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Abstract

This paper presents a new application of logic programming in the area of integrated programming
environments for algorithmic languages. Integrated programming environments are based upon the
existence of a project database which is the repository of all information relevant to programming
project throughout the life cycle of the project. In particular, modules management (configuration), is a
typical acti‘}ity which requires relationships among objects to be handled.

The paper addresses the advantages of using logic to express and manage configuration activities of
languages which explicitely incorporate concepts related to software production. A logic database
approach is proposed to support the configuration activity of the Ada programming language as an
example of application of logic in the field of project data bases.
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1. Introduction

New programming languages as Ada [Ada 83], ARGUS [Liskov 83], (C)Mesa [Mitchell 79],
directly face aspects related to software production, introducing concepts like program library, modules
and separate compilation issues. Modules management or, using a wider term, configuration is
intended as the activity of binding together different components into a system thus bringing in the
programming language elements of programming in the large [DeRemer 75];

Focussing on Ada, our aim ié to formalize such configurational activity thus extending the benefits
-of a formal definition to the supporting environment of the language itself. Configuration, in fact,
ranges over the programming language and its supporting environment [Hunke 81, AdaEnv 84].

While in principle the programming in the large methodology would allow to define general ways
to putting components together to make systems, in practice, in Ada, it is intended as a supporting
methodology to achieve separate compilation facilities. Thus, configuration facilities are defined a part
from the proper language and their definition is deeply related to implementation issues.

In Ada the only way to compose modules together is through with clauses which are simply
interpreted as dependency relations with respect to the compilation, linking and execution activities.
Nevertheless, there is a need to formally express the setting in which such relationships among
components exist. In other words, it would be desirable to have an environment which allows to
- rigorously define what compilation, recompilation, linking etc. mean, in terms of components and
relations among them. Furthermore, such an environment would allow to extend the set of relations in
order to define other properties of components [Inverardi 84] while ensuring compatibilities with the
standard Ada configuration requirements.

Horn clause logic allows to express, in a declarative style, a theory of objects and their relations
thus providing a suitable formal setting to reason about the standard Ada configuration environment and
its possible extentions. On the other hand, the procedural semantics of Horn clause logic makes it
feasible to validate the specifications against the user's request.

We want to model an evolving theory where the effects of activities such as compilation and
linking create and modify relations among objects. This brings us to consider a data base approach and
in particular, a logic data base one to handle creation of new relations and objects.

The motivation of choosing a logic data base approach with respect to traditional relational (or
entity-relationship) data bases is, besides the need for a formal setting, due to the extensions of
capabilities that logic brings to relational data bases [Gallaire 84]. That is, the ability to make deductions
(deduce new facts from old ones, by means of rules), and the ability to prove properties ( 1ntegr1ty
constraints) of the theory as logic program properties [Kowalski 79].
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2. A Proposal For A Logic Environment for Ada
2.1 A logic data base approach

A deductive database, defined as a set of facts (Extensional Components) and a set of rules
(Intensional Component), can be seen as a first order theory, in particular, as a Horn clause theory. A
data base can be regarded as a Logic Program [Gallaire 84], thus Integrity Constraints (properties
which the data base must possess), can be considered as properties of logic programs, assimilating the
problem of integrity constraints checking to proving logic programs properties. In addition, a deductive
database system should offer much more than a logic programming system does, since its objects are
evolving first-order theories (databases), not a single fixed one. In particular, the problems of
consinstency and redundancy should be faced. .

Although logic programming offers a straightforward way of implementing deductive databases,
some restrictions are needed to guarantee the termination of the query evaluation process and the
evaluation of negative queries. Thus the class of logic programs has to be restricted to hierarchical
program definitions which, in particular, do not allow recursive definitions [Clark 78, Shepherdson
84]. This restriction can be partially relaxed, at least with respect to negation and to certain kind of
queries [Barbuti 85].

