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Abstract

The sloshing motion of a confined liquid inside a vertically moving tank is analyzed in the present

series of paper. The main objective of the study is to understand the multiple resulting energy dissipation

mechanisms, namely wall-liquid impacts and free surface phenomena, among others. This analysis is

connected to the damping effects on the aircraft wings caused by the liquid action inside the fuel tanks.

Due to the complexity and non-linearity of the flow generated inside the tank, only experiments or efficient

numerical solvers are suitable for studying the problem. In this paper, the tank-fluid system is periodically

excited with a prescribed law of motion and the non-linear features are observed, the force between the

wall and the fluid and the global energy balance are computed. A weakly-compressible smoothed particle

hydrodynamics model (WCSPH), has been reformulated and adapted to this kind of violent and turbulent

flow. The evolution of the different terms that appear in the energy conservation law are computed, and the

formulation is compared to other alternatives where the advantages of the present formulation are indicated.

The comparison with the experimental results and the fluid-structure interaction case is carried out in Paper

II [Marrone,Colagrossi,...Gonzalez,”A numerical study on the dissipation mechanisms in sloshing flows

induced by violent and high frequency accelerations. Part II: comparison against experimental data.”] of

this work.
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I. INTRODUCTION

There are an important number of situations involving a liquid that evolves dynamically in a

confined portion of space. These situations can be found either when the liquid, typically a kind of

fuel, is transported from different (air)ports or when it is used as Tuned Liquid Damper (TLD) to

counteract the motions caused by an external agent, such as building motion during earthquakes,

ship rolling motion due to waves or any other complex dynamic phenomena. Focusing on the aim

of improving the safety and efficiency of fuel transport, this is an open problem for the engineering

community, which has evolved to match the fast-paced nature of the human race. Starting from

the shape and size evolution of the trucks that transport fuel, and taking into account the design

of the tanks and containers used for fuel transport by ship or train, the behaviour of the fluid

inside liquid containers and fuel tanks has been widely studied for many decades over this and

the last century. All the situations that have been described imply that the confined liquid moves

inside the tank with high accelerations and strong wall impacts, and are commonly identified as

examples of “sloshing flows”. Lately, a typical and attractive example of this kind of confined flow

that has received attention is found in the kerosene containers placed below aircraft wings, where

the fluid is moved by violent structural loads coming in turn from external wind gusts and air

turbulence. In this application, the fluid is vertically accelerated up to typical values in the order

of 10g, which results in amplitudes comparable to the tank dimensions and frequencies higher

than 5 Hz. In this context several experiments, such as [37], have demonstrated that fluid motion

plays a role on the wing structure, acting as a damper. In these conditions the initial stages of

the flow evolution are driven by intense breaking of the free surface due to the impulsive heaving

motion of the tank, also inducing a detachment of the fluid from the tank walls. The previous

flow regime is somehow different to what is normally described as a “sloshing flow”, as the fluid

is continuously broken into more and more jets and drops whilst violently slamming alternately

upward and downward against the top and bottom walls. It is therefore necessary to clarify that

under the name of “sloshing flows” a very wide variety of fluid dynamics behaviours are included.

Seminal books, such as the ones by [23] or [1] present a thorough review of sloshing dynamics and

its applications. Normally, in the common literature the term “sloshing flow” is used to describe

those situations when the tank acceleration decreases to values smaller than 2-3g, and the flow is

essentially driven by gravity forces. Due to this terminology, and for the sake of clarity, in the

present paper the initial stages of such violent flow, when it is essentially driven by inertial forces
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due to vertical accelerations considerably larger than the gravitational ones, will be referred to as

“shaken flow”. These very violent flows have been rarely addressed in the literature and only very

recently they have received attention [9, 15, 18, 37, 43] fostered by the European H2020 project

SLOWD [24].

Violent sloshing flows can be studied computationally using different numerical techniques.

There exist relevant studies based on the Finite Volume techniques, such as the ones proposed

by [10, 25, 26], that are examples of the different strategies used to tackle different sloshing

problems. In this work, the lagrangian meshless method Smoothed Particle Hydrodynamics

(SPH) has been used instead to discretize the liquid phase of the problem, while the gas phase

has not been explicitly included in the simulation, the assumption being that it plays a negligible

role. The SPH method was conceived in 1977 by [27, 34] to solve astrophysics problems, but

due to its flexibility it quickly spread over into different disciplines, including free surface flows

[40]. Several complex problems in computational engineering have been accurately solved by

SPH (see, e.g.,[19, 28, 46], which includes fluid-structure interaction problems [48] and violent

sloshing problems in the presence of complex geometries [50]. Recently, a thorough validation

on sloshing flows occurring in tanks of different shapes has been carried out by Green[29]. As a

consequence, SPH can be presented as an efficient methodology when compared to mesh-based

methods to simulate free surface flows, and precisely those including violent sloshing. More in

depth, this paper is not limited to obtaining accurate simulations of the violent vertical sloshing

flows described above; it also attempts the study of the energy dissipation mechanisms that occur

in these kinds of violent and confined flows which, eventually, are of interest in aeronautics

applications. There is a vast literature related to energy dissipation in sloshing flows, especially in

TLD studies for seismic applications (see, e.g. [16, 42]). Energy dissipation in lateral sloshing was

treated from a theoretical point of view in [20] and by several numerical and semi-analytical works

[45, 49]. However, in all those works the study was limited to either roll or sway sloshing which

are rather different from the violent vertical sloshing flows addressed in the present research.

To achieve this goal using the SPH methodology, important particular aspects of the classical

SPH method should be revisited. First, the pressure fields obtained during the violent impacts

should be accurately computed, which implies the presence of diffusive terms in the mass

conservation equation as the ones proposed by [3] with the δ-SPH formulation. Second, the

possibility of computing negative pressure fields that produce undesired effects denominated in

the SPH literature as “tensile instability” must be avoided. In order to limit the “tensile instability”
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onset, a particle shifting technique, as the one reported by [50] can be adopted. The latter allows,

at the same time, the achievement of making accurate computations with little spurious energy

dissipation by enforcing uniform particle distributions. Third, assuming that the flow is highly

turbulent and that multiple scales are involved in the fluid diffusion process, only the largest scales

are included in the simulation due to the limited computational capacity. The sub-grid scales must

be included using a Large Eddy Simulation (LES) model such as the one described in [21]. Finally,

the SPH scheme formulated for these kinds of flows should be robust enough to deal with highly

complex and fragmented free surfaces. Most of the improvements required for our particular SPH

formulation have been previously presented in the works by [3, 5, 21, 51] and applied to less

confined and violent flows. In the present work those schemes are merely restated, and the reader

is encouraged to find more details on the numerical implementation in the referred works.

This work is separated in two parts (Parts I and II), and the first one deals with the theoretical

basis of the formulation and fundamentals of the energy dissipation mechanisms, where this

methodology is applied to a sloshing tank with prescribed vertical periodic motion. In the second

part (Part II), the method is applied to a wider range of cases, which include external damped

oscillations, the coupled fluid-structure interaction (FSI) version of the problem with a spring-

damper system and finally an experimental comparison of the previous results. This first part I is

organized as follows: Sec. III briefly explains the mathematical model used, including the main

assumptions that are made. Then, energy terms arising from energy balance are analyzed in Sec.

IV. Main aspects of the LES turbulent model are summarized in Sec. V. Then, in Sec. VI emphasis

is given to the dissipation terms introduced by the discrete SPH formulation. Finally, Sec. VII is

dedicated to presenting a set of numerical test cases where the main findings are discussed. As

mentioned before, Part II of the paper will complement the perspective given in this first part,

where the experimental validation will also be included.

II. PROBLEM DESCRIPTION

In [37] a violent sloshing flow in a vertically moving tank with a single degree of freedom

has been experimentally studied. In the present work the conditions adopted in that experimental

campaign are considered for the numerical simulations. In [37] a tank with geometry 10x6x6 cm

is connected to a set of 6 springs, 3 on the upper side and 3 on the lower side. The tank is filled

up to 50 % of its volume with a water mass of ml = 0.18 kg and, when the springs are released,
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oscillates at a characteristic frequency of f0 = 6.5 Hz. More details about the experiment are also

given in the second part of this paper (Part II).

The problem geometry considered in the present work is two-dimensional and is sketched in

Fig. 1, where L = 0.1 m, D = 0.06 m and H = 0.03 m. In the same plot the liquid menisci due to

the contact angle θ between the lateral walls and the liquid surface are depicted and enlarged in the

inset. They play a relevant role during the initial stages of the flow evolution as further discussed

in the following pages.

