

SEVENTH FRAMEWORK PROGRAMME:
PRIORITY 7.1B
LARGE SCALE INTEGRATING
PROJECT (IP)

IP project number 247950 Project duration: February 2010 – February 2014
Project coordinator: Joe Gorman Project Coordinator Organisation: SINTEF, Norway
Strategic Objective: 7.1.b website: www.universaal.org

Universal Open Architecture and Platform for Ambient
Assisted Living

Document

Type:
“Deliverable:”

Item Appearing in ”List of Deliverables
in DoW with delivery date shown in bold

“Supplementary Report”
As “Deliverable”, but delivery date not

shown in bold. These documents are
formally internal to the consortium, but

can be delivered on request.

 Project Deliverable, with independent sub-parts.
Each sub-part forms a coherent whole in its own right, and has
been edited and reviewed independently. The sub-parts are
integrated in this document, to form the deliverable as a whole.

 Project Deliverable (single document, no sub-parts).

X Sub-part of a Project Deliverable.

Document Identification
Deliverable
ID: D2.2-A Part

title: Part I – Report on the development work

Release number/date: 1 / 05.04.2011
Checked and released by: Sergio Guillén/ITACA

Key Information from "Description of Work" (from the Contract)
Deliverable Description Software that is installed on top of the universAAL execution environment,

adding generic AAL service functionality. AAL platform services are software
that is installed on top of the universAAL execution environment and Generic
Platform services, providing business level AAL service functionality. Ontology
artefacts are software and documents that enable developers to use a shared
view on the AAL concepts and information models

Dissemination Level PU=Public
Deliverable Type P = Prototype
Original due date
(month number/date)

Month 11 / 31.Dec.2010 (changed in the first project review)

Authorship& Reviewer Information
Editor (person/ partner): Oliver Höftberger / TUW & Zaher Owda /USIEG & Saied Tazari / Fh-IGD
Partners contributing AIT, CERTH, CNR-ISTI, ENT, Fh-IGD, FZI, IBM, ITACA-UPV, TSB, UPM,

TUW / USIEG
Reviewed by (person/
partner)

Salvatore Flavio Pileggi/ ITACA

D2.2-A: universAAL Generic Platform Services, AAL platform services Part I: Report on the development work
and ontology artefacts

Last printed 05/04/11 16:58 Part I: Page 2 of 25

Release History
:

Release

number

Date issued
Milestone*

eRoom

version

Release description /changes made

1 13.01.2011 PCOS proposed 1 Initial version containing the structure an outline of content

1 22.02.2011 Intermediate
approved

 Only based on software repository and the wiki pages

1 28.03.2011 External
proposed

2 All input from subfolders integrated

1 30.03.2011 External
reviewed

3

1 31.03.2011 External revised 4-7 All feedback incorporated

1 04.04.2011 External
approved

8

1 05.04.2011 Released 9 Technical Manager release

* The project uses a multi-stage internal review and release process, with defined milestones. Milestone names include
abbreviations/terms as follows:

• PCOS = ”Planned Content and Structure” (describes planned contents of different sections)

• Intermediate: Document is approximately 50% complete – review checkpoint

• External For release to commission and reviewers;

• proposed: Document authors submit for internal review

• revised: Document authors produce new version in response to internal reviewer comments

• approved: Internal project reviewers accept the document

• released: Project Technical Manager/Coordinator release to Commission Services

D2.2-A: universAAL Generic Platform Services, AAL platform services Part I: Report on the development work
and ontology artefacts

Last printed 05/04/11 16:58 Part I: Page 3 of 25

universAAL Consortium
universAAL (Contract No. 247950) is an Large Scale Integrating Project (IP) within the 7th Framework
Programme, Priority 7.1.b (ICT & Ageing). The consortium members are:

STIFTELSEN SINTEF (SINTEF, Project
Coordinator)
Contact persons: Joe Gorman
Email: joe.gorman@sintef.no

UNIVERSIDAD POLITECNICA DE
VALENCIA
(ITACA, Technical manager)
Contact person: Laura Belenguer Querol
Email: laubeque@upvnet.upv.es

AUSTRIAN INSTITUTE OF TECHNOLOGY (AIT)
Contact person: Sten Hanke
Email: sten.hanke@ait.ac.at

CONSIGLIO NAZIONALE DELLE RICERCHE
(CNR-ISTI)
Contact person: Francesco Furfari
Email: francesco.furfari@isti.cnr.it

