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The  purpose  of this  work  is  twofold:  (i)  to develop  a  CAD  system  for the  assessment  of  emphysema  by
digital  chest  radiography  and (ii)  to test  it against  CT imaging.  The  system  is based  on  the  analysis  of
the  shape  of  lung  silhouette  as  imaged  in standard  chest  examination.  Postero-anterior  and  lateral  views
are processed  to extract  the  contours  of  the  lung  fields  automatically.  Subsequently,  the  shape  of  lung
silhouettes  is described  by polyline  approximation  and  the computed  feature-set  processed  by  a  neural
network  to estimate  the  probability  of  emphysema.

Images  of  radiographic  studies  from  225  patients  were  collected  and  properly  annotated  to build  an
experimental  dataset  named  EMPH.  Each  patient  had  undergone  a standard  two-views  chest  radiography
and CT  for  diagnostic  purposes.  In addition,  the  images  (247)  from  JSRT  dataset  were  used to  evaluate
lung  segmentation  in postero-anterior  view.

System  performances  were  assessed  by:  (i) analyzing  the  quality  of  the  automatic  segmentation  of the
lung silhouette  against  manual  tracing  and  (ii)  measuring  the  capabilities  of  emphysema  recognition.  As
to step  i,  on  JSRT  dataset,  we  obtained  overlap  percentage  (˝)  92.7  ±  3.3%,  Dice  Similarity  Coefficient  (DSC)

95.5  ± 3.7%  and  average  contour  distance  (ACD)  1.73 ±  0.87  mm.  On  EMPH  dataset  we had  ˝  = 93.1  ±  2.9%,
DSC  = 96.1  ± 3.5%  and  ACD  =  1.62  ±  0.92  mm,  for  the postero-anterior  view,  while  we had  ˝  = 94.5  ±  4.6%,
DSC  = 91.0  ± 6.3%  and  ACD  = 2.22  ±  0.86  mm,  for the  lateral  view.  As  to step  ii, accuracy  of  emphysema
recognition  was  95.4%,  with  sensitivity  and  specificity  94.5%  and  96.1%  respectively.  According  to  exper-
imental  results  our system  allows  reliable  and  inexpensive  recognition  of  emphysema  on  digital  chest
radiography.
. Introduction

Emphysema is a structural abnormality of the lung and its recog-
ition is based on tests that reflect lung structure rather than

unction [1,2]. Computed tomography (CT) is currently the most
ccurate imaging technique for diagnosing emphysema in vivo [3];
ifferent quantitative methods to assess emphysema by CT have
een proposed, all of them being based on densitometric image
eatures [4].  Extensive use of CT technique to assess emphysema
eems, however, unwarranted due to the high cost and substantial
adiation burden to the patient.

Chest radiography has long been used in clinical practice for

he evaluation of emphysema [5,2]. Radiographic abnormalities
uggestive of emphysema are of two types: those related to hyper-
nflation (depression and flattening of the diaphragmatic contours,

∗ Corresponding author. Tel.: +39 0503153480; fax: +39 0503152166.
E-mail address: coppini@ifc.cnr.it (G. Coppini).
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© 2012 IPEM. Published by Elsevier Ltd. All rights reserved.

increased retrosternal space, the latter being observed in lateral
view only), and those related to the distribution of destructive
lesions and concomitant changes in the vascular pattern [5].  Recog-
nition of the latter changes is difficult and often results in large
inter-observer variability. Conversely, signs of lung hyperinflation
are more easily detectable even by less experienced physicians
using standard two-view (postero-anterior and lateral) radiogra-
phy. It is also worth noting that chest radiography would represent
a far less expensive diagnostic tool than CT, and entails a much
lower effective radiation dose [6].