The Reynolds number of the problem is defined as Re = UmaxL/ν where Umax is the maximum

tank velocity and ν the kinematic viscosity of the fluid. In the present work only water is

considered, while in the second part of the paper (Part II) oil sloshing is also analysed. For the

simulation analysed here the same order of magnitude of the initial acceleration obtained in [37] is

retained, resulting in a flow Reynolds number of order O(105). In these conditions the flow starts

developing a Rayleigh-Taylor instability consequent to the first vertical acceleration, followed by a

first roof impact. As a result of the rapid tank motions, a highly turbulent flow slamming alternately

against the bottom and the roof of the tank occurs. Note that in the right plot of Fig. 1 the case

where the tank is subjected to both rotation and translations is represented, and the governing

equations below will address this general framework. However, the numerical simulations will

address only problems where the tank motion is limited to the vertical translation (see Sec. IV A).

Differently from the experimental case, in which the motion slowly decays and which will be

addressed in the second part of this paper (Part II), here we consider the tank when subjected to a

periodic forced heaving motion.

III. GOVERNING EQUATIONS

In the present work a two-dimensional fluid domain Ω delimited by a free surface ∂ΩF and

closed solid surface ∂ΩB is considered (see left plot of Fig. 1). The domain Ω contains only a

liquid phase and ∂ΩB represents the internal surface of a moving tank. The governing equations

adopted are the Navier-Stokes equations (NSE) for a single-phase weakly-compressible fluid:
Dρ
Dt

= − ρ div(u) ,
Du
Dt

= g +
div(�)
ρ

De
Dt

=
� : �
ρ

,
Dr
Dt

= u, p = f (ρ) ,
(1)
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FIG. 1: Left plot: sketch of the problem geometry. Right plot: example of the tank motion and

consequent flow evolution.

where D/Dt represents the Lagrangian derivative, u the flow velocity, r the position of the material

points, ρ the fluid density, e the specific internal energy, � the stress tensor, � the rate of strain

tensor and g is a generic specific body force. Thermal conductivity and surface tension effects are

neglected, and the liquid is considered to be Newtonian i.e: � = [−p + λ div(u)] � + 2 µ�, where

µ and λ are the primary and secondary dynamic viscosity of the liquid and � the identity tensor.

The Eq. (1) can be either solved in an Inertial Frame of Reference (I-FoR) where the tank is

moving, or in a Non-inertial Frame of Reference (Ni-FoR) moving with tank motion (see right

plot of Fig. 1). In the former case the force field g would be the gravitational acceleration while

in the second case the non-inertial accelerations f NI due to the tank motion need to be added:
Dρ
Dt

= − ρ div(û) ,
Dû
Dt

= ĝ + f NI +
div(�̂)
ρ

De
Dt

=
�̂ : �̂
ρ

,
Dr̂
Dt

= û, p = f (ρ) ,

(2)

where the symbol ˆ is used to identify the quantities in the Ni-FoR. There are quantities like ρ,

p, div(u), ||�|| and (� : �) which are invariant for the change of the frame of reference, others

like the positions, velocities and accelerations, which are dependent on the tank motion, and still

others whose dependency is linked only to the tank rotations, like the tensors �, � and the vector

g.

While the use of I-FoR or Ni-FoR does not affect the evaluation of the energy dissipated by

the liquid motions, the numerical procedures can be affected by this choice. Due to its easier
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implementation the Ni-FoR is generally preferred, and also because it avoids numerical errors

related to the tank motion. This is, indeed, the choice made in the present work.

Besides the technical numerical aspects, the energy balance written in both the frames of

reference can be useful for the data analysis and the comparison against the experimental

measurements, see the second part of this paper (Part II). This aspect will be addressed next.

For the liquid medium, we consider the effects of entropy/temperature on pressure to be

negligible. Therefore, the pressure p is considered to depend only on the density. Furthermore,

since a weakly-compressible regime is assumed, a simple linear equation of state can be adopted:

p = c2
0
(
ρ − ρ0

)
, (3)

where c0 is the speed of sound (assumed constant) of the liquid medium and ρ0 the density at the

free-surface (where p is assumed to be equal to zero).

The weakly-compressible regime implies the following requirement:

c0 ≥ max

10Umax , 10

√
(∆p)max

ρ

 (4)

where Umax and (∆p)max respectively are the maximum fluid speed and the maximum pressure

variation expected (with respect to the zero pressure free-surface level) in Ω (see [36]). For

numerical purposes, in order to avoid too small time steps, in the simulations c0 is chosen smaller

than its physical counterpart. Constraint (4) however, has to be respected to guarantee the weakly-

compressible regime and this condition has to be verified throughout the simulations.

To summarize, the main simplifications adopted in the model are:

• a two-dimensional framework;

• the air phase is neglected (only the liquid phase is modelled);

• thermal conductivity and surface tension effects are neglected;

• weakly-compressible regime is always attained using an artificial speed of sound.

Although the first two may be regarded as strong approximations for modelling violent sloshing

flows, we will show that it is possible to obtain a fair estimation of the dissipated energy when

comparing the numerical outputs against experimental measurements. It is worth noting that

in [33] it is shown that when modelling breaking waves the differences between 2D and 3D
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frameworks are generally small, the difference of the dissipated energy being smaller than 10%

even after a few wave periods from the first breaking event. Analogous results have been obtained

in [7, 8] for the study of the mechanical energy dissipation induced by sloshing and wave breaking

in a fully coupled angular motion system. In principle, the inverse cascade which characterises

2D turbulent flows could represent a substantial hindrance to the simulation of the considered

turbulent 3D flow. However, the considered violent free-surface flow conditions are essentially

different from those encountered in homogeneous turbulence and the time interval between two

impacts is too short to allow the inverse cascade to take place. This is also linked to the highly

deformed free surface which strongly interacts with the vortical structures, further limiting the

possibility of vortex merging.

Regarding the use of a single-phase model and neglecting the role of the air contained in Ω,

in [36] it was shown that the evaluation of the energy dissipation in violent flows even within this

hypothesis can be still accurate enough. On the other hand, this does not mean that the role of the

air phase cannot play a relevant role on fluid dynamics, especially in terms of local pressure and

velocity fields.

As far as the surface tension is concerned, this is relevant above all during the initial stage.

Indeed, in the next sections it will be shown that during the initial intense vertical acceleration,

a Rayleigh–Taylor instability develops. The latter is triggered by the fluid meniscus formed at

the intersection between the lateral walls and the liquid surface. However, after that stage, for

the velocity and length scales considered in this work the surface tension effect on the energy

dissipation is negligible as shown in [9]. Therefore, in the numerical simulations we neglect the

surface tension terms but in the initial fluid setup we assign the free-surface deformation due to

the meniscus at the wall with an angle θ = 45°(see left plot of Fig. 1). Finally, concerning the use

of artificial speed of sound, as discussed in [35] and in [38], if the weakly-compressible regime is

attained the energy dissipation linked to the water impacts using Eqs. (1) remains very close to the

one predicted by incompressible flow models.

A. Boundary conditions

The governing Eq. (1) needs the enforcement of kinematic and dynamic free-surface boundary

conditions on ∂ΩF , while on the solid surfaces ∂ΩB the adherence boundary condition (no-slip)

needs to be enforced. Concerning the former, free-surface boundary conditions are intrinsically
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satisfied in SPH methods (see [14]). On the other hand, in SPH it is difficult to resolve

thin wall boundary layer (WBL) conversely to mesh-based methods. Indeed, the stretching

of the computational points close to the walls implies large CPU costs linked to the explicit

time integration of the scheme, as the time steps decrease proportionally to the particle size.

Consequently, if the low viscosity of the fluid implies a very thin WBL, which cannot be

numerically resolved, a simple no-penetration boundary condition (free-slip) is preferred.

It is generally difficult to know a priori the role played by the viscous WBL, since it can depend

on the problem at hand. Regarding the flows investigated in this article, the Reynolds number is

close to 500,000 and an order of magnitude of the WBL thickness can be estimated through the

Blasius equation. As discussed in Sec. VII it will turn out that for the spatial resolution adopted it

is not possible to resolve the WBL regions, and for this reason the free-slip conditions are enforced.

Conversely, in the second part of this paper (Part II), simulations with oil are also performed, and

for these the Reynolds number decreases down to 4,660. In such a condition, with the spatial

resolutions adopted, it is possible to resolve the WBL regions, and therefore, for these simulations

the no-slip conditions are enforced.