We will rely on a logic database management system DBLOG which has been sketched in [Asirelli
84, Asirelli 85a]. The approach considers a data base as a logié program plus a set of formulas
expressing integrity constraints. Such formulas must be proved to be true in the minimal model of the
program, thus ensuring the correctness of the data base with respect to the integrity constraints.

A logic data base can be seen as:
1) aset of facts, the Extensional component of the DB (EDB), which are unit Horn clauses;
2) a set of deductive rules, the Intensional component of the DB (IDB), which are definite Horn
clauses;

3)  aset of Integrity Constraints (IC), which are formulas of the form:

Ak —> Bl gosey BS

whose informal interpretation is that whenever Ay is true then By and...and B¢ must also be true;

4)  aset of control formulas are either formulas as in 3) or else

i) AfALN Ay - By,...By




ii) — B 1,...,Bn

1

i) A A.A Ap -
The informal interpretation for i) is that whenever Aj and ... and Ay, are true then By and...and B

must also be true; analogously ii) means that B 1 and ... and By, must be true and, finally, iii) means
that Ay and ... and A, must be false.

Note that, for formulas i)-iii), as well as for formula 3), all variables are intended to be
universally quantified, apart from local variables (i.e. variables occurring only in the right hand side)
which are instead, intended to be existentially quantified. |

The two forms of Integrity Constraints and Controls formulas are used by DBLOG ir‘i'two
different ways. IC are used to modify facts and rules of the data base so that only those facts which
satisfy IC will be derivable from the data base theory, i.c. the semantics of the resulting DB is given by
all facts that can be deduced from the data base and which satisfy IC. The second form of constraints,
the controls, are used periodically (at user request), to check that changes to the data base have
preserved consistency with respect to this sort of constraints.

Characteristic of this system is the possibility of modifying the data base, by adding or deleting

facts, rules, IC and Controls, thus allowing to deal with evolving theories. The system can be seen as
an amalgamated theory [Bowen 82, Furukawa 84] consisting of a meta-theory (the theory which
handles the evolution of the data base), and the object theory (the logic data base).

The system can be further extended to provide a limited form of recursion [Barbuti 85] and by
adding a new theory in order to deal with transactions, i.e. compound updating operations.

The language to express transactions syntactically resembles Concurrent Prolog, with no
annotated variables [Shapiro 83]. It allows to express transactions as follows:

trans < precy | trans | .., trans 5 | posty

trans < precy | trans | ., trans ; | posty

The informal interpretation is that, in order to execute the operation trans, it is necessary to first verify
which precondition (precy or precy) holds, and then commit to the clause whose precondition has

succeeded, executing the body and verifying the corresponding postcondition. The commit operation
is, as for Concurrent Prolog a way of expressing the behaviour of the Prolog cut operator.

Preconditions and postconditiéns in transaction definitions will operate as a particular form of
controls which must be checked before/after the execution of that particular set of operations (body of
the transaction).




Since checking for consistency in a DB can be very heavy and time consuming preconditions and
postconditions are introduced to separate controls which are global to the DB, from those which are
related to the particular transaction, thus reducing the number of global controls.

The operational interpretation of such transaction definitions is standard Prolog resolution of
clauses where clauses are tried in the order they appear in the program. Thus, the commitment will be
to the first clause whose précondition succeeds: or-nondeterminism is not achievable.
Or-nondeterministic behaviour can be obtained by defining transactions which do not have the
commitment operation, i.e. standard Prolog clauses.

Furthermore, providing that operations on DB are "backtrackable" (i.e. their effects are undone on
failure), the effects of a transaction would be undone on a failure occurring either in the postcondition
or in some operations of the body, thus obtaining an and-nondeterministic behaviour of the clauses.

2.2 Configuration Facilities in Ada

One of the main features of Ada, is that it makes the idea of incremental program development
precise by its notion of program library and compilation. In fact, Ada provides, to the process of
software design and development, its advanced linguistic constructs (packages, generics, tasks, etc)
and separate compilation features (program libraries, subunits, etc).