Recently, the value of chest radiography to detect pulmonary
emphysema was  reappraised using CT as the reference diagnos-
tic standard [7],  confirming its diagnostic accuracy. In addition,
computational approaches to the use of digital chest radiography
for emphysema detection were explored [8].  Quantitative shape

descriptors of hand traced pulmonary silhouettes proved quite
accurate in such tasks [9].  Sensitivity and specificity of two differ-
ent sets of shape features designed to recognize emphysema were
studied. A polyline shape description applied to standard two-sided

d.
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hest radiographs, yielded an accuracy of about 90.3%, a sensitivity
f 88.3%, and a specificity 90.7%. More recently those findings were
onfirmed against CT imaging [10]. On these bases, automatic pro-
edures to assist emphysema diagnosis in clinical routine could be
esigned according to a simple computational framework includ-

ng segmentation of lung silhouettes in two-view radiography and
nalysis of their shape.

Segmentation of lung fields in postero-anterior chest radio-
raphs has long been studied according to different approaches.
hey include rule-based schemes [11–16],  methods based on pixel
lassification [17–20],  hybrid approaches [21], active shape models
ASM) and active appearance models (AAM) [22–24].  A compari-
on of several segmentation methods is provided by van Ginneken
t al. [23] using the images form JSRT dataset [25]. In particular,
heir findings support the versatility and flexibility of supervised
pproaches in segmenting lung fields in postero-anterior views.
he best results were achieved by pixel classification or by com-
ining pixel classification with model based methods. These results
uggest that accurate segmentation can be achieved by properly
ntegrating prior anatomical knowledge with prototypical image
ppearance. In addition, it stands to reason that trainable models
an ensure performances comparable to human observers.

Unfortunately, segmentation of lung profile in lateral views is
carcely documented in the literature [26,27]. On the other hand,
ateral projection provides important diagnostic information for
ecognizing emphysema: expansion of the retrosternal space is
ppreciated only in the lateral view which also accurately describes
iaphragm flattening [8].  It must be pointed out that, due to the
hickness of the imaged object and the overlapping of the lung
elds, lateral views usually exhibit inferior image quality, both

n terms of contrast and in terms of signal-to-noise ratio. There-
ore, tracing the lung silhouette in lateral chest projections needs
obust computational methods able to efficiently match high-level
nowledge and local image features.

To face the problem of lung field segmentation in both postero-
nterior and lateral view, we modeled the lung boundary as a closed
uzzy-curve. Such a model is quite general and able to cope with
ncertainty due to poor image quality. In so doing, the segmenta-
ion task is referred back to estimating the associated membership.
he latter is expected to be non-linearly and space-varying depen-
ent on image features. Multilayer neural networks are well known
niversal approximators, and, in addition, are expected to provide
ood generalization capabilities [29]. We  used multilayer neu-
al networks to learn fuzzy memberships from differential image
eatures. According to our model, lung boundary is defuzzified
xploiting the relaxation of a modified Kohonen network. Due to its
opology-preserving property, this neural network acts as a ridge
etector able to smoothly enforce boundary closure.

The shape of automatically segmented lung fields was ana-
yzed using a polyline descriptor we have preliminary tested on
and-traced lung fields [10]. Emphysema probability is estimated
y a neural network trained using CT output. The behavior of
he system was also examined in the presence of skeletal distor-
ions. To develop and test our system we utilized the datasets
escribed in Section 2. In Section 3, we explain both the method for

ung segmentation in two-view radiography, and the shape analy-
is/classification phases. Implementation details and testing results
re given in Sections 4 and 5.

. Clinical dataset
Standard chest radiographs of 225 subjects were used to
evelop and test the automated diagnostic tool. All patients under-
ent postero-anterior and lateral digital chest radiographs and
T (within a week from the radiographic study) for diagnostic
g & Physics 35 (2013) 63– 73

purposes. To ensure privacy and blind evaluation by medi-
cal observers, the whole set of chest radiographs were fully
anonymized. For convenience, this radiographic dataset was  named
EMPH. One hundred forty-one patients in EMPH had a firm clini-
cal diagnosis of stable COPD and 84 were age- and sex-matched
(smokers, or former smokers) with normal lung function. Radio-
graphic projections (Thorax 2000, IMIX, Finland) were obtained
at a standard 2-m focus-to-detector distance with the patients
upright, holding their breath at full inspiration. Each radiograph
was 2000 × 2000 pixels (198 �m per pixel), with a dynamic range
of 12 bits. Images were obtained by the radiographic equipment
in standard operational conditions, and no further post-processing
was applied. To develop and test the system, an expert physician
(not aware of the patients diagnosis) was asked to interactively
trace the lung field boundaries. For each image, the observer located
a small set of key points (typically about 20 knots). The contour of
the lung areas was  drawn by interpolating the knots with cubic
splines.