For the simulations with water, in order to estimate the relevance of the free-slip condition

adopted, simulations with no-slip conditions are also performed. In the latter case, the boundary

layer will be inevitably overestimated. The comparison of the results will however provide a clue

on the appropriateness of the free-slip approximation. Indeed, if the energy dissipation evaluated

with both the boundary conditions remains close, we can establish that the role of WBL are

negligible in those kinds of flows.

B. Sub-grid models

Because of the high Reynolds number related to the simulations with water, in the numerical

scheme a sub-grid model for the turbulent viscosity is needed. For this purpose the works by

[22], [5] are considered, where an LES modeling is rewritten in a quasi-Lagrangian formalism and

introduced in the SPH system of equations.

Even if we are limiting our analysis to a two-dimensional framework, in order to perform long-

time simulations the number of particles has to be kept reasonably low due to CPU costs. On the

other hand, in order to have a meaningful LES description of the flow, the spatial resolution needs

to be sufficiently high to capture the main vortical structures. These two limits are discussed in
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depth in Section VII.

In [12, 13] a simple Smagorinsky model is adopted for simulating breaking waves. The same

choice has been made in the present work. A more complex LES model can be considered for

future work such as the one used in [32], which in any case needs to be studied and adapted in the

SPH framework. Furthermore, advanced LES models are especially needed to accurately model

the turbulent flows in proximity to a solid surface. In our problem the relevant turbulent flow is in

the bulk of the flow, and the role of the solid boundary is not so relevant. It is worth noting that

turbulence models in violent free-surface and multiphase flows still remain an open problem (see

e.g. [31]).

C. Energy dissipation in liquid impacts

As discussed in [35], during liquid impacts energy losses occur. The actual weakly-

compressible nature of the liquids implies that, during impacts, a portion of the mechanical energy

is converted into internal compressible energy in the form of acoustic waves, and then dissipated

through primary and secondary viscous terms. When adopting the incompressible flow assumption

this behaviour is different since the same amount of energy is instantaneously lost when the liquid

impact occurs [52]. In the present scheme, in which an artificial speed of sound is adopted, the

real physical dissipation mechanism is mimicked, and it acts mainly through numerical diffusive

terms (as discussed in [38, 39], see also Sec. VI). Incidentally, note that in [35, 36] it has been

shown that the amount of energy dissipated through liquid impacts in the weakly-compressible

SPH model is equal to the one dissipated in incompressible flow solvers.

IV. ENERGY CONSERVATION

Considering the I-FoR, the power that the fluid transfers (or receives if negative in value) to the

solid boundary ∂ΩB is given by integrating the elementary power acting on each surface element

of ∂ΩB, due to the stress forces:

P f luid/body = −

∫
∂ΩB

�nB · uB dS (5)

uB being the velocity of the tank and nB the normal unit vector pointing inward toward the solid

body. The power −P f luid/body = Pbody/ f luid := Pext has to be converted into the total energy of
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the fluid. Considering the Newtonian nature of the fluid, the external power can be split into

components:

Pext = −

∫
∂ΩB

p nB · uB dS + µ

∫
∂ΩB

(ω × nB) · uB dS + λ

∫
∂ΩB

div(u) nB · uB dS (6)

linked to the action of pressure forces, the friction on the wall and to the viscous-compressibility.

The last one is generally negligible in the weakly-compressible regime, even when impact events

occur.

The surface integral (5) can be extended to the whole boundary ∂Ω since no power can act on

the fluid through the free surface. An equivalent way to define the power using the divergence

theorem gives therefore:

Pext =

∫
Ω

div (�u)dV (7)

The right hand side of Eq. (7) can be expressed as :

Pext =

∫
Ω

(div �) · udV +

∫
Ω

� : � dV (8)

being the operation � : � the inner product between the generic tensors � and �. The external

power, Pext is therefore separated in two different parts.

Using momentum conservation (the second equation in (1) and assuming that the body force g

admits a potential, the first term of the right hand side of (8) can be expressed as:∫
Ω

div (�) · u dV = ĖK + ĖP (9)

EK and EP being the kinetic and the potential energies respectively, while Ẋ indicates time

derivative of a generic quantity X. Their sum gives the mechanical energy of the fluid, i.e.

EM := EK + EP.

The second term of the right hand side of (8) is the internal energy time derivative ĖI (see Eq.

(1)). It can be expressed as:

ĖI =
d
dt

∫
Ω

e ρ dV =

∫
Ω

� : � dV = ĖC − PV (10)

where the two terms on the right hand side are:

PV := −2 µ
∫

Ω

� : � dV − λ

∫
Ω

(divu)2 dV , ĖC := −
∫

Ω

p div(u) dV (11)

The term PV is the classical viscous dissipation term for a Newtonian fluid which is always a non-

positive function in accordance with the second law of thermodynamics. Regarding the term ĖC,
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this is associated with the fluid compressibility and is a purely reversible term. Using the equation

of state and the continuity equation, the elastic potential energy EC can be evaluated by integration.

In the case where a simple linear state equation is used, this term becomes:

EC = EC(ρ0) + c2
0

∫
Ω

[
log

(
ρ

ρ0

)
+
ρ0

ρ
− 1

]
ρ dV (12)

where EC(ρ0) is the internal energy value set for the fluid at rest condition (i.e. ρ = ρ0). Following

the work of [35], during fluid impacts acoustic waves are generated, and during the post-impact

stage energy is transferred back and forth from mechanical energy EM to EC and vice versa. The

acoustic waves are rapidly dissipated.

In summary, the energy balance within the I-FoR (8) is expressed as:

− Pext + ĖM + ĖC = PV ≤ 0 (13)

Conversely, if a Ni-FoR is considered the above balance becomes:

− PNF +
˙̂
EM + ĖC = PV ≤ 0 (14)

where ˙̂
EM is the time variation of the mechanical energy evaluated in the Ni-FoR whereas PNF is

the power linked to the non-inertial forces:

PNF =

∫
Ω

ρ f NI · û dV (15)

It is worth noting that the term ĖC and PV are both invariant with respect to the frame of reference

adopted. From the latter consideration and combining the two Eqs. (13), (14), it follows that:

ĖM =
˙̂
EM + (Pext − PNF ) (16)

For the flow studied in this work the mechanical energy of the tank in the I-FoR is generally

much greater than the corresponding energy in the Ni-FoR, i.e. EM � ÊM. Indeed the former also

contains the mechanical energy due to the tank motion, as further discussed in the next subsection.

A. Energy balance for a translating tank

In this subsection we consider the fact that in our problem the velocity of the tank is just a

vertical translation uB = vTank j. Within this hypothesis the external power (5) can be rewritten

as:

Pext = vTank j ·
∫
∂ΩB

�nB dS = vtank j · Ftank/ f luid (17)
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Considering Eq. (6) (neglecting the last term) and that the flow is planar (i.e. ω = ω k) the above

equation is reformulated as:
Pext = vtank j · (Fpress

tank/ f luid + Fvisc
tank/ f luid)

Fpress
tank/ f luid :=

∫
∂ΩB

−p nB dS , Fvisc
tank/ f luid := µ

∫
∂ΩB

ω τB dS
(18)

where Fpress
tank/ f luid and Fvisc

tank/ f luid are the forces exerted by the tank walls on the fluid due to the

pressure and friction actions and τB := (k × nB) is the tangential unit vector at the tank surface.

In the present work the tank has a simple rectangular shape, and hence, the two force

components along the vertical direction are expressed as:
j · Fpress

tank/ f luid =
(∫

Bottom
p dS −

∫
Roo f

p dS
)

j · Fvisc
tank/ f luid = µ

(∫
Rwall

ω dS −
∫

Lwall
ω dS

) (19)

where Rwall and Lwall are the right and the left sides of the vertical tank respectively. Because

of the high Reynolds number treated in this work, the viscous component of the force is always

negligible with respect to the pressure component. Therefore, the external power can be expressed

as:

Pext = vtank

( ∫
Bottom

p dS −
∫

Roo f
p dS

)
(20)

the above approximation is even more valid if a free-slip boundary condition is enforced along the

tank wall.

Beside the splitting into pressure and friction components, force Ftank/ f luid can be also splitted

in a second way:

Ftank/ f luid = Fstat
tank/ f luid + Fdyn

tank/ f luid , Fstat
tank/ f luid := Mliquid (g + atank) j (21)

where part of the force is given by the liquid weight Mliquid g and the inertia due to the tank

acceleration atank, while the remaining part, Fdyn
tank/ f luid, is the force that the tank is transferring

into the liquid because of its deformation inside the tank.