An Ada program is defined as a collection of one or more compilation units submitted to a compiler
in one or more compilations. Each compilation unit specifies the separate compilation of a construct
- which can be either a body part, a specification part or else a subunit.

Compilation units which are specification parts or main programs, are called library units, while
body parts or subunits are called secondary units.

The compilation units of a program belong to a program library . The effect of compiling a
compilation unit is to define or redifine (due to recompilation), this unit as a component of the program
library.

Dependencies among units are defined by with clauses , which allow a compilation unit to refer to
other library units, thus achieving direct access to the entities declared inside them. Dependencies are
used to define, in the program library, a partial order among units to be taken into account when
defining compilation, recompilation and execution activities.

To summarize, a program library consists of i) a collection of objects, the compiled units; ii) a set
of relations among objects (the dependencies) such that certain conditions hold: e.g. libray units must
all have different names; for each secondary unit there must be a corresponding library unit, etc.

Specifying these units and their relations as described above, is not straightforward as it can appear
at a first glance. In fact, the existence of secondary units which can be structured in a tree fashion
(subunits), depending on a root (either a main or a secondary unit), creates a set of exceptions to the
general rules. For example, for a secondary unit which is a subunit, the constraint on the existence of a




corresponding library unit does not apply (it applies only to secondary units which are roots). In the
same way, the double role which a subprogram body can play, either as a main (if it is a library unit) or
as a secondary upit, makes some relation definitions cumbersome.

2.3 A logic data base apprbach to configuration in Ada

In this section a logic definition of the Ada Configuration Environment, from now on ACE, is
sketched. The detailed definition is given in the Appendix.

The ACE is described as a logic data base according to the approach introduced in section 2.1. The
definition assumes the existence of an interactive external environment, namely the editor, the compiler,
etc. whose role is that of modifying the theory either adding or removing assertions.

We assume an initial theory consisting of ground unit clauses (facts), rules and constraints.

Facts correspond to the definition of the units in the theory. They contain all information about
units which the editor is supposed to extract from the syntactic Ada code. Th1s information is the
minimum needed to define rclauons among units.

For example, the following two . acts:

gen_decl (c,d.nil)
sub_unit (dfg,h.nil,f.d.nil)

define two units where, the predicate names are the type of the units (generic declaration unit and
subunit), the arguments represent respectively: The name of the unit, the list of library units referred to
by that unit and, for subunits only, the path to reach the subunit starting from the root unit. Note that
the name of a subunit is obtained composing its simple name with the path.

Rules define the concepts of library unit, secondary unit and main program according to the Ada
definition. For example:

main (X,Y) ¢ subp_body(X,Y)
lib_unit(X,Y) ¢« main (X,Y)
sec_unit(X,Y,nil) & subp body(X,Y)

Constraints are introduced in order to guarantee the consistency of the theory with respect to the
global properties of the objects in the ACE, such as the uniqueness of library unit names. For example:

sec_unit (X,Y,W), subp_body (X,Y) —» lib_unit (X,Z), subp decl (X,Z)
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states that, for all secondary units which are subprogram bodies, there must exist a library unit with the
same name, which is a subprogram declaration. The above constraint does not prevent the insertion of a
subprogram body as a library unit, provided that its declaration part does not already exist. This allows a
main program to be a library unit while being a subprogram body. '

An Ada Program Library (APL) is then defined as the set of compiled units in the ACE.

prog_lib (mylib,Y) ¢ éompiled__list Y)

Therefore, ACE contains also facts to state that a unit is compiled.