Using CT images, the severity of emphysema was scored on a
nonparametric scale from 0 (no emphysema) to 100 by the panel
grading (PG) method of Thurlbeck et al. [3].  This consists of 16
inflation-fixed, paper-mounted, midsagittal whole lung sections
that are arranged at intervals of 5 between 0 and 50, and at intervals
of 10 between 60 and 100. A score of 5 or less is consistent with trace
emphysema, a score of 10–30 indicates mild emphysema, a score
30–50 moderate emphysema, and a score 50–100 severe emphy-
sema. CT scans were reconstructed in the axial, sagittal and coronal
planes. In scoring emphysema, two independent raters examined
sagittal lung sections, and gave them the score of the standard most
closely similar, or a score between two standards. The two raters
were blinded to clinical and chest radiography data. The PG scores
by the two raters were averaged. Ninety-two patients resulted to
have emphysema (PG score >0).

To build and test the system, patients were randomly arranged
in two  groups, EMPH1 (N = 113) and EMPH2 (N = 112), an equal
number (46) of emphysema cases at CT being included in both
subsets.

To the unique purpose of evaluating the segmentation capa-
bilities of our method, we  also used the images from JSRT
dataset [25] including 247 postero-anterior radiographs (matrix
size 2048 × 2048, 175 �m per pixel and 12 bit of density resolu-
tion) available at JSRT web site (http://www.jsrt.or.jp). This dataset
was originally designed to test lung nodule recognition methods,
reference lung boundaries [23] (SCR database) are made available
at http://www.isi.uu.nl. JSRT images were grouped in two folds
JSRT1 and JSRT2 containing 124 and 123 images respectively. It
is worth mentioning that, being JSRT images obtained digitizing
conventional film radiographies, images have different contrast as
compared to digital chest images.

3. Method

The developed system implements the following phases:

1. Segmentation of lung fields,
2. Description of lung shape,
3. Estimation of emphysema probability.

3.1. Segmentation of lung fields

The lung boundary is modeled as a closed fuzzy-curve that

is defined by assigning its membership function. As we said
in the Introduction, segmentation is reduced to the identifica-
tion of fuzzy-membership from image features. To this end, we
build a neural network architecture including both supervised and

http://www.jsrt.or.jp
http://www.isi.uu.nl
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Fig. 1. Lung fields bounding box computatio

nsupervised neural networks. As detailed in the following sub-
ections, three dedicated networks were designed to estimate the
uzzy membership of right and left lung fields in postero-anterior
iew and the global lung field in lateral view. To enforce approxi-
ate translation and scale invariance and optimize the use of prior

nowledge, for each patient, image plane coordinates were nor-
alized. In particular, lung fields were re-centered and the scale of

ach coordinate axis was adapted to the varying size of lung silhou-
tte. Once the membership function is computed, lung boundary is
ound by a self-organizing network adapted from Kohonen map
28] and able to act as a ridge detector able to enforce boundary
losure.
.1.1. Normalization of position and scales of image reference
The aim of this step is the achievement of (approximate) invari-

nce against image centering and scaling. As shown in Fig. 1,

Fig. 2. (A) Hand traced lung boundary and (B and C) its fuzzy representation: (B) 
 postero-anterior view and (B) lateral view.

using the horizontal and vertical gray-level profiles an approximate
bounding-box of the lung fields is identified as follows:

1. Postero-anterior view. Left L and right R margins are located by
the rightmost and leftmost local maxima of the horizontal profile
respectively. Top margin TPA and bottom margin BPA are identi-
fied in the vertical profile: T is given by the point set midway
between top border of the image and the position of the top
peak; B is located as the bottom peak.

