sequential splitting (left)
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The clearest difference between these three landslide suscepti-
bility models is that the testing results are higher or closer to the
training results when only using landslide path dependency var-
iables. In general, non-sequential splitting has larger differences
between model performance and testing (Table 3).

The contingency tables values (from these two models Table 4)
calculated with a probabilistic cut off value of 0.5 showed slight
differences between conventional and conventional plus path
dependent susceptibility, in sequential and non-sequential split-
ting. The path dependent susceptibility model differs substantially
from these two models.

Effect of landslide path dependency variables on variable selection
The spatial probability that an earlier landslide will cause a follow-
up landslide was selected as an explanatory variable (independent
variable) in all 10 repetitions of conventional plus path dependent
susceptibility modelling using sequential splitting, and in 8 out of 10
repetitions using non-sequential splitting (Table 5). In these 18 cases,
the significance of this variable was always better than 0.0001. The
susceptibility temporal decay variable was selected 6 times, both in
sequential and non-sequential splitting of conventional plus path
dependent susceptibility (Table 5). In these 12 cases, susceptibility
temporal decay variable was always significant as imposed during
the training of the model (p< 0.05). When using only the two path
dependency variables, the spatial probability of earlier landslide
causing follow-up landslide variable was always selected (i.e. 20
times), whereas susceptibility decay variable was selected 6 times
in sequential and 10 times in non-sequential splitting. These vari-
ables were significant (p < 0.05) in all 36 cases as well. The impor-
tance of the landslide path dependency variables is also shown by
their effects on the number and coefficients of variables selected by
the model (Table 5, Figs. 6 and 7).

In sequential splitting, for conventional susceptibility, on
average 13.7 variables and for conventional plus path depen-
dent susceptibility 14 variables were selected (Table 5). Also,
in non-sequential splitting the conventional landslide suscep-
tibility selected on average 10.7 variables and the conventional
plus path dependent susceptibility selected 11 variables on
average. With adding the two landslide path dependency
variables into the conventional landslide susceptibility, the
inclusion and exclusion of other variables also changed.
These were seen both in sequential and non-sequential split-
ting. In conventional plus path dependent susceptibility in
sequential splitting, on average 3.25 variables were removed
and 2.7 variables were added. In conventional plus path
dependent susceptibility in non-sequential splitting, on aver-
age 3.5 variables were removed and 3.1 variables were added.
In path dependent susceptibility, for the sequential splitting
on average 1.6 variables (out of two landslide path dependen-
cy in 10 times repetition) were selected, and for non-
sequential splitting both landslide path dependency variables
were selected in all of the10 times repetition (Table 5).

The regression coefficients of variables that were present in
both the conventional and the conventional plus path depen-
dent models changed slightly (less than 10%) with sequential
splitting (Fig. 6). The largest change is for recent alluvial
deposit, around 11%. With non-sequential splitting, limestone
and cultivated area changed, about 12 and 14% respectively
(Fig. 7). Ta
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Landslide susceptibility maps
The landslide susceptibility maps for conventional and con-
ventional plus path dependent in sequential and non-
sequential splitting are presented in Fig. 8. Note that in all
cases, the landslide susceptibility maps were made by averag-
ing the probability of landslide occurrence in the slope units
of all training and testing datasets. In both splitting ap-
proaches, there were no substantial differences between the

histograms of probability of landslide occurrence between
conventional and conventional plus path dependent landslide
susceptibility (Fig. 8a–d). These slight differences between
conventional and conventional plus path dependence suscep-
tibility maps both in sequential and non-sequential splitting
are in accordance with the slight differences in AUC values of
their susceptibility models (Table 3). However, somewhat more
slope units were predicted with probability of landslide

Table 5 Variables selected by logistic regression in conventional susceptibility, conventional plus path dependent susceptibility and path dependent susceptibility. Only
variables included 6 or more times out of 10 repetitions are reported. Numbers between parentheses indicate the number of times that variables were selected in the 10
repetitions

Landslide susceptibility Variables selected by logistic regression in 10 times repetition of logistic
regression model

Average number
of variables in the
model

Sequential
splitting

Conventional (51 variables
available)

Limestone (10), forested area (10), slope unit area (10), minimum
orientation of the slope Unit (10), cultivated area with trees (9), slope
unit mean terrain gradient (8), slope unit length (8), mean slope
angle of the slope unit squared (8), water bodies (7), recent alluvial
deposit (6), marl (6), slope unit mean elevation (6), slope unit mean
terrain gradient (6)

13.7

Conventional plus path
dependent (53 variables
available)

Spatial probability of earlier landslide causing follow-up landslide (10),
limestone (10), forested area (10), slope unit area (10), minimum
orientation of the slope unit (10), cultivated area with trees (9), recent
alluvial deposit (7), susceptibility decay (6), water bodies (6), slope
unit mean elevation (6), slope unit mean terrain gradient (6), mean
slope angle of the slope unit squared (6)