We could assume, as for the editor interaction, that once a unit has been successfully compiled, a
fact such as compiled_lib (unitname) , will be added to the theory. The insertion of the fact is successful
if consistent with the rules which state the compilability of a unit. Thus besides the rules defining
compilability of units, constraints exist which prevent from inconsistent insertions:

compiled _lib(X) —» compilable 1ib(X)

compiled_sec(X) —» compilable sec(X)

This approach allows to precisely specify configuration concepts, but a part from specification

- purpouses, it does not allow the language supporting environment to benefit of the executable nature of
the specified theory. In order to achieve a better integration between the logic data base environment and
‘the Ada supporting envirohment, the use of the Extended DBLOG (with transactions) is proposed,
EDBLOG acts as a practical tool to be integrated in the Ada supporting environment, thus providing to

the other tools all the functionalities related to modules management. In this framework it is possible to
define the interaction with the compiler as a transaction:

compile (X,sec) ¢ compilable_sec(X) | comp_Ada (X), add(compiled_sec(X))

compile (X,lib) <« compilable_lib(X) | comp_Ada (X), add(compiled_lib(X))

Compile , is defined by two clauses, one for each type of units, library or secondary. This is
necessary because, given the name of a unit, there is no other way of identifying the unit to be compiled
as a library unit or as its secondary. Such problem has to be considered by any Ada environment since it
arises from the fact that, in Ada, the same name is used to denote a specification part and its
corresponding body part. This implicit relation causes no trouble from the language point of view, but it
creates ambiguities once modelling the ACE. It can be solved either by some name convention or asking




the user to explicitly supply the necessary information.

The two relations compilable_lib, compilable_sec act as preconditions that have to be verified before
the commitment phase. Preconditions here take the role of the previously defined integrity constraints.
comp_Adais a call to the Ada compiler which is no more supposed to do any check on the
compilability of the unit to be compiled, with respect to the PL structure;
add inserts a new fact in the theory.

Transactions guarantee to leave the theory unchanged upon any failure of the body, thus including
the failure of the Ada compiler.

Recompilation has been defined in the same style. A remove operation is necessary since the effects
of recompiling a unit is, in general, the compilation of the unit itself while making obsolete all those units
which rely on its definition.

3. Conclusion

In this paper an approach to integrate a logic data base system with an Ada programming
environment has been presented.

The aim was twofold: i) to provide a formal framework to specify the Ada configuration facilities, in
order to formally define the interface between the the language and its programming environment; ii) to
propose logic data bases as effective tools to be used in traditional programming environments.

Logic data bases offer great flexibility in handling an evolving world of objects and relations. This
attitude makes L.DBs suitable to deal with advanced programming environments supporting requirements
like open-endness. In fact, the insertion of a new tool in the environment may require the specification of
new relations among existing objects, and/or the creation of new objects. On the other hand, for
effinciency purposes, a LDB can be easily implemented by accessing, at least for the facts, a traditional
repository database while retaining relations and constraints control [Asirelli 85b]. In addition, the use
of transactions allows to achieve a complete integration between the logic data base system and the
supporting environment.

Focussing on our approach, in which a LDB has been proposed to handle modules management,
flexibility allows to consistently extend the standard Ada programming in the large constructs, with
new ways of putting modules together. For example, the development of an application for a distributed
target [Inverardi 83] may require the environment to provide, at the design level, a tool to statically check
the suitability of the application to be effectively mapped on a distributed machine (e.g. no shared
modules with storage) [Inverardi 84]. We can easily achieve this goal by simply adding new relations
and new constraints to be verified.

Configuration, in general, is an activity which might require expertise knowledge and it has been
succesfully dealt with by espert systems. R1 [McDermott 81] is a well known example of a hardware
configuration expert system. In this paper, configuration has been considered as that area, in




programming environment, which can greatly benefit of the proposed logic approach. Furthermore the
relations mduced on modules by the configuration activity are typlcal examples of relations that have to
be dealt with by a project data base.
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" APPENDIX "

Ada Configuration Environment definition
Assertions (due to the interaction with the editor)

subp_decl(a,b.nil)
gen_decl(c,d.nil)
pack_decl(b,nil)
pack_decl(d,nil)
subp_body(a,c.nil)
pack body(b,nil)

sub_unit (fd,h.nil,d.nil)
Assertions (due to the interaction with the compiler)

compiled_sec(a)
compiled lib(a)