2. Lateral view. Anterior A and posterior P margins are identified
in the horizontal profile by the posterior and anterior gray level
peak, respectively. The top Tlat and bottom Blat margin are set in
the vertical profile as the top and bottom peaks.
In each image, new coordinates (x, y) are introduced from the orig-
inal (x̂, ŷ)  by setting the new origin at the top left corner (xTLC, yTLC)
of the bounding-box, and normalizing the scale of each axis by the

fuzzy membership of point P, (C) the fuzzy membership of the entire curve.
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ength of the corresponding side of the bounding-box (w, h respec-
ively). The transformation between the two frames is given by the
quation:

x = 1
w

(x̂ − x̂TLC )

y = 1
h

(ŷ − ŷTLC )
(1)

.1.2. Fuzzy representation of lung boundary
The lung contour is a closed curve represented in parametric

orm as r(s) = (x(s), y(s)), where s is a convenient parameter. The set
 of the points in r(s) is an ordinary (crisp) point set. To account for
he fuzziness of the boundary the s neighborhood of the point P = (a,
) is defined as the fuzzy set IP = {�P(x, y, s)|(x, y)} of points (x, y) in
he image plane having the normalized membership function with
aussian profile:

P(x, y, s) = exp−((x−a)2+(y−b)2)/(2s2) (2)

he fuzzy union of all s neighborhoods of the points P ∈ B is defined
s the fuzzy representation R of the boundary:

 =
⋃

P

IP (3)

he membership function �B(x, y, s) of B being defined by the equa-
ion:

B(x, y, s) = max
P

{�P(x, y, s)}. (4)

As depicted in Fig. 2c, a fuzzy strip is centered on the traced
oundary. The width of the strip is controlled by the s parameter.
he original contour B can be retrieved by locating the ridge of �.
he adopted defuzzification method is described in detail in Section
.1.3.

Computation of �B(x, y, s) from image features was based on the

ollowing considerations. In chest radiography, gray levels result
rom the combined attenuation of the different tissues along a pro-
ection ray. Consequently, absolute gray values are not well suited
o individuate single physical objects and, in general, they are not
 function from image features.

adequate to locate boundaries. On the other hand, the applica-
tion of differential operators, which are sensitive to local spatial
changes of grays, is expected to provide significant information
about the lung silhouette [17]. In this view, image gradient and
Laplacian are largely employed in standard edge-detection meth-
ods and were selected as low-level features to estimate �B(x, y,
s). Gradient intensity estimates the edge strength, gradient ridges
being possible edge locations. Similarly, zero-crossings of Lapla-
cian are possible edges. The latter property can be exploited by
processing the positive and negative parts of Laplacian separately.
Therefore, the following differential operators were utilized (Fig. 3):

1. The magnitude of gradient | ∇ I(x, y)| that was  estimated by Gra-
dient of Gaussian GoG� :

‖∇I(x, y)‖ ≈ ‖GoG�(x, y)‖

=
[(

∂G�(x, y)
∂x

⊗ I(x, y)

)2

+
(

∂G�(x, y)
∂y

⊗  I(x, y)

)2
]1/2

(5)

2. The positive and negative parts of the Laplacian ∇2I(x, y). The
latter was  computed by Laplacian of Gaussian, LoG� :

∇2I(x, y) ≈ LoG�(x, y) = ∂2
G�(x, y)
∂x2

⊗ I(x, y)

+∂2
G�(x, y)
∂y2

⊗ I(x, y), (6)

positive and negative parts were obtained as:

LoG+
� (x, y) = max(LoG�(x, y), 0)

LoG−
� (x, y) = max(−LoG�(x, y), 0).

(7)
The next step toward lung segmentation was the computation
of a proper mapping:

M(‖GoG�‖, LoG�
+, LoG�

−) �→ �B(x, y, s)
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Fig. 4. Topology of the SO

tilizing the available prior knowledge about lung silhouette
ppearance as traced by experts. To this aim, a feed-forward neural
etwork was utilized. The input to the network were the coor-
inates (x, y) and a corresponding image features ‖GoG�(x, y)‖,
oG�

+(x, y), LoG�
+(x, y). The value o of the (single) output unit was

he desired membership function at (x, y).
Such a network tends to learn the average conditional target

iven the input feature vector [29] so that:

o(x, y, ‖GoG�‖, LoG�
+, LoG�

−)

= 〈�B(x, y, s)|(x, y, ‖GoG�‖, LoG�
+, LoG�

−)〉 (8)

nd behaves as a space-varying non-linear operator according to
he mapping provided by the training samples.