14

Path dependent (two
variables available)

Spatial probability of earlier landslide causing follow-up landslide (10),
susceptibility temporal decay (6)

1.6

Non-sequential
splitting

Conventional (51 variables
available)

Limestone (10), recent alluvial deposit (9), cultivated area (8), slope unit
length (7), gravel and coarse continental sediments (6), pasture (6),
slope unit elevation standard deviation (6), slope unit length (6)

10.7

Conventional plus path
dependent (53 variables
available)

Limestone (10), spatial probability of earlier landslide causing follow-up
landslide (8), slope unit elevation standard deviation (8), recent
alluvial deposit (8), slope unit length (7), cultivated area (7), suscep-
tibility temporal decay (6)

11

Path dependent (two
variables available)

Spatial probability of earlier landslide causing follow-up landslide (10),
susceptibility temporal decay (10)

2

Fig. 6 Percentage change in the coefficients with adding two landslide path dependency variables in sequential splitting. The changes of coefficients in variables that
were 6 times or more common between two models were reported. Error bars represent standard error
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occurrence lower than 0.2, and less slope units with probabil-
ity larger than 0.8 using conventional plus path dependent
susceptibility than using conventional landslide susceptibility.

The difference map for the sequential splitting, made by
subtracting conventional susceptibility map from the conven-
tional plus path dependent susceptibility map, shows that the
susceptibility of slope units did not change substantially in
about 46% of our study area (409 slope units) (Fig. 9a). In
about 21% of the slope units, the probability of susceptibility
slightly increased (192 slope units) and in 33% of the slope
units (293 slope units) the probability of susceptibility slightly
decreased. The difference map for non-sequential splitting
showed similar results as well.

Path dependent landslide susceptibility maps in sequential and
non-sequential splitting had substantial different geographical pat-
terns in comparison to conventional and conventional plus path
dependent landslide susceptibility maps (Fig. 10a, b). The clear
differences were in the slope units that did not have susceptibility
smaller than 0.2 (Fig. 10a) and larger than 0.8 (Fig. 10a, b). This is due
to the fact that susceptibility of the slope units to landslides decreases
over time, which has been implemented into this model.

In sequential splitting, the difference map between conven-
tional and path dependent landslide susceptibility maps
showed that in 23% of the slope units, the susceptibility did
not change, in about 23% of the slope units, the susceptibility
increased, and in about 54% of the slope units, the suscepti-
bility decreased (Fig. 11a). In non-sequential splitting, in 21%
of the slope units, the susceptibility did not change, in 11% of
the slope units, the susceptibility increased, and in 68% of the
slope units, the susceptibility decreased (Fig. 12b).

Discussion
We will first discuss the concept of time-variant landslide
susceptibility and then focus on the performance of the three
landslide susceptibility models and then discuss the impor-
tance of landslide path dependency variables in landslide
susceptibility mapping. We will also discuss the possibility to
create a simpler and easier to calculate landslide susceptibility
model using DEM-derivative variables and landslide path de-
pendency variables.

Time-variant landslide susceptibility modelling
By definition, conventional landslide susceptibility is considered
to be constant over decadal timescales (Guzzetti et al. 1999, 2005)
(Fig. 12). In conventional plus path dependent susceptibility, due
to the effect of landslide path dependency, landslide susceptibility
is dynamic and changes over the timescale of analysis. The fact
that the change in the intensity of susceptibility is only slight, is
due the fact that the set of 51 conditioning attributes already
captures most of the spatio-temporal variation in landslide occur-
rence. This of course no longer the case in susceptibility maps
prepared using the model with only the two landslide path depen-
dency variables. Here, there is a quite intensive and dynamic
change in the level of susceptibility, reflecting the imposed expo-
nential decay of landslide path dependency (Samia et al. 2017a)
(Fig. 12).

Performance of landslide susceptibility models
We found that adding landslide path dependency variables to the
conditioning attributes variables used in conventional landslide
susceptibility model slightly improved the performance of the
susceptibility model (Table 1). These slight improvements in model
performance are reflected in the high significance of landslide path
dependency variables, affected the coefficients and significances of
other variables (Figs. 6 and 7, and inclusion and exclusion of other
variables. The fact that the model improvement due to path de-
pendent variables is nonetheless only slight, can be explained by
(a) the 51 conventional variables (conditioning attributes) already
capture almost all systematic variation; (b) area under curve
(AUC) considers the overall performance of the model without
any spatial consideration while landslide path dependency at-
tempts to describe the Blocal^ effect on susceptibility and (c)
simply limited performance and relevance of landslide path de-
pendency variables.