Rules

lib (X,Y) ¢ subp_decl(X,Y)
lib (X,Y) ¢ gen_decl(X,Y)

lib (X,Y) ¢ pack_decl(X,Y)
main (X,Y) < subp_body(X,Y)
lib_unit (X,Y) ¢« lib (X,Y)

lib_unit(X,Y) ¢ main (X,Y)

sec_unit(X,Y,nil) < subp_body(X,Y)
sec_unit(X,Y,nil) ¢ pack body(X,Y)

sec_unit(X,Y,Z) ¢ subunit(X,Y,Z)
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parent(X,Y)

parent(X,Y)

o

Lo

main(X,Z), sec(Y,W,X.nil)

sec_unit(X,Z), sec_unit(Y,W,X.-W1),
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Note: parent : The definition is splitted in two in order to capture: i) the case in which a main
is the root of a parent’s chain and ii) the case in which the root is a secondary_unit.

Program Library definition

prog_lib(A,Y)

Rules used for compilation

compiled list(nil)

compiled list(X.Y)

compiled(X)

compiled(X)

compilable lib(X)

compilable sec(X)

compilable sec(X)

compilable_sec(X)

&« compiled list(Y)

¢ compiled(X), compiled list(Y)

< compiled lib(X)

¢ compiled_sec(X)

£

1ib_unit(X,Y), compiled_list(Y)

sec_unit(X,Y,nil), compiled_lib(X), compiled_list(Y)

sec_unit(X,Y,Z), parent(W,X), sec_unit(W,W1,W2),
compiled_sec(W), compiled list(Y)

sec_unit(X,Y,Z), parent(W,X),

main(W,W1),compiled lib(W),
compiled list(Y).




Constraints )

lib_unit (X,Y), lib_unit (Z,W) > X # Z
sec_unit(X,Y,Q), sec_unit(Z,W,V) = X #Z
sec_unit(X,Y,nil), main(Z,W) = X = Z

sec_unit(X,Y,W), subp_body(X,Y) —» lib_unit(X,Z), subp_decl(X,Z)

Compile : The external interaction with the compiler is defined as a transaction:
compile (X,sec) ¢ compilable_sec(X) | comp_Ada (X),add(compiled_sec(X))
compile (X,lib) &« compilable lib(X)| comp_Ada (X), add(compiled lib(X))

add is the insertion operation on the object theory (adds an assertion of kind compiled ...(a)).
The definition leaves the user to specify what kind of unit should be compiled.

Recompile

recompile (X,sec) ¢ compiled_sec(X) | remove(compiled sec(X)),
remove_child_of (X),compile (X sec).

recompile (X,1ib) < compiled_lib(X) | remove(compiled lib(X)),
remove_lib (X),compile (X lib).

remove_child of (X) & parent(X,Y), compiled sec(Y) |

remove(compiled_sec(Y)), remove_child_of (Y),
remove_child_of (X)

remove_child_of (X) R




——

remove_lib (X)
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remove_lib (X)

remove_connect_lib (X)

remove_connect_lib (X)

remove_connect_sec (X)

remove_connect_sec (X)
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compiled sec(X) | remove(compiiéd__sec(X)),
remove_child_of (X), remove_connect_lib (X),

remove_connect_sec (X)

remove_connect_lib (X), remove_connect_sec (X)

compiled_lib(Y), lib_unit(Y,W), member(W,X) |
remove(compiled 1ib(Y)), remove_lib (Y),

remove_connect lib (X)

compiled_sec(Y), sec_unit(Y,W,W1), member(X,W) |
remove(compiled_sec(Y)), remove_child_of (Y),
remove_connect_sec (X)

remove is the remove operation on the object theory (removes an assertion of kind

compiled_...(a)).