Integrating the momentum equation in system (2) on the domain Ω, and considering that the

non-inertial forces for the case of a pure tank translation are simply given by f NI = − atank j , it

results that:∫
Ω

â ρ dV = −

∫
Ω

(g + atank) j ρ dV +

∫
Ω

div(�) dV = −M (g + atank) j +

∫
∂Ω

� ndS (22)
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where â is the acceleration of the generic material point in the Ni-FoR. Since the integral is zero

on the free surface ∂ΩF the last term of (22) is the force Ftank/ f luid . Considering Eq. (21) the above

equation becomes:

Mliquid âG = Fdyn
tank/ f luid (23)

where âG is the acceleration of the fluid barycentre in the Ni-FoR. This equation clearly links the

force component Fdyn
tank/ f luid with the shaking/sloshing motion of the liquid.

Considering the subdivision of the forces (21) the external power can be also expressed as:

Pext = vtank j · Ftank/ f luid = Mliquid vtank (g + atank) + vtank j · Fdyn
tank/ f luid (24)

If we define the “static” mechanical energy of the fluid as:

Estat
M :=

1
2

Mliquid v2
tank + Mliquid g ytank , (25)

where ytank is the vertical position of the tank bottom with respect to its initial position, it follows

that:

Pext = Ėstat
M + P

dyn
ext , P

dyn
ext := vtank j · Fdyn

tank/ f luid (26)

Combining the energy balance (13) with Eq. (26) we finally get:

− P
dyn
ext + Ė

dyn
M + ĖC = PV ≤ 0 E

dyn
M :=

(
EM − E

stat
M

)
(27)

This is how energy balance links the external shaking/sloshing power Pdyn
ext with the fluid

dissipation PV . Integrating the above equation in time the energy dissipated by the fluid, Ediss,

is given by: 
Ediss =

∫ t

t0
PV dt = −W

dyn
ext +

[
E

dyn
M − E

dyn
M (t0)

]
+ [EC − EC(t0)] ,

W
dyn
ext :=

∫ t

t0
vtank j · Fdyn

tank/ f luid dt
(28)

where t0 is the initial time for the solution of the governing equations. The term [EC − EC(t0)]

is generally negligible within the weakly-compressible assumption and can be disregarded in the

evaluation of the dissipated energy.

While the external work performed by the forceWdyn
ext can be experimentally evaluated through

accelerometers and load cells, this is not the case for the Edyn
M term. However, as we further

discussed in the second part of this work (Part II), when considering violent and decaying sloshing
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flows the workWdyn
ext is dominant with respect to the Edyn

M term, and can provide a good estimation

of Ediss.

It is worth noting that the Edyn
M term is not the mechanical energy in the Ni-FoR, ÊM. Indeed,

the mechanical energy in the two different frames of reference can be expressed as:

EM =
1
2

∫
Ω

(û + vtank j) · (û + vtank j) ρ dV +

∫
Ω

g (ŷ + ytank) ρ dV =

= ÊM + Estat
M + Mliquid vtank j · ûG

(29)

where ŷ is the vertical position of the generic material point in the Ni-FoR and ûG is the velocity

of the fluid barycentre in the Ni-FoR.

Deriving (29) in time the result is:

Ė
dyn
M =

˙̂
EM + Mliquid vtank j · âG + Mliquid atank j · ûG (30)

For the case of a pure tank translation the power related to the non-inertial forces (15) is given

by:

PNF =

∫
Ω

ρ f NI · û dV = −Mliquid atank j · ûG (31)

Combining Eqs. (23) and (31) with Eq. (30) results in:

Ė
dyn
M =

˙̂
EM +

(
P

dyn
ext − PNF

)
. (32)

which establishes the difference between Edyn
M and ÊM. The energy balance of (32) is analogous to

the energy balance (16) when the inertial terms due to the tank motion are removed.

The relations derived in the present section will be further inspected through the comparisons

between numerical solutions and experimental data in the second part of the paper (Part II).

V. BRIEF RESTATING OF δ-LES-SPH MODEL

In this section the δ-LES-SPH model presented in [5, 39] is briefly recalled. For the sake of

brevity only the most relevant information is reported, the interested reader is encouraged to find

all the details in the cited articles. The governing Eq. (1) are discretized within the Smoothed
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Particle Hydrodynamics context as follows:

dρi

dt
= −ρi

∑
j

(u ji + δu ji) · ∇iWi j V j +
∑

j

(ρ j δu j + ρi δui) · ∇iWi j V j + D
ρ
i

ρi
dui

dt
= −

∑
j

(p j + pi)∇iWi j V j +
∑

j

(ρ j u j ⊗ δu j + ρi ui ⊗ δui) · ∇iWi j V j + Fv
i + ρi g

dri

dt
= ui + δui, Vi = mi

/
ρi, p = c2

0(ρ − ρ0),
(33)

where the indexes i and j refer to the generic i-th and j-th particles, Fv
i are the viscous forces

acting on the particle i, while δu is the Particle Shifting velocity adopted to regularize the particles’

spatial distribution during their motion. The particle masses mi are assumed to be constant during

their motion. The particles are set initially on a Cartesian lattice with spacing ∆r, and hence,

the particles’ volumes Vi are evaluated initially as ∆r2 and the particle masses mi are calculated

through the initial density field (using the equation of state and the initial pressure field). During

the time evolution volumes Vi change in time accordingly with particle density ρi. The spatial

gradients are approximated through convolution summation with a kernel function Wi j. As in [5]

a C2-Wendland kernel is adopted in the present work.

The time derivative d/dt used in (33) indicates a quasi-lagrangian derivative, i.e.:

d(•)
dt

:=
∂(•)
∂t

+ ∇(•) · (u + δu) ,

since the particles are moving with the modified velocity (u + δu) and the above equations are

written in an Arbitrary-Lagrangian-Eulerian framework. For this reason the continuity and the

momentum equations contain terms with spatial derivatives of δu (for details see [6]).

The notation u ji in (33) indicates the differences (u j − ui) and the same holds for δu ji and r ji.

The term Dρ
i is the numerical diffusive term introduced by [2] to filter out the spurious high-

frequency noise in the pressure field. Following [5] this term is rewritten within an LES framework

as follow: 

D
ρ
i :=

∑
j

δi j ψ ji · ∇iWi j V j ,

ψ ji := 2
[
(ρ j − ρi) −

1
2

(
〈∇ρ〉Li + 〈∇ρ〉Lj

)
· r ji

]
r ji

||r ji||
2

δi j := 2
νδi ν

δ
j

νδi + νδj
, νδi := (Cδ l)2 ||�i||

(34)

where Cδ is a dimensionless constant set equal to 6 while l = 4∆r is the support of the kernel

W and represents the length scale of the filter adopted for the sub-grid model. ||�|| is a rescaled
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Frobenius norm, namely ||�|| =
√

2� : �. The superscript L in (34) indicates that the gradient is

evaluated through the renormalized gradient equation, i.e.:

〈∇ρ〉Li =
∑

j

(ρ j − ρi)L−1
i ∇i Wi j V j , Li :=

[∑
k

(rk − ri) ⊗ ∇i Wik Vk

]
(35)

where Li is the renormalization matrix (see e.g [3]).

The viscous forces Fv are expressed as:
Fv

i := K
∑

j

(µ + µT
i j) πi j ∇iWi j V j , K := 2(n + 2) ,

πi j :=
ui j · ri j

||r ji||
2 , µT

i j := 2
µT

i µ
T
j

µT
i + µT

j

, µT
i := ρ0 (CS l)2 ||�i||

(36)

where n is the number of spatial dimensions and CS is the so called Smagorinsky constant set

equal to 0.18 (see [47]). The viscous term (36) contains both the effect of the fluid viscosity µ as

well as the one related to the local turbulent viscosity µT
i .

Finally, the Particle Shifting velocity δu is given by:
δu∗i = −Ma l c0

∑
j

[
1 + R

(
Wi j

W(∆r)

)n ]
∇iWi jV j .

δui = min
(
||δu∗i ||,

max j ||ui j||

2

)
δu∗i∥∥∥δu∗i ∥∥∥

(37)

Here, Ma = Umax/c0 and the constants R and n are respectively set to 0.2 and 4 as in [41, 50].

The second equation of (37) is introduced to limit the magnitude of the shifting velocity for the

purposes of robustness . Since formula (37) is proportional to the smoothing length, the intensity of

δu reduces as the spatial resolution increases, and this guarantees that δui induces small deviations

with respect to the physical particle trajectory. As documented in [50], the use of the Particle

Shifting Technique (PST) leads to regular particle distributions and increases the accuracy and the

robustness of the scheme. In turn, the inclusion of the PST causes the loss of the exact conservation

of the angular momenta as commented in [50] and in [6].