CENTRE FOR RESEARCH AND TECHNOLOGY
GREECE (CERTH)
Contact person: Nicos Maglaveras
Email: nicmag@med.auth.gr

FRAUNHOFER-GESELLSCHAFT ZUR
FOERDERUNG DER ANGEWANDTEN
FORSCHUNG E.V (Fh-IGD)
Contact person: Saied Tazari
Email: saied.tazari@igd.fraunhofer.de

ERICSSON NIKOLA TESLA (ENT)
Contact person: Ivan Benc
Email: ivan.benc@ericsson.com

IBM ISRAEL – SCIENCE AND TECHNOLOGY
LTD. (IBM)
Contact person: Yardena Peres
Email: peres@il.ibm.com

FORSCHUNGSZENTRUM INFORMATIK AN
DER UNIVERSITAET KARLSRUHE (FZI)
Contact person: Andreas Schmidt
Email: Andreas.Schmidt@fzi.de

PHILIPS ELECTRONICS NEDERLAND B.V.
(PHILIPS)
Contact person: Milan Petkovic
Email: milan.petkovic@philips.com

IMPLEMENTAL SYSTEMS SL (IMPLEMENTAL)
Contact person: Jordi Valles
Email: jordi.valles@implementalsystems.com

REGION SYDDANMARK (RSD)
Contact person: Casper Dahl Marcussen
Email: cma@medcom.dk

PROSYST SOFTWARE GmbH (PROSYST)
Contact person: Kai Hackbarth
Email: k.hackbarth@prosyst.com

TECHNISCHE UNIVERSITAET WIEN (TUW)
Contact person: Roman Obermeisser
Email: romano@vmars.tuwien.ac.at

TSB SOLUCIONES TECNOLOGICAS (TSB)
Contact person: Juan-Pablo Lázaro-Ramos
Email: jplazaro@tsbtecnologias.es

VDE VERBAND DER ELEKTROTECHNIK
ELEKTRONIK INFORMATIONTECHNIK EV
(DKE)
Contact person: Henriette Boos
Email: henriette.boos@vde.com

UNIVERSIDAD POLITECNICA DE MADRID
(UPM)
Contact person: cvera@lst.tfo.upm.es
Email: cvera@lst.tfo.upm.es

D2.2-A: universAAL Generic Platform Services, AAL platform services Part I: Report on the development work
and ontology artefacts

Last printed 05/04/11 16:58 Part I: Page 4 of 25

Table of Contents

Release History .. 2	
universAAL Consortium ... 3	
Table of Contents .. 4	
Executive summary ... 5	
1	 About this Document ... 6	

1.1	 Relationship to other sub-parts of this deliverable .. 6	
1.2	 Relationship to other versions of this Part ... 6	

2	 Development goals .. 7	
2.1	 Scope of the developments .. 7	
2.2	 Related requirements ... 8	

3	 Status Report ... 9	
3.1	 CM – Context Management .. 9	

3.1.1	 Context Bus ... 9	
3.1.2	 Jena Conversion ... 10	
3.1.3	 Context and Profiling Ontology Artefacts ... 11	
3.1.4	 Context History Entrepôt ... 12	
3.1.5	 Situation Reasoner ... 13	
3.1.6	 AAL Space Manager ... 14	
3.1.7	 Platform-information Providers and Rules .. 15	

3.2	 SIEG – Service Infrastructure Expert Group ... 16	
3.2.1	 The Service Bus ... 16	
3.2.2	 AAL Space Orchestrator ... 17	

3.3	 UIM – User Interaction Management .. 18	
3.3.1	 I/O Buses ... 19	
3.3.2	 Dialog Manager ... 20	
3.3.3	 Different I/O Handlers ... 22	

3.4	 RIEG – Remote Interoperability Expert Group ... 23	

D2.2-A: universAAL Generic Platform Services, AAL platform services Part I: Report on the development work
and ontology artefacts

Last printed 05/04/11 16:58 Part I: Page 5 of 25

Executive summary

This document is Part I of D2.2-A, which reports about the work done in Task 2.2 “universAAL
generic platform services, AAL platform services, and ontology artefacts”. It emphasizes the
development goals with regard to the requirements of the current iteration phase. Then, an overview of
the steps is provided that were taken towards the alpha releases of the first set of software artefacts.
Finally, it reports about the status of the work done based on an extensive list of artefacts for each
expert group.