.1.3. Boundary defuzzification
The crisp boundary is found by exploiting the relaxation of a Self

rganizing Map  (SOM) [28]. Let M be a SOM network composed by
 number L of units arranged according to a ring topology as shown
n Fig. 4. At a given time t, each unit processes the coordinates (x,
) of a randomly chosen point P: the ith unit has two adaptable
onnections: wi = (wi1, wi2). The ordinary weight update rule of
OM is as follows:

wi = ˛(t)�(i, j, t)(xj − wi) (9)

here i is the winning unit on input j, that is:

 = argmnin
k

‖xj − wk‖ (10)

ccording to Kohonen [28], ˛(t) is a gain function that decreases lin-
arly with t and �(i, j, t) is a neighborhood function whose support
ecreases linearly with t. Unfortunately, this equation produces a
et of weights that covers the entire image plane. On the other hand,
embership function values are not considered in Eq. (9).  Conse-

uently, to locate a connected closed path corresponding to the
idge of the membership function �, Eq. (9) goes to incorporate
(x, y) by applying the updating rule:

wi = ˛(t)�(i, j, t)�(x, y)(xj − wi) (11)

n this way, weights tend to move toward image points with a
arge membership values, eventually stopping at its ridge. In facts,
eights are changed if and only if �(x, y) /= 0. Moreover, when
(x, y) is small weight change tends to be negligible, while for

arger values of �(x, y) (e.g., nearby ridges) weight change is more
ronounced.
boundary defuzzification.

3.2. Description of lung shape

Lung shape alterations due to emphysema can be character-
ized by a limited set of numerical features [8]. The adopted shape
descriptor is obtained by a polygonal approximation of the lung
boundary. The lung shape descriptor was  designed to ensure high
sensitivity and specificity. Particular attention was  paid to cope
with shape anomalies related to skeletal distortions rather than
to emphysematous process.

As shown in Fig. 5, four points are identified in the postero-
anterior view corresponding to the apex and the costophrenic angle
of the right and left lung, respectively (these are identified in Fig. 5a
as AR, AL, CR, CL respectively). In the lateral view, the four points are
the costophrenic angle posteriorly, the cardiophrenic angle ante-
riorly, the lung apex, and the maximum vertical distance of the
perpendicular drawn from the line joining the costophrenic to the
cardiophrenic angle (labeled in Fig. 5b as AT, PT, CA, CP). The points
identified on each radiograph are the corners of a quadrilateral
having area AT.

Next, on each radiograph, the program identifies three trian-
gles each having the base on a side of the quadrilateral and the
height equal to the maximum vertical distance from the base to
the superjacent lung segment (Fig. 5). Each triangle is described by
three numerical features: (i) normalized area an = a/(AT), or the ratio
of the triangle area a to the total area AT; (ii) height ratio hr = h/b,
or the ratio of the triangle height h to the triangle base b; (iii) base
ratio br = c/b, or the projection of the triangle minor side c on the
triangle base b divided by the base length.

In emphysematous lungs, the normalized area of the triangle
below the diaphragms is expected to decrease due to the depres-
sion and flattening of the diaphragmatic contours associated with
chronic hyperinflation. Conversely, the normalized area of the
triangles under the costal and retrosternal sides of the lungs is
expected to increase. The height ratio is a numerical index of the
maximum bending of a given anatomic segment of the lung, and
the base ratio indicates the position, along the triangle base, where
the maximum bending occurs. At the end of the procedure, the
shape vector from each radiograph includes nine numerical fea-
tures describing the lung shape.