It is worth noting that the shifting velocity close to the free surface has to be modified to be

consistent with the kinematic boundary condition along such an interface. In particular, the normal

component of δu to the free surface is nullified while the tangential component is maintained

unaltered (for more details see [50]).
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The system (33) is integrated in time through a 4th-order Runge-Kutta scheme. The time step,

∆t, is obtained as the minimum over the following bounds:
∆tv = 0.125 min

i

(2∆r)2 ρi

(µ + µT
i )
, ∆ta = 0.5 min

i

√
2∆r
‖ai‖

, ∆tc = 1.5
(
2∆r
c0

)
,

∆t = min(∆tv ,∆ta ,∆tc)

(38)

where ‖ai‖ is the particle acceleration and Courant-Friedrichs-Lewy constants are set for the

adopted kernel (C2-Wendland kernel). For the cases studied in this work the second two

constraints are always the most critical.

VI. ENERGY DISSIPATION WITHIN THE δ-LES-SPH MODEL

Following the analysis performed in [4] and in [39] the energy balance for the particle system

can be extended to the δ-LES-SPH equation presented in the previous section. For the sake of

brevity only the main terms are briefly reported in this section. The δ-LES-SPH energy balance

can be written as:

ĖM + ĖC = PV + Pturb
V + PN + Pext , PN := Pδ + P(δu) (39)

where EM is the mechanical energy of the particle system, composed of kinetic energy EK =

1
2

∑
i mi ||ui||

2 and potential energy EP =
∑

i mi g yi whereas EC is the elastic potential energy (12)

in which the integral is rewritten as a sum over the fluid particles. The external power Pext due

to the tank motion is evaluated through the mutual interaction between fluid and solid particles,

as detailed in [4] and [11]. Following the latter, the power terms related to the viscous forces in

particles interactions are given by:

PV = µ
K
2

∑
i

∑
j

πi j ui j · ∇iWi j Vi V j , Pturb
V =

K
2

∑
i

∑
j

µT
i j πi j ui j · ∇iWi j Vi V j (40)

Finally, the term PN takes into account the effect of the density diffusion Pδ (see [39]):

Pδ =
δc0 h

2

∑
i

∑
j

(
p j

ρ j
−

pi

ρi

)
ψi j · ∇iWi j Vi V j , (41)

and the term related to the particles shifting δu, i.e P(δu). Both these two terms are related to the

stability of the scheme and are collected together in PN as a numerical diffusive term. Following
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Eq. (28) the discrete form of the energy dissipated, Ediss, can be expressed as:

Ediss =

∫ t

t0
Pdiss dt , Pdiss := PV + Pturb

V + PN . (42)

As discussed in [35], during liquid impacts energy losses occur. As already mentioned in

section III C, the weakly-compressible assumption underlying our scheme implies that during

impacts, a portion of the mechanical energy is converted into internal compressible energy in

the form of acoustic waves, and then is mainly dissipated by numerical diffusive terms, i.e. the

Pδ term. Therefore, as shown in [39], the energy lost in liquid impacts is represented by the PN

component. That numerical dissipation, however, becomes less important with respect to viscous

dissipation (PV + Pturb
V ) when impacts are not occurring and vortical structures are generated

during the post-impact events.

When increasing the spatial resolution both PN and Pturb
V decrease while the fluid viscosity

component PV increases, as more and more small scales of the velocity gradient (i.e. shock waves

and small vortexes) are resolved. As suggested in [44] in a well resolved LES simulation the

resolved turbulent kinetic energy should be greater than the modelled energy. Therefore, the power

associated with fluid viscosity PV (which depends upon the resolved velocity gradients) should be

greater than PN and Pturb
V . These aspects will be discussed in the next section.

It is worth noting that even in the discrete form EC, PV , Pturb
V and Pδ are invariant when

evaluating them in the I-FoR or in the Ni-FoR.

VII. RESULTS: SLOSHING IN FORCED PERIODIC HEAVE MOTION

In this section the problem described in Sec. II is addressed. Due to continuous energy fluxes

exchanged between the solid and the fluid in the coupled system in question, the evaluation of the

energy dissipated by the fluid is particularly complex. Therefore, in the present work we simplify

the problem by studying the sloshing flow obtained by a purely harmonic imposed motion. In this

way we can estimate the energy dissipation rate across a period and study its long term behaviour.

Conversely, in in the second part of this paper (Part II) the problem will be studied using the actual

acceleration time history recorded in the experiments by [37], which exhibits a rapid decay of the

tank motion. It is important to underline here that the approach followed in the analysis of the

numerical results has to take into account the turbulent and chaotic nature of the problem. In order

to address this relevant aspect a stochastic approach has been required to corroborate our findings.
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As described in Sec. II, when the fluid is at rest two menisci are present close to the vertical

walls because of the surface tension. In order to include this effect in the simulation, those menisci

are numerically replicated in the initial conditions (see inset in the left plot of Fig. 1) by adding,

close to the vertical boundaries, a small fluid triangle forming an angle of contact of θ = 45°,

which is the one corresponding to the water surface tension.

The tank is subjected to a purely harmonic vertical motion following the law: y(t) = −A cos(ωt),

with ω = 14π rad/s and the motion amplitude 2A/L = 2.068. The flow is also subjected to gravity

acceleration. Since ω2A/g = 20.4 the flow is driven by inertia and is always in the regime of

“shaken flow”, as defined in the introduction. In the present test case the vertical acceleration ratio

ω2A/g has been doubled with respect to the experiments in [37]. This choice is motivated by the

need of representing an energetic wind gust, similarly to what was done in the experiments in [53].

The maximum tank velocity is equal to Umax = ωA = 4.55 m/s and the speed of sound is

set equal to c0 = 8.8ωA = 40m/s ; it will be shown that this value is high enough to guarantee

the weakly-compressible regime. The numerical resolution adopted for the discussion in sections

VII A and VII B, is N = H/∆r = 200 and the time history covers 140 periods of oscillation. Note

that the Reynolds number of the simulation is Re=455,000. For this value, the ratio between H

and the boundary layer thickness, estimated through Blasius equation, is expected to be O(103).

Therefore, even for the maximum spatial resolution considered, it is not possible to resolve

the boundary layer for this test case and a free-slip boundary condition is preferred, as already

discussed in Sec. III A.

Throughout the present section the dissipated energy, Ediss (42), is made non-dimensional by

the potential energy ∆E = ρLHg2A = 6.086 J, corresponding to a power in one cycle equal to

∆P = ∆E/T = 42.48 W. The latter is used to make the time variation of the dissipated energy

non-dimensional.

A. Short time evolution: description of the dissipative mechanism

Here the different stages of the flow evolution are described: plots from a) to f) of Fig. 2 show

the flow configuration in some key instants; contour fields refer to the value of the ratio of the

turbulent viscosity over the fluid viscosity µT/µ (see Eq. 36). Regions of the flow where µT/µ

is higher are representative of a higher level of local energy dissipation. In Fig. 3 the dissipated

energy Ediss is plotted together with the tank motion in order to clearly show the relation between
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flow motion and tank oscillation. In the same figure the flow instants depicted in Fig. 2 are

indicated by means of their respective labels.

In the initial stage, during the first upward acceleration of the tank, a small free-surface wave is

generated due to the rupturing of the menisci at the lateral walls. The waves travel from the lateral

walls towards the center of the tank. At t/T=0.25, when the acceleration changes sign, those small

free-surface perturbations become the triggering points from which the Rayleigh-Taylor instability

develops (plots (a) and (b) of Fig. 2). The fluid is accelerated upwards and two main jets detach

from the free-surface, eventually impacting against the tank ceiling (plot (c) of Fig. 2). The flow

evolution does not imply any relevant loss of the mechanical energy until the impact at t/T = 0.56,

as highlighted by the low levels of µT/µ and as also confirmed in Fig. 3. However, when the impact

occurs a relevant amount of energy is suddenly dissipated (point (d) on the curve).

This energy loss is mostly due to the generation of acoustic waves at the contact line between

the free surface and the wall (with dissipation mechanisms similar to those described in [35])

and to the generation of high vorticity due to multiple reconnections of the fluid jets. Indeed, as

shown in Fig. 3 (d) higher levels of µT/µ are observed in the region close to the ceiling. Here,

the violent flow resulting from the impact generates large velocity gradients which correspond to

intense turbulent stresses, and consequently, to a large amount of energy dissipated in this region.