To explore the first of these three possibilities, we compared a
landslide susceptibility model with only the two most significant
conditioning attributes variables with path dependent landslide
susceptibility model (with the two landslide path dependency
variables). The performance of the conventional model was much
closer to the performance of the path dependency model (Tables 6
and 3), indicating a relatively similar importance of landslide

Fig. 7 Percentage change in the coefficients with adding two landslide path dependency variables in non-sequential splitting. The changes of coefficients in variables that
were 6 times or more common between two models were reported. Error bars represent standard error
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path dependency variables as the importance of conditioning
attributes conventionally being used in landslide susceptibility
modelling.

In an additional exploration, we found that a very simple
landslide susceptibility model using only DEM-derived variables
and landslide path dependency variables can lead to acceptable
results (Table 6). This is potentially interesting since such land-
slide susceptibility models can be prepared easily, globally and
within a short period of time. DEM-derived variables could easily
be calculated for global extent with GIS related software, and
high-resolution, accurate multi-temporal landslide inventories

may be expected in the near future due to the recent widespread
availability of high resolution remote sensing images. Therefore,
landslide susceptibility model potentially could be prepared with
a combination of DEM-derived variables and landslide path
dependency variables derived from multi-temporal landslide in-
ventory maps.

Regarding the second point, performance of path dependence
variables may have been limited by using the slope unit as map-
ping unit in the landslide susceptibility models. The values of
landslide path dependency variables themselves were calculated
based on geographical overlap with earlier landslides (Samia et al.
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2017a). Since landslides are generally much smaller than the slope
units, the landslide path dependency variables reflect a process
that affects landsliding at smaller spatial scale than the scale at
which they have now been used (slope units). The value of expo-
nential decay (b = − 0.12) (Samia et al. 2017a) that was used was
derived at the landslide scale, and may have needed to be re-
estimated at the slope unit scale. This reasoning leaves open the
possibility that for pixel-based susceptibility modelling the effect
of landslide path dependency variables can be higher.

Regarding the two sampling strategies used in this work, the
non-sequential splitting of the multi-temporal landslide inventory
has the best performing in testing, and has also the smallest
difference in the performance of the model between training and
testing (Tables 3 and 6). We maintain that this is important, as it
indicates we are less overfitting our susceptibility models.

Landslide path dependency as conditioning attributes in landslide
susceptibility modelling
We implemented our previously quantified landslide path
dependency (Samia et al. 2017a) in landslide susceptibility
modelling using only two landslide path dependency variables
(Table 1). The landslide susceptibility predictions from these
models (Fig. 10a, b) performed acceptably with AUC > 0.660
(Table 3) both for training and testing. This suggests that it is
possible to use only landslide inventory itself to predict land-
slide susceptibility in areas where conditioning attributes are
not available, or difficult to obtain. This could be potentially
interesting since it has been always said that to do landslide
susceptibility modelling, many conditioning attributes vari-
ables are needed (van Westen et al. 2003; Guzzetti et al.
2006a; Ghosh et al. 2011). We showed that this is not neces-
sarily the case (Table 3, Fig. 10a, b). For the calculation of

landslide path dependency variables, time of landslide occur-
rence or mapping time of landslide, spatial association among
landslides, geometric and topographic attributes of landslides
were needed. Clearly, none of the landslide path dependency
variables can be extracted from mono-temporal landslide in-
ventory or from landslide inventories where landslides are
mapped as points. This stresses the importance of monitoring
of earlier landslides where multi-temporal landslides inventory
can be provided and landslides are mapped with polygon
(Samia et al. 2017b). Providing multi-temporal landslide in-
ventory could be facilitated by remote sensing images and
techniques. However, if there is no spatial association among
landslides then the effect of landslide path dependency might
be difficult to extract as we have only one test study site with
multi-temporal landslide inventory. Besides that, if a landslide
goes down slope and it is no longer present in the slope, then
the effect of path dependency could be limited or even ab-
sent. For deep-seated landslides and earthflows, it has been
speculated that reactivation is caused by a thin layer of
smeared clays under the landslide body—the so-called bath-
tub effect (Baum and Reid 2000; Van Den Eeckhaut et al.
2007). If this effect is also behind some of the shallow land-
slides that we studied, then explanatory variables reflecting
clay content and mineralogy may be useful to identify regions
and hillslopes that are particularly susceptible to path depen-
dency in landsliding.