Task 2.2 has taken advantage of the consolidation process in universAAL as it adopts a selected set of
existing software components from the input projects which match the best the universAAL reference
architecture.

In the standard Section 1, the relationship between this document and the other sub-parts of D2.2 is
presented. While Part I presents an overview about the current status and work done in Task 2.2, the
other two parts include actual results of recent activity in the task in form of wiki pages and software.
Thereafter, this document also provides the appropriate links to the respective wiki pages and SVN
repositories. To access those repositories, you might need to create your own account on
http://depot.universaal.org/.

D2.2-A: universAAL Generic Platform Services, AAL platform services Part I: Report on the development work
and ontology artefacts

Last printed 05/04/11 16:58 Part I: Page 6 of 25

1 About this Document
This document is the first sub-part of deliverable D2.2. It presents the actual state of the development
of generic platform services, AAL platform services, and ontology artefacts. The document focuses on
the development goals of the actual iteration of the development process, which includes the scope and
the requirements of the current iteration. Another important aspect is the approach (see D2.3-A and its
changes described in D2.1-A) used to obtain design decisions, and the selection and adaptation of
existing software components from input projects. Finally, the list of software artefacts is presented for
each expert group in task 2.2 with info about the status and development plan for each of them.

1.1 Relationship to other sub-parts of this deliverable
Deliverable D2.2 is divided into three sub-parts labelled Part I to Part III. While this part presents an
overview of the strategy and work done in task 2.2, the other two parts include actual results of recent
activity in the task. The second part consists of the wiki pages which are an important tool to
document individual design decisions, the structure, hierarchy and interaction of software components
listed in this document. In part III source code of the software components developed so far are
contained.

1.2 Relationship to other versions of this Part
This document is part of the first version of deliverable D2.2. It contains a report about the scope of
the first iteration of this task and the work done so far. The first iteration concentrates on a basic set of
software components upon which other services (mainly from other work packages) are constructed.
These software components are currently in an alpha release state.

In the next versions of this part will follow descriptions of changes to the currently existing software
components, which elevate those components to the beta release state. Additionally, a second set of
software components will be introduced, that extend the functionality of the basic components. This
second set of components will be available in the alpha release state.

In later versions further improvement of the basic set of software components as well as the second set
of software components will be documented.

D2.2-A: universAAL Generic Platform Services, AAL platform services Part I: Report on the development work
and ontology artefacts

Last printed 05/04/11 16:58 Part I: Page 7 of 25

2 Development goals
The software development in task 2.2 concentrates on the creation of a reference implementation of
platform services and ontology artefacts that will be used by other work packages and application
developers within the universAAL community. Thereby architectural design decisions from WP1 -
Consolidate a standard reference architecture for open AAL platforms - are considered as basic input
for emerging services.

In addition to the specifications from WP1, several software components have already been created in
some of the input projects. It is a goal of universAAL to reuse as much existing code as possible in
order to save the efforts for new developments. Hence, at first these software components need to be
analysed individually and if necessary be modified so that they are compliant with the specifications in
WP1 and D2.3.

2.1 Scope of the developments
As explained in Part I of D2.1, the scope of the developments within WP2 has been mapped to the
scope of work within seven expert groups that have been formed based on major structural elements of
the universAAL reference architecture described in D1.3-B. The expert groups in the scope of Task
2.2 are:

− Context Management Expert Group (CM): The CMEG concentrates on the provision of
context information that can be used to adapt applications to the actual situation of the user.
Context information can, for example, be obtained from sensors that measure real world
conditions, but it can also be personalization information that describes preferences of the
user. Please refer to http://depot.universaal.org/wiki/cm:Overview for more details on the
scope of this group.

− Service Infrastructure Expert Group (SIEG): It is the purpose of this expert group to
define and implement the service infrastructure for the universAAL project. This comprises,
e.g., the service model, brokering between service providers and service requesters, querying
of available services, handling of composite services, and provision of common services.
Please refer to http://depot.universaal.org/wiki/sieg:Overview for more details on the scope of
this group.

− User Interaction Management Expert Group (UIM): This group provides a common I/O
infrastructure for multimodal user interaction of independently developed applications. With
this I/O infrastructure, it is possible to switch between different mechanisms for user
interaction (e.g, display or sound system for output, keyboard or microphones for input) in a
context-aware and personalized way without the need that the application is aware of such
situational switches. Hence, the system adapts the mode of user interaction depending on the
current situation of the user and/or his/her preferences. For more details on the scope of this
group, please refer to http://depot.universaal.org/wiki/uim:Overview.