After this stage, at t/T = 0.75 the tank acceleration changes sign again and the fluid is ejected

in the opposite direction. However, differently from the first ceiling impact, this time the solid

bottom is already covered with a large amount of liquid which has flowed during the first impact.

The impact is less violent, but occurs with a larger generation of vorticity due to the multiple

liquid-liquid impacts (Fig. 2 (e) ). This reflects in a larger loss of energy with respect to the first

impact, as a larger amount of liquid is involved. After that, another cycle starts: the flow impacts

against the ceiling (Fig. 2 (f) ), then against the bottom and so forth. During the fluid evolution,

local high values of µT/µ are recorded (up to µT/µ =25). These large values indicate that the spatial

resolution is not fine enough for a proper LES modelling of the flow (see, e.g., [17]). This aspect

is further inspected below when analysing the different components of the energy dissipation.

In the left plot of Fig. 4 the vorticity contour at t/T = 0.98, corresponding to plot e) of Fig.

2, is depicted. From this plot it is possible to identify the main size of the eddies resolved in the

numerical simulation. In the right plot of the same figure the contour plot of the vertical component

of the velocity field is reported for t/T = 0.56, that is, when the liquid jets are fully developed.

Note that the velocity field here is reported in the Ni-FoR, that is, deducting the velocity of the
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FIG. 2: Flow evolution in the forced harmonic heave motion obtained by δ-LES-SPH. Colors

refer to the ratio µT/µ. Plot sequence is from top to bottom and from left to right. Spatial

resolution N = 200.

tank. According to the highest values displayed, the choice of the speed of sound verifies the

assumption of weak compressibility. This will also be confirmed later on when analysing the

pressure values.
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FIG. 3: Dissipated energy Ediss (solid line) and corresponding tank elevation (dashed line).

Labels (a) to (f) are related to plots of Fig. 2.

FIG. 4: Left: vorticity contour at t/T = 0.98, corresponding to plot e) of Fig. 2. Right: contour

plot of the vertical component of the velocity field at t/T = 0.56 corresponding to plot c) of Fig.

2.

B. Short time evolution: comparison between δ-LES-SPH model and standard SPH-LES model

In order to justify the adoption of a complex model such as the one described in Sec. V the same

test has been repeated by using a classical SPH scheme (Monaghan 1994) with LES modelling by

Dalrymple and Rogers (2006) (which hereinafter will be denoted as “LES-SPH”). In Fig. 5 the

obtained initial flow evolution is depicted for the same time instants as in Fig. 2 labels (b), (c), (d),

(e). Due to the absence of a tensile instability control in the scheme, the intense negative pressure

in the fluid, resulting after the inversion of the acceleration direction at t/T=0.25 causes the fluid to

numerically cavitate and the particles to separate from the bottom wall at t/T=0.385 (Fig. 5 (b’) ).
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FIG. 5: Flow evolution obtained by LES-SPH. Colors refer to the ratio µT/µ. Plot sequence is

from top to bottom and from left to right. Spatial resolution N = 200.

As a consequence, the fluid detaches as a compact fluid block from the tank bottom and is ejected

towards the ceiling, eventually impacting against the wall.

It is worth remarking that the negative pressure at which the numerical cavitation occurs is far

from the suction pressure which would cause an actual physical cavitation in the liquid. Indeed,

assuming the maximum suction pressure to take place at the acceleration peak, in the experimental

scale it results |Pmax| = ρ(ω2A−g)H ' 6 kPa which is at least one order of magnitude smaller than

the one needed to reach vapour pressure at an ambient temperature of 20°C.

At the impact (Fig. 5 (c’) ) the free surface is almost parallel to the wall. In this configuration

a flat impact evolution is expected as described in [35] and a water hammer pressure can develop

in the impact region generating a shock front. A large amount of kinetic energy is instantaneously

converted into internal compressible energy EC in the form of acoustic waves. These acoustic

waves are then dissipated by the numerical diffusion of the solver, which results in a corresponding

loss of mechanical energy. After the acoustic waves are dissipated, no significant velocity gradients

are observed (Fig. 5 d’) ) because the flow has lost a large part of its mechanical energy.
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FIG. 6: Comparison of the energy dissipated in the LES-SPH scheme (dash-dotted line) and in

the present δ-LES-SPH scheme (solid line). The dashed line indicates the tank elevation. Labels

(b’) to (e’) are related to plots of Fig. 5.

This is also clearly visible in Fig. 6 where the energy dissipated in the LES-SPH scheme is

compared to that obtained by the present δ-LES-SPH scheme. At t/T=0.462 (label (c’) ) a large

and sudden decrease of the energy is observed in the curve by the standard SPH whereas the δ-

LES-SPH exhibits only an initial slow energy decay. The behaviour of the standard SPH closely

resembles the instantaneous energy drop observed in flat impacts as described in [35]. After that,

the absence of intense velocity gradients results in a plateau of the energy which persists up to the

next impact. In the subsequent evolution the flow becomes more complex and the free surface is no

longer parallel to the wall at the impact time (Fig. 5 (d) and (e) ). Therefore the acoustic waves are

not generated in a single shock front, but are rather produced sparsely at each free-surface contact

point. The resulting energy drop, with respect to the first one, is less intense but equally steep.

In Fig. 7 the pressure measured at the upper-left corner of the tank is shown for the δ-LES-SPH

schemes. The measured pressure is generally well below the “weakly-compressible limit” given

by the eq (4), thus confirming the validity of the weak compressibility assumption.

As a further general comment, from plot (c’) and (e’) we observe that high values of µT/µ

are distributed on shock waves generated during fluid-wall (plot (c’) ) and fluid-fluid (plot (e’) )

impacts. This is an unphysical way of working for the LES model, and in the LES-SPH scheme

is consequent to the absence of a numerical mechanism for introducing dissipation in high density

gradients. As such, the needed numerical dissipation is introduced by the LES model which is,

however, beyond the scope of its design. This is a further indication of the inappropriateness of
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FIG. 7: Pressure measured at the top-left corner of the tank. The red solid line represents the

“weakly-compressible limit” given by the eq (4) . Top plot: comparison between δ-LES-SPH

scheme (solid line) and LES-SPH scheme (dashed line) for the time range [0:4] t/T. Bottom plot:

pressure recorded throughout the entire δ-LES-SPH simulation.

the LES-SPH scheme for modelling this flow.

Conversely, in the δ-LES-SPH scheme the dissipation in acoustic waves is handled by the

diffusive term in the continuity equation (34) and essentially the LES filtering acts in turbulent

regions of the flow.

C. A simple analytical dissipation model

As a further term of comparison the solutions from purely inelastic analytical model are

reported in the same figure. The analytical model is similar to the ballistic model as described

in [15] and has been derived by assuming the following simplifications:

• the problem is studied in 1D, i.e. only in the vertical direction;

• the gravity acceleration is neglected;

• the water is free to detach from the boundary without any suction effect as soon as the

pressure at the wall becomes negative;

• after the detachment the fluid patch follows its ballistic trajectory with constant velocity

equal to the tank velocity at the time of the detachment;
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FIG. 8: Comparison of the energy dissipated in the LES-SPH scheme (dashed line), in the present

δ-LES-SPH scheme (solid line) and in the 1D analytical model (dash-dotted line).

• the impact with the wall is purely inelastic: when the fluid patch impacts the tank wall it

instantaneously loses all its kinetic energy;

The interested reader can find more details about the governing equations in [15]. The resulting

flow is periodic, having the same period as the tank motion. The extreme simplifications above

allow drawing the system energy evolution by simply studying the law of motion of the tank.

Impacts occur at t∗ = T/4 + kT/2 + 0.196T where k ∈ N, and cause a steep reduction in the system

energy of about Ediss/∆E = −2.3 (considering that at t = t∗ the relative velocity between the fluid

block and the tank is vrel = 0.67ωA).

The obtained energy curve is the black stepped line represented in Fig. 8: it is far from

representative of the energy dissipation in the actual physical system, but it is useful as it shows a

lower boundary of the system energy. In Fig. 8 it can be also observed that the first energy step in

the standard SPH model is very close to the one predicted by the 1D model in terms of time and

energy lost. Then, as the flow loses its compact shape in the subsequent impacts, the behaviour of

the energy decay gradually changes its sharp-edge, stepped aspect and becomes more similar to

the δ-LES-SPH solution.

D. Mid time evolution: description of the dissipative mechanism

After the initial transient the flow reaches a quasi-periodic regime characterised by a stepped

aspect of the energy curve. For each period of the motion law, two energy steps occur which
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FIG. 9: Time history of the non-dimensional time derivative of the dissipated energy, Pdiss/∆P

(solid line) and of the absolute value of the tank displacement (dashed line).