3.3. Estimate of emphysema probability
The probability p of emphysema is estimated by a dedicated
neural network. It is fed by the two  shape vectors computed from
each radiographic view, and is trained to output the estimated p.
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Fig. 5. Shape description: reference points for polyline ap

etwork topology and training is detailed in Section 4.2. Once a
robability cut-off pTH is set, each case is classified according to the
ule:

p ≥ pTH class is emphysema
p < pTH class is non-emphysema

. Implementation

A software application was built to implement the described
ystem. As to system parameter tuning and neural network training
he following procedures were applied.

.1. Training segmentation networks

A. EMPH dataset. Three neural networks were designed: two
f them were dedicated to the postero-anterior view to estimate
he fuzzy membership of right and left lung respectively, while
he third network was trained to estimate the overall lung sil-
ouette in the lateral view. Fuzzy boundaries for training were
btained by applying Eq. (4) to the contours traced by physicians
n the dataset images (to define the support of fuzzy membership
e set s = 3 mm).  Images were down-sampled (following Gaussian

moothing) to a matrix 256 × 256. For each image the module of
oG�(x, y) and the LoG�(x, y) were computed using � = 4.0 mm.
fterwards, from each projection 2000 points were randomly
xtracted satisfying the constraint that a half of them lied in the
upport (set at 6 × s = 18 mm of the �B function) of the teaching
uzzy boundary. For each point (x, y) the input pattern was [x, y,

 GoG� ‖ , LoG�
+, LoG�

−], while the teaching output was �B(x, y, s).
Feed-forward networks with one hidden layer were used. The

etwork segmenting postero-anterior views had 5 input units, 20
idden unit and one output unit, the network for lateral views had 5

nput unit, 25 hidden units and one output unit. Network topology
as selected by varying the number of hidden units from a mini-
um  of 5 to a maximum of 50 and selecting the best performing

rchitecture. Hidden units had a logistic activation function while
utput units had linear activation. Training was performed by error
ack-propagation rule with adaptive learning rate [29]. For each

etwork, the training was firstly done by using the images in EMPH1
nd testing the results on EMPH2. One tenth (15 cases) of the images
n the training set was kept apart and used only to evaluate the gen-
ralization error during weight adaption procedure. Training was
mation for (A) postero-anterior view and (B) lateral view.

stopped after the generalization error ceased to decrease. In any
case, a maximum number of 5 × 105 training epochs was imposed.
To reduce the risk of being trapped in unfavorable local minima of
the error function, ten training sessions with different randomly
initialized weights were performed. The network with the lowest
generalization error was retained. Training was then repeated by
interchanging the roles of EMPH1 and EMPH2.

B. JSRT dataset. In this case, we trained only the two networks
designed for the postero-anterior view, while keeping the same
topology and training procedure adopted for the EMPH dataset.
Similarly to the case of EMPH dataset, JSRT1 was firstly used as a
training set and JSRT2 as a test set. Training was repeated inter-
changing training and test sets.

4.2. Training emphysema probability network

We used a multilayer network having 18 input units, two hidden
layers with 15 and 10 units respectively and a single output unit.
Hidden units had a sigmoidal activation while the output unit had
linear activation. Output is trained to estimate emphysema prob-
ability given the input shape features. Teaching output was set to
0 for non-emphysema, and to 1 for emphysema. The network was
trained by error back-propagation with adaptive learning rate. All
the cases in EMPH dataset were used for training by the leave-
one-out method [29]. Training of emphysema probability network
was performed using (separately) shape features from (a) manual
segmentation and (b) automatic segmentation.

5. Results

Specific tests were performed to evaluate the efficiency and
effectiveness of both the segmentation and the shape classification
processes. The execution time of the overall procedure, including
postero-anterior and lateral lung segmentation, shape analysis and
classification, is about 4.5 ± 0.7 s on a iMAC computer equipped
with 2.4 GHz Intel Core 2 Duo processor (4 GB RAM), no particu-

lar optimization being applied. Though several improvements are
possible, e.g., segmentation of different lung profiles can be paral-
lelized by exploiting multicore processors, computation time looks
well suited for clinical application (Figs. 6–8).
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ig. 6. Examples of segmentations in postero-anterior view form JSRT dataset. The 
.1. Performances of segmentation process

The quality of the segmentation was first visually evaluated by
n expert physician who was asked to judge the overall correctness

Fig. 7. Examples of segmentations in postero-anterior view form EMPH dataset
uted boundary (white) is superimposed along with reference boundary (black).
of the outlined silhouette with respect to apexes, costophrenic
angles and maximal-distance points. All images in JSRT were rated
as correctly segmented. In EMPH, the images of 221 (out of 225)
cases were retained correctly segmented. As shown in the panels

: computed boundary (white) and reference boundary (black) are shown.
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Table 1
Segmentation results for the JSRT dataset.