Data and method differences with previous landslide susceptibility
modelling in the study area
The previous landslide susceptibility modelling in our study
area (Rossi et al. 2010) differs from ours in terms of data and
the way of calculating the dependent variable. First, the multi-

Fig. 9 Difference between conventional landslide susceptibility map with conventional plus path dependent landslide susceptibility map in sequential (a) and non-
sequential (b) splitting
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temporal landslide inventory has increased by four time slices
(March and May 2010, April 2013 and April 2014) (Fig. 1)
using high-resolution remote sensing images which have been
used in this study, but were not available to Rossi et al.
(2010). Besides, in our study, landslides in the first available
time slice (1939) were only used for computation of landslide
path dependency variables, but were used as targets in land-
slide susceptibility modelling in Rossi et al. (2010). We calcu-
lated the dependent variable in slope units according to the
presence or absence of each individual landslide. This allowed
us to use the effect of each individual landslide purely in
landslide susceptibility modelling while Rossi et al. (2010),
combined all the landslides first, and then calculated the
dependent variable with the presence or absence of all the
combined landslides in slope units. These differences led to
clear differences in the number of slope units located in
different classes of probability to landslide occurrence. In
Rossi et al. (2010), more slope units (502 slope units) were
predicted in the higher probability classes (0.6–0.8 and 0.8–1),
whereas we predicted less slope units (235 slope units in
sequential splitting, and 197 slope units in non-sequential
splitting) in the same high classes of probability (Fig. 8a, c).
Also, the number of slope units in the probability class of

0.4–0.6 in our conventional landslide susceptibility maps is
higher (264 slope units in sequential splitting, 309 slope units
in non-sequential splitting) in comparison with 68 slope units
predicted in this probability class by Rossi et al. (2010).

Exportability of landslide path dependency variables in other areas for
landslide susceptibility modelling
Where multi-temporal landslide inventories are available (to
our knowledge the only large multi-temporal landslide inven-
tory available worldwide is the multi-temporal landslide in-
ventory used in this work), and the geological, climate
conditions and type of landslides are similar to our study
area, our exponential decay coefficient b = − 0.12 from suscep-
tibility temporal decay (Table 1 and Eq. 1), and spatial prob-
ability of each landslide causing follow-up landslide could
directly be used to model susceptibility to landslide. However,
most landslide inventories are mono-temporal usually record-
ed after extreme external triggers (e.g. rainfall and earth-
quake). From such landslide inventories, the exponential
decay coefficient from susceptibility temporal decay cannot
be computed. However, from geometric attributes (e.g. size,
shape) and topographic attributes of each landslide in the
mono-temporal landslide inventory, the spatial probability of
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earlier landslides causing follow-up landslides (Table 1) is
computable if we assume that the model to predict the oc-
currence of follow-up landslides by Samia et al. (2017a) is
valid. In this context, for every known landslide we would
have a probability that shows whether a landslide will have a
follow-up landslide, or not. This landslide path dependency
variable in our study area was found to be the most signifi-
cant and selected variable by the logistic regression when
using it individually, or combined with conditioning attributes
variables in landslide susceptibility modelling (Table 1). There-
fore, a combination of path dependent variables with a range
of other possibility conditioning attributes or DEM-derived
variables could be used to model susceptibility to landslide.

Conclusion
For our study area, where adding landslide path dependency
variables to the conditioning attributes conventionally used in
landslide susceptibility modelling improves the performance
of landslide susceptibility model slightly. However, the
resulting landslide susceptibility maps from conventional and
conventional plus path dependent landslide susceptibility
models are not substantially different. The highest perfor-
mance for landslide susceptibility model was obtained in
conventional plus path dependent landslide susceptibility
model with the AUC = 0.775 ± 0.006 in sequential splitting
and AUC = 0.754 ± 0.012 in non-sequential splitting. In addi-
tion, a landslide susceptibility model purely made by two

Fig. 11 Difference between conventional landslide susceptibility map with path dependent landslide susceptibility in sequential (a) and non-sequential splitting (b)

Fig. 12 Modelled landslide susceptibility in the highlighted slope unit in Fig. 10 using conventional, conventional plus path dependent and path dependent landslide
susceptibility models and sequential splitting
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landslide path dependency variables has decent model perfor-
mance with the AUC values > 0.660 in sequential and non-
sequential splitting. The non-sequential sampling strategy has
a better model performance in the testing dataset, and less
difference with the performance of the model between train-
ing and testing datasets. Moreover, the spatial probability of
earlier landslide causing follow-up landslide was selected in 18
out of 20 runs logistic regression for landslide susceptibility
modelling. The susceptibility temporal decay was also selected
in 60% of the runs (12 out of 20) of logistic regression. These
landslide path dependency variables also changed the signifi-
cance, inclusion and exclusion of other variables selected by
logistic regression. A simple, easily computed landslide sus-
ceptibility model with reliable model performance can be
obtained using combination of DEM-derived variables and
landslide path dependency variables. Our landslide path de-
pendency variables can possibly be applied to model suscep-
tibility to landslide in areas similar to our study area where
multi-temporal landslide inventory or mono-temporal land-
slide inventory are available.
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