FIG. 10: Time history of the kinetic energy EK (solid line) and of the potential energy EP (dashed

line) in the Ni-FoR.

are characterised by phase-shifts almost constant with respect to the tank motion. Each energy

loss takes place after the tank velocity maximum, but before the tank reaches the extremal

displacement. This can be clearly seen in Fig. 9 where the absolute value of the tank displacement

is plotted against the time derivative of the dissipated energy,Pdiss/∆P. In most of the occurrences,

in each half-period the peak of the dissipation rate occurs just before the tank reaches its extremal

value and then rapidly decays. This can be explained by the fact that the fluid impacts the opposite

wall before the tank actually stops and changes its direction of motion.

In Fig. 10 only kinetic and potential energy components of the fluid are reported for the first 8

periods of oscillation. These quantities are here computed in the Ni-FoR in order to analyse the

fluid energy content devoid of the contribution related to the tank motion. As expected, the kinetic
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energy is dominant to the potential energy, but both follow the oscillation frequency imposed by

the tank movement. Apart from that, this plot is useful in getting an estimation of the relevant

turbulent length scales by evaluating the turbulent kinetic energy content and its rate of decay

[30]. To this end, we need to estimate the turbulent kinetic energy per unit mass k and the rate

of energy dissipation per unit mass ε. An estimation of k can be obtained from Fig. 10 which

corresponds to the kinetic energy in the non-inertial frame of reference (in our case the fluid is

assumed to be fully turbulent), while ε can be estimated from Fig. 9. From those plots we obtain

k M/∆E ≈ 0.7 and ε M/∆P ≈ 10 as representative values of the flow in the stage after the impact,

where intense mixing occurs and energy is dissipated due to the high velocity gradients.

The scale of the large energetic eddies can be evaluated as

l ≈
k3/2

ε
(43)

and using the above values of k and ε we get l/H ≈ 1. As expected the large eddies have a size

comparable with the filling height.

The Taylor microscale λ is the length scale below which viscous effects become relevant in

the flow evolution, demarcating the inertial subrange. This length scale is important in LES

modelling since the adopted spatial filter should be at least smaller than λ in order to resolve

the main turbulent eddies (see [44]). The Taylor microscale λ can be evaluated as:

λ ≈
√

10 ν k/ε (44)

where ν is the fluid kinematic viscosity. The obtained value for the Taylor microscale λ at this

stage is λ/L ≈ 4 · 10−3 which corresponds to H/λ ≈ 100. Therefore, a resolution N = H/∆r ≈ 200

could be sufficient for the LES model to be correctly applied, since the spatial filter lies below the

Taylor microscale. However, as shown below in the analysis of the energy components, a further

increase of the resolution is needed.

A proof of the above estimation is given in figure 11 where the vorticity field at time t = 1.25T

is depicted using a very high spatial resolution, namely H/∆r = 800. On the right plot of the

same figure a zoom of the field is depicted comparing the vortex scales with the Taylor microscale

estimated above. At this resolution most of the vortices contain enough particles which means that

the inertial scale is well resolved and that, at this discretization level, we are approaching a Direct

Numerical Simulation (DNS).

Indeed, applying the same reasoning to evaluating the Kolmogorov microscale, we can estimate
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FIG. 11: SPH vorticity field at t/T = 1.25 using a spatial resolution N = 800. On the right plot an

enlargement of the field is depicted comparing the vortexes size with the evaluated Taylor

microscale.

it as:

η ≈ (ν3/ε)1/4 (45)

which gives η/L ≈ 10−4 and H/η = 3, 000. The latter represents a rough estimate of the needed

resolution in order to resolve all the viscous length scales of the flow, i.e., to perform a DNS.

The present numerical simulations are therefore far from being a DNS for which the needed

computational cost would be about 10,000 times larger than the case at N = 100 which is used in

the following for performing the statistical analysis.

FIG. 12: SPH turbulent viscosity µT field at t/T = 0.98 using a spatial resolution N = 400 (left)

and N = 800 (right).

In Fig. 12 the ratio µT/µ is depicted at time t = 0.98T using two spatial resolution N = 400 and
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FIG. 13: Time history of the energy components defined in section VI: resolved viscous

dissipation EV , modelled turbulent viscous dissipation Eturb
V , numerical diffusion EN , total energy

dissipation Ediss. Spatial Resolution is N = 200.

N = 800. Comparing those two plots with the one of Fig. 2 is it possible to appreciate how the

turbulent viscosity decreases in magnitude using larger spatial resolution. In particular at N=800

where the inertial scale is well resolved the ratio µT/µ remain of order O(1).

In order to better understand the energy dissipation mechanisms acting in the δ-LES-SPH, in

Fig. 13 the different energy components defined in Sec. VI namely EV , Eturb
V , EN (which are

the time integrals of their corresponding power terms) are plotted against time. The modelled

turbulent viscous dissipation Eturb
V is the most prominent term among the others, and after 8 periods

of oscillation, contributes to 61% of the total energy dissipation. It acts continuously exhibiting

higher intensity during liquid impacts, and its action is related to the large velocity gradients

developed in the flow. The numerical term, EN , is the second one contributing to 37% of the

total dissipation after 8 periods. It exhibits a more pronounced stepped trend with clear plateaus

between one step and the following one. This is due to the nature of this term which acts mostly

on steep gradients of the density fields. Indeed, due to the strong shock waves generated during

liquid collisions, a large amount of energy is dissipated in a short time during the periodic impacts

occurring in the tank. As shown in [39], when increasing either the spatial resolution or the

viscosity, the EN term becomes less important.

As for the viscous dissipation, this term is practically negligible with respect to the other

components, the spatial resolution not being fine enough. As already mentioned, this means that

the spatial discretization should be further increased in order to have a proper LES modeling of
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the flow. This is not feasible for the present test case due to the very long time history involved.

However, in the second part of this paper (Part II), where the numerical simulation is compared

with experimental data, the spatial resolution is pushed up to N = 400 in order to produce a finer

representation of the main eddies and smaller values of µT/µ.

E. Long time evolution: linear decay of the dissipated energy

In Fig. 14 the energy decay is shown for the entire simulation duration, that is, 140 periods

of oscillation. In the same plot the energy curve is fitted through a linear regression. The related

coefficient of determination, R2, is defined as:

R2 = 1 −
∑

i

(Ei − Ē)2/(Ei − yi)2 (46)

where Ē is the time average of the energy computed on the whole time history, and Ei and yi

are, respectively, the i-th values of the time history of the energy and of the fitted line. R2 for this

test is equal to 0.999927 or (1 − R2) = 7.3 10−5. The result is that the energy dissipation is well

represented by a linear approximation, and at this time scale, the dissipation rate is almost constant

throughout the entire history and is equal to P̄diss/∆P = 2.906. This suggests that, apart from the

specific flow configuration in the single impact, which is different for all the events, the amount of

energy lost is generally almost constant.

In Fig. 15 the energy curve has been plotted again removing the linear component shown above.

It can be observed that a high-frequency saw-tooth component is present (inset in the figure). This

FIG. 14: Energy dissipation over the simulation time duration. that is, 140 periods of oscillation.

The solid line represents the raw simulation data, whereas with the dashed line the related

regression line is drawn.
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FIG. 15: History of the energy dissipation without of its linear component P̄ t = − 2.906 t.

component accounts for each single energy drop following a liquid impact of the fluid against

either the roof or the bottom, and in agreement with Fig. 9, has a frequency which is twice that of

the motion frequency. On the other hand, a rather chaotic component acting on a larger time-scale

(order of 10-20 time periods) is observed.

Across a few time periods, the complex flow dynamics inside the tank can cause local flow

features which can have consequences on the flow for several cycles. This behaviour reflects the

chaotic nature of the problem, the flow being fully turbulent. In the next subsection this complex

behaviour is investigated in terms of stochastic analysis through a series of simulations.

F. Repeatability of the simulations

In order to study the repeatability character of the numerical simulation, a stochastic approach

has been followed. The same simulation has been repeated 10 times by introducing a small random

disturbance - of the order of 1% of the particle size - on the initial particle lattice. The applied

noise is represented in Fig. 16 and compared to a perfect cartesian lattice and a noise of 10%

of the particle size. This tiny disturbance has the sole role of emphasizing and anticipating the

comparison of chaotic behaviour in the numerical simulation. In order to reduce the computational

effort for such a study the resolution adopted has been decreased to N = 100. However, it is

important to note that due to the large computational costs involved, the present analysis is not

meant to be a statistical characterization of the flow. The whole domain is indeed too small to

allow drawing any sound conclusion from a statistical point of view, the latter being out of the

scope of the present paper.