 ̋ DSC ACD (mm)

Postero-anterior (total) 92.7 ± 3.3 95.5 ± 3.7 1.73 ± 0.87

Classification of emphysema was assessed by Receiver Oper-
ating Characteristics (ROC) using EMPH dataset. Two different

Table 2
Segmentation results for the EMPH dataset.

 ̋ DSC ACD (mm)
Fig. 8. Examples of segmentations in lateral view (EMPH dataset):

f Fig. 9, segmentation failed in one postero-anterior radiogram
nd in three lateral radiographs. That was attributed to poor image
ontrast and the presence of anomalous radiographic patterns not
elated to emphysema.

A quantitative test assessed the behavior of the procedure
y comparing the computer-recognized regions versus the corre-
ponding ones traced by medical expert (as described in (2)). Let
ref and Rest be the regions enclosed in the reference contour and in

he estimated one. For each boundary we computed the True Posi-
ive area (TP = |Rest ∩ Rref |), False Negative (FN = |Rest − Rref |) and
alse Positive (FP = |Rref − Rest |) areas. Quality of segmentation
as assessed by three commonly used metrics:

 Overlap percentage  ̋ (also known as Jaccard index):

˝ = TP

TP + FP + FN
= |Rest ∩ Rref |

|Rest ∪ Rref |

 Dice Similarity Coefficient (DSC):

DSC = |Rest ∩ Rref |
|Rest + Rref |

It is worth mentioning that  ̋ and DSC are closely related. For a
given region one has:

 ̋ = DSC

2 − DSC
.

 Average contour distance (ACD).

To evaluate ACD, for each point on the boundary of Rest the

distance between its closest point on the contour of Rref is
first computed, distances are subsequently averaged over all
points of Rest boundary. To symmetrize the measurement, the
Postero-anterior right 94.0 ± 3.1 96.5 ± 5.7 1.32 ± 0.89
Postero-anterior left 91.6 ± 2.5 94.5 ± 6.1 1.82 ± 0.92

calculation is repeated by interchanging the two boundaries and
the two distance values are averaged. ACD values are given in
millimeters.

In Table 1 we  report the average values, expressed as mean
plus/minus standard deviation, of ˝,  DSC and ACD for JSRT dataset.
Values for right and left profile respectively are also provided.
In Table 2 corresponding values from EMPH dataset are given,
including data for postero-anterior and lateral views (failed seg-
mentations were not included in this analysis). Segmentation
metrics are slightly, but seemingly not significantly, better in
postero-anterior view.

5.2. Performances of emphysema classification
Postero-anterior (total) 93.1 ± 2.9 96.1 ± 3.5 1.62 ± 0.92
Postero-anterior right 95.7 ± 2.2 97.0 ± 4.1 1.02 ± 0.95
Postero-anterior left 92.2 ± 3.1 95.1 ± 6.2 1.86 ± 0.92

Lateral 94.5 ± 4.6 91.0 ± 6.3 2.22 ± 0.86
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ig. 9. Images of EMPH whose segmentation were rated as failed by an expert phy
mphysematous patient; computed boundary (white) and reference boundary (bla

ests were performed: (i) emphysema recognition using manual
egmentation and (ii) emphysema recognition with automatic seg-
entation.
The plot on the left panel of Fig. 10 is obtained from all the cases

n EMPH using the hand-traced contours. The area under the curve
AUC) was 0.976 (95% CI: 0.967–0.997). Confidence intervals were
stimated by bootstrap [30].

