
Secure Multi-Party Computation with Service Contract

Automata

by Davide Basile (ISTI-CNR, Pisa, Italy)

By combining research from model-based software engineering, dependable computing, and

formal methods, it is possible to create a contract-based design methodology to enforce security

accountability and reputation of distributed digital entities provided by potentially mutually

distrusted organisations.

Our society is increasingly dependent on heterogeneous digital infrastructures, for example in the

healthcare, financial and transport domains. These infrastructures are examples of systems of systems,

i.e., they are realised through the composition of several sub-systems provided by potentially mutually

distrusted or competing organisations. An example is the ERTMS/ETCS Level 3, a new railway

signalling system where virtual positioning is replacing legacy physical systems, and the geolocation

sub-system is provided by a third party (e.g., European GNSS service). Moreover, emerging computing

paradigms (e.g., fog, mobile-edge or cloud computing, to mention a few) rely on components

discovered and accessed over the internet. The composed behaviour needs to be validated to guarantee

overall security, as well as safety and interoperability requirements.

In these emerging multi-party paradigms, no assumption shall be made about third-party systems, which

are accessed as a black box. Thus, standard monolithic verification techniques used for validating digital

entities cannot be applied to ensure the overall security of these digital infrastructures. Indeed, novel

formal verification techniques must cope with the unwanted scenario where a verified system does not

comply with its expected behaviour (called contract), either unintentionally or maliciously, or when the

necessary security measures are not in place. For cyber-physical systems, we also cannot make

assumptions about the open physical environment in which these systems are operating, whose

behaviour (e.g., delays of radio communications, geo-positioning uncertainty) could be tampered with

by attackers to drive an unprepared system to unsafe configurations to carry out the attack.

Service contracts [1] have been introduced in the literature as a methodology for designing systems

where the requirements and obligations of each party are rigorously specified and rendered as formal

specifications, e.g., automata (see Figure 1). The security threats are thus considered from the early

design phases of a system. This can reduce costs by detecting design flaws as early as possible, for

example, unsecure assumptions on other components or the environment (e.g., stochastic distribution

on delays or positioning errors). Contracts are digital entities that must be composable to predicate over

their aggregate multi-party behaviour. Firstly, it is necessary to check whether the requirements of each

contract are satisfied in the composition by some other contract. Traces leading to violation of the

requirements must be pruned to obtain a composition where all involved parties adhere to the shared

behaviour. Starting from a raw composition of contracts, this contract agreement can be synthesised

automatically [2]. The contract agreement is then proposed to each involved party for validation or

further formal verification, before starting their interactions, to ensure the correctness and security of

their composed behaviour. Due to the stochastic, physical nature of phenomena involved in a cyber-

physical infrastructure, a challenge is to investigate novel formalisms and verification techniques for

specifying and verifying contracts expressing both the discrete and continuous aspects under analysis,

as well as the stochastic physical phenomena involved.

During the computation, the agreement is realised through coordination of distributed software entities,

to allow them to fulfil both their specified requirements and declared obligations. The coordination is

generally achieved using a choreographic or orchestrated approach [3], and the requirements for

realising a choreography are more stringent because each party must be able to fulfil its requirements

and duties independently of the other entities involved in the overall computation. This amounts to

project the global agreement to each local component, and if the proper conditions are satisfied, using

the local contract agreement instead of the global one to check that each component fulfils its agreed

behaviour. On the other hand, an orchestration drives the involved parties to realise their agreed

computation, at the cost of extra coordination interactions. In the orchestrated approach, the

orchestration is responsible for guaranteeing that the contract agreement is realisable. Thus, the

orchestration needs to be a trusted software component.

The key aspect is that the multi-party computation can be monitored at runtime by exploiting the

contract agreement each party has signed beforehand, to detect possible contract breaches in case

obligations are not fulfilled, providing log information for post-mortem analyses. Indeed, it is assumed

that each party can fulfil its contract and is responsible for violations. In this scenario, it becomes

possible to identify the organisations liable for providing services breaching the contract they have

agreed upon. This is at the basis of a methodology for formally specifying systems able to guarantee

the necessary security accountability and reputation mechanisms for digital organisations.

An open-source API available at [L1] has been produced by the author for developing contract-based

applications using a model-driven state-based design approach for software applications built around

their specified contract. An open-source graphical application for designing contract specifications,

composing them and synthesising a coordination policy in agreement is available at [L2], which has

been developed using the API in [L1].

This research activity is partially funded by the PRIN 2017 project “IT MaTTerS: Methods and Tools

for Trustworthy Smart systems”, funded by the Italian Ministry of Education, University and Research,

where the synthesis of run-time monitors is addressed, and by the 4SECURail project “FORmal

Methods and CSIRT for the RAILway sector”, targeting the construction of railway infrastructures

whose sub-systems are provided by different railway companies. 4SECURail received funding from

the Shift2Rail Joint Undertaking (JU) under the European Union’s Horizon 2020 research and

innovation programme under grant agreement No. 881775.

Links:

[L1]: https://github.com/davidebasile/ContractAutomataLib

[L2]: https://github.com/davidebasile/ContractAutomataApp

References:

[1]: Basile, D., 2016. Specification and Verification of Contract-Based Applications (Ph.D. thesis,

Department of Computer Science, University of Pisa). https://etd.adm.unipi.it/t/etd-07052011-105210/

[2]: Basile, D., ter Beek, M.H., Degano, P., Legay, A., Ferrari, G.L., Gnesi, S. and Di Giandomenico,

F., 2020. Controller synthesis of service contracts with variability. Science of Computer Programming,

187. DOI: https://doi.org/10.1016/j.scico.2019.102344

[3]: Basile, D., ter Beek, M.H. and Pugliese, R., 2020. Synthesis of Orchestrations and Choreographies:

Bridging the Gap between Supervisory Control and Coordination of Services. Logical Methods in

Computer Science, 16. DOI: https://doi.org/10.23638/LMCS-16(2:9)2020

Please contact:

Davide Basile

ISTI-CNR Pisa, Italy

davide.basile@isti.cnr.it

Figure 1: An example of a real-time service contract automaton.

https://github.com/davidebasile/ContractAutomataLib
https://github.com/davidebasile/ContractAutomataLib
https://github.com/davidebasile/ContractAutomataLib
https://github.com/davidebasile/ContractAutomataApp
mailto:davide.basile@isti.cnr.it