In Table I the dissipation rate P̄/∆P obtained computing the steepness of the regression line is
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FIG. 16: Sketch of different levels of random noise applied on the initial particle lattice. The right

plot shows the 1% noise configuration adopted for the simulations.

reported for each of the 10 repetitions of the numerical simulation. In the same table the accuracy

of the regression is also reported and expressed, for ease of reading, as (1 − R2) × 105. The same

is also evaluated for the ensemble average curve computed as:

Eave
i =

1
10

10∑
j=1

E
j
i . (47)

All the values of the dissipation rate are very close to each other, the standard deviation

being σ = 5%. A larger scattering is observed on the coefficient of determination which,

regardless, remains very close to 1. We note also that the mean value of the dissipation rates
1
10

∑
j P̄

j /∆P = −2.780 is equal to the dissipation rate of the ensemble average curve reported in

Table I, that is P̄ ave /∆P = −2.780.

In Fig. 17 the energy dissipation without its linear component (E − P̄ t), is reported for two

realizations, namely N. 2 and N. 9, and for the ensemble average curve. The two realizations have

been chosen to represent, respectively, the maximum, N. 9, and the minimum, N. 2, and error

Label N = 100 N.1 N.2 N.3 N.4 N.5 N.6 N.7 N.8 N.9 N.10 Series Average

-P̄/∆P 2.90 2.78 2.79 2.82 2.74 2.78 2.74 2.78 2.75 2.73 2.78

(1 − R2) · 105 8.8 6.2 12.4 9.5 6.8 11.1 34.5 21.2 37.3 34.5 1.9

TABLE I: Averaged dissipation rates P̄ and coefficients of determination for the series of

N = 100 simulations.
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FIG. 17: History of the energy dissipation without its linear component P̄ t for simulations N.2

(blue line), N.9 (red line) and the ensemble average of the series (black line). See Table I for label

references.

with respect to the linear fit. The average curve is the one exhibiting only small deviations with

respect to the horizontal axis, having the highest R2 value. Conversely, both series N. 2 and N. 9

present remarkable deviations which are distributed on different time scales and amplitudes. This

plot highlights the chaotic nature of the solution: the two energy curves diverge just after the first

impact and then oscillate around the average dissipation rate. The same holds for all the other

realizations of the series. This reflects the fact that, even if the flow characteristics can be locally

very different, global quantities, such as the rate of energy dissipation, are affected little.

G. Convergence analysis

In Fig. 18 the convergence study for this test is reported. Particle resolutions corresponding to

N = 25, 50, 100 are adopted. A number of 10 realizations have been performed and the plotted

line represents the ensemble average for each case. In the same Fig. 18 the standard deviation

is also reported and represented as an error bar. Remarkably, the standard deviation decreases

towards zero as the resolution increases. This result indicates that when increasing the resolution

the main eddies driving the energy dissipation are better captured, and thus, the uncertainty of

the obtained solution is markedly reduced. Notwithstanding, the computation is still far from

numerical convergence. In Sec. VII D it has been highlighted that at least a resolution of N = 100

is needed to correctly apply the LES model. This means that for N = 50 and N = 25 the resolution

is too coarse to represent the main vortical structures of the flow.

To complete the analysis simulations with spatial resolution equal to N = 200, 400, 800 have
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FIG. 18: Ensemble average of the energy dissipation time history for the three resolutions

N = 25, 50, 100. Error bars refer to the computed standard deviation. For the N = 200 simulation

only a single realization is reported.

been also performed. However, because of the larger CPU costs only a single simulation has

been realized, and smaller number of periods are considered, in particular the time ranges used

are 140T, 70T, 20T respectively for N = 200, 400, 800. Since the standard deviation shown in

figure 18 decreases with N and for N = 100 is quite small this allow to avoid the evaluation of the

ensemble average for the three highest resolutions.

In Fig. 19 the convergence of the average rate of dissipation P̄ is reported for all the six spatial

resolutions considered. This has been computed by evaluating the rate of dissipation for each

motion period and then averaging over all the simulated periods. In the same plot the error bars

refer to the standard deviation. Note that only for the N = 800 the predicted P̄ is close to the

previous discretization level. This is in agreement with the analysis performed in section VII D

where it is shown that for the spatial resolution N = 800 the inertial range is well resolved. For a

final confirm of this result a simulation with N = 1600 is required but this is beyond our available

computing resources. Further considerations on the convergence of the numerical results will be

addressed in the second part of this paper (Part II) where a decay tank motion is considered for

two different Reynolds numbers, i.e. 233,000 and 4,660.

It is worth noting that using the 1D inelastic theory by [15] recalled in section VII C, the

predicted dissipation rate is P/∆P = −4.6. This value is about 45% higher (in absolute value)

than the one shown in figure 19 for the δ-LES-SPH using the highest spatial resolution N = 800.
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FIG. 19: Average dissipation rates P̄ for resolutions N = 25, 50, 100, 200, 400, 800. The Error

bars refer to the computed standard deviation for P̄ evaluated at each semi-period of the tank

oscillation. For the higher resolution N = 400 and 800, because of the too high CPU costs, only

20 oscillations are simulated.

Regarding the CPU costs, to perform the 32 simulations ten cluster nodes equipped with dual

12-core Intel Xeon (Haswell) E5-2680v3 processors 2.5 GHz, was used for 14 days. The only

simulation with N=800 (20 oscillation periods) takes 5 days using the ten cluster nodes (i.e. 240

cores).

VIII. CONCLUSIONS

A particular case of sloshing has been numerically studied in this work, where the quantification

of the mechanisms of the energy dissipation in the fluid is the main objective. The main

particularities of this case are: first, its vertical movement with high frequency and acceleration;

second, the violent impacts of the highly fragmented free surface against the tank walls; and

third, the turbulent dissipation present in this highly detached flow. To study this problem, a 2D

single-phase weakly-compressible SPH method with LES modelling, namely δ-LES SPH, has

been adopted. The latter is a robust numerical scheme without the presence of tensile instability,

for which each term of the total system energy can be directly evaluated. In this framework,

the energy dissipation due to numerical, turbulent and viscous effects has been monitored and

compared to other more classical SPH schemes and simplified formulations. After monitoring

the energy evolution at very different time scales, the fluid impacts are clearly detected as energy
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drops at short time scales and turbulent dissipation is identified as the leading energy sink. On the

other hand, in the long time scale, a constant rate of the energy dissipation is clearly observed

which is not dependent on the local flow features. This observation is further supported by

repeating the simulations and applying small differences, on the initial particle setup, where

local solutions show local important differences but without a strong impact on global quantities

such as the energy dissipation rate. A discussion about how the resolution affects this apparent

presence of chaos in the problem is proposed. Whilst assuming that the resolution is not enough

for numerical convergence, the uncertainty is clearly reduced when the number of particles is

increased. The present work is completed with the other damped and FSI cases as well as

experimental comparisons, all of them conducted in the second part (Part II) of this paper series.
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energy considerations: Single-phase versus two-phase modeling. Phys. Rev. E, 93:053113, May 2016.

[37] J. Martinez-Carrascal and L.M. Gonzalez-Gutierrez. Experimental study of the liquid damping effects

on a sdof vertical sloshing tank. Journal of fluids and structures, 100, 2021.

[38] D.D. Meringolo, A. Colagrossi, S. Marrone, and F. Aristodemo. On the filtering of acoustic

components in weakly-compressible SPH simulations. Journal of Fluids and Structures, 70:1–23,

2017.

[39] D.D. Meringolo, S. Marrone, A. Colagrossi, and Y. Liu. A dynamic δ-sph model: How to get rid of

diffusive parameter tuning. Computers & Fluids, 179:334–355, 2019.

[40] J.J. Monaghan. Simulating Free Surface Flows with SPH. J. Comp. Phys., 110(2):39–406, 1994.

[41] J.J. Monaghan. SPH without a tensile instability. J. Comp. Phys., 159(2):290–311, 2000.

[42] S. Nath, N. Debnath, and S. Choudhury. Methods for improving the seismic performance of structures-

a review. In IOP Conference Series: Materials Science and Engineering, volume 377, page 012141.

IOP Publishing, 2018.

[43] M. Pizzoli, F. Saltari, F. Mastroddi, J.M. Carrascal, and L.M. González-Gutiérrez. Nonlinear reduced-
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