These results are very close to those obtained by automatic seg-
entation that are shown in right panel of Fig. 10.  In this test, cases
ith failed segmentations (3 non-emphysema cases and 1 emphy-

ema case) were excluded, obtaining e subset of EMPH with 221
ases (91 with emphysema and 130 with no emphysema). The area
nder the curve was 0.968 (95% CI, 0.959–0.998).

In Table 3, true positives, true negatives, false positives and false
egatives are provided along with sensitivity, specificity and accu-
acy for a cutoff pTH = 0.55. The values are valid both for manual

nd for automatic segmentation. It is worth noting that failures in
ecognizing emphysema occurred in five cases with mild or trace
mphysema, their score at CT being less or equal than 15. The false

able 3
lassification results using the cutoff pTH = 0.55. Values were computed from the sub-
et  of EMPH of correctly segmented images (221 cases, 91 with emphysema and 130
ith no emphysema). The same results were obtained using manual segmentation.

TP TN FP FN Sensitivity Specificity Accuracy

86 (91) 125 (130) 5 5 94.5% 96.1% 95.4%
. Images in panels A, C, D are from non-emphysematous cases, panel B is from an
 shown.

positive cases had a computed emphysema probability from 0.56
to 0.59.

To evaluate the effect of shape alteration not related to emphy-
sema, images were retrospectively analyzed by an expert physician
for the presence of skeletal distortions. Forty-four patients showed
signs of kyphosis, rated as mild in thirty-five and moderate in nine.
No misclassification was  observed in these patients.

6. Discussion

A computational approach to diagnose emphysema from digital
chest radiographs was  described. It is based on the analysis of the
shape of lung silhouette which is altered by chronic hyperinflation.
The resulting system includes two  main processes: (i) automatic
segmentation of the lung fields exploiting image features and prior
knowledge by means of a fuzzy boundary model coupled to neural-
network processing; (ii) emphysema recognition by a dedicated
shape descriptor and a neural-network classifier.

As to the segmentation process, in a vast majority of cases
the computed contours were adequate for a correct classification.
That was  also confirmed both by visual inspection and comparison
of computed contours with hand-traced ones. Measurements on
JSRT public dataset suggest that our method performs, in segment-

ing postero-anterior view, at least as well as ASM/AAM methods
[23,24].

Segmentation of the lateral view, even though with slightly infe-
rior metrics with respect to postero-anterior projection, resulted
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ig. 10. Left panel: the ROC curve obtained using hand-traced contours from all
egmented images in EMPH (excluding failed segmentations).

ell suited for emphysema recognition. In general, the boundary of
he lung fields was properly recognized allowing confident detec-
ion of the needed feature points that include costophrenic angles,
ung apex, and maximum-distance points used to define the tri-
ngles. We  observed a few segmentation failures that are mainly
elated to poor image quality or to distortion of lung silhouette as,
or example, in the presence of a raised hemidiaphragm. For the
ake of this work, wrongly segmented cases were withdrawn from
he classification test. In routine implementation of the system,
uch failures could be dealt with a minimal editing of the computed
ontour. It is worth noting that the availability of lung boundary
n postero-anterior and lateral views may  be usefully exploited to
ompute additional parameters such as the radiographic total lung
apacity [31].

As to shape description and classification, the described system
xhibits improved recognition capabilities in comparison with pre-
ious works [8,10].  In particular, the adopted shape-descriptor was
ble to successfully cope with alterations of lung silhouette not
elated to the presence of emphysema, such as skeletal distortions.
n the present study, we found no significant difference between

anual ad automatic segmentation. The area under the ROC curve
as 0.976 for manual segmentation and 0.968 for the automatic

ne, respectively. At the selected probability cut-off (pTH =0.55), the
ensitivity reached 94.5% and the specificity 96.1%, with an overall
ccuracy of 95.4%.

. Conclusion

In summary, we describe an automatic system that allows the
ecognition of emphysema on two-sided digital chest radiographs.
he system could be advantageously used in clinical practice as it
s simple, inexpensive, and requires no special expertise. Its appli-
ation may  cut down the costs of the diagnostic procedures for
mphysema and minimize the radiation to the patient.
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