− Remote Interoperability Expert Group (RIEG): Interactions between an AAL space and
the outside world are treated by this group. This includes the communication of humans in an
AAL space with other humans or systems outside this AAL space, as well as interactions of
the AAL system with humans or systems at other places. For more details on the scope of this
group, please refer to http://depot.universaal.org/wiki/rieg:Overview.

D2.2-A: universAAL Generic Platform Services, AAL platform services Part I: Report on the development work
and ontology artefacts

Last printed 05/04/11 16:58 Part I: Page 8 of 25

2.2 Related requirements

In this section a number of main requirements related to artefacts presented in this deliverable are
introduced:

– In Context Management, the requirements which are directly fulfilled by these components
can be summarized as follows: provide an asynchronous push mechanism for notifying
subscribed components about any changes in context as soon as changes occur in which they
are interested; provide a synchronous pull mechanism responsible for giving components the
ability to query the shared knowledge about context at any given time; define a shared
understanding of context data for exchanging them and a brokering mechanism in order to
reduce interdependencies at the development time; preserve a unique temporal order between
the context events so that all context consumers receive the events in the same order as they
occurred; interaction between subsystems must be restricted to the exchange of messages at
the linking interface (LIF) of components; a membership service shall exist within the
architecture, which consistently provides subsystems with the health state of other subsystems;
finally, facilitate the simultaneous deployment of both formal axiomatized ontologies with
rich semantics and lightweight ontologies, as appropriate for defining the content of the
messages between nodes. For the exhaustive list of the requirements per CM building blocks,
please refer to the subpages under http://depot.universaal.org/wiki/cm:Overview.

– Service Infrastructure is responsible for facilitating the sharing of functionality between
components of AAL systems with the following requirements: specify format of service
profiles and service requests; provide a matchmaking mechanism to find appropriate service
utilities derived from the service profiles that match a given service request; provide facilities
to query existing services without calling them as well as to register as a listener to the
availability of services for receiving notifications when services become available /
unavailable; provide a scripting language for service composition along with the appropriate
interpreter (workflow engine / service orchestrator); the above service-based interoperability
solution must support semantic interoperability in order to provide for a real ecosystem of
independently developed components. For the exhaustive list of the related requirements,
please refer to the http://depot.universaal.org/wiki/sieg:Overview.

– UI Management identifies solutions for explicit interaction between the inhabitants of AAL
spaces and the respective AAL space. It must ensure that applications can be developed
independently from the concrete I/O infrastructure in specific AAL spaces and independently
from the concrete interaction capabilities of the human users. Nevertheless, the UI
management must be able to provide for context-aware and personalized interaction using the
most appropriate modality and device depending on user situation. For the exhaustive list of
the related requirements, please refer to the http://depot.universaal.org/wiki/uim:Overview.

– Remote Interoperability must facilitate the provision of remote assistance by service providers
to the inhabitants of AAL spaces. Therefore, it must enable seamless access by the inhabitants
of AAL spaces (the customers of the service providers) to the sites of the providers, and vice
versa, enable the remote access of the service personnel to the agreed data and functionality
available in the AAL space. Also pure software-based interaction for exchanging data and
utilizing services must be supported. All these interactions must be done in a secured way
based on agreed permissions. For the exhaustive list of the related requirements, please refer
to the http://depot.universaal.org/wiki/rieg:Overview.

D2.2-A: universAAL Generic Platform Services, AAL platform services Part I: Report on the development work
and ontology artefacts

Last printed 05/04/11 16:58 Part I: Page 9 of 25

3 Status Report
In the following subsections, each of the expert groups in the scope of Task 2.2 reports about its status
with regard to the procedure described in Section 3 of Part I of D2.1-A1. Hence, we strongly
recommend to first read that section to get familiar with the WP2 development strategy and approach.

Note: Since Task 2.3 is performing certain laboratory tests by installing and configuring all the
artefacts from all expert groups while also measuring performance and executing artefact-specific
tests, all expert groups in the following subsections share the following two steps in their agendas that
we avoid to repeat by introducing them here:

• M16: Complete the documentation of all artefacts based on feedback from Task 2.3 and update the
development agenda accordingly

• M18: Apply urgent bug fixing and implement the most urgent/mandatory tasks for stabilizing the
releases of M18

3.1 CM – Context Management
This group has finished the procedure defined in Section 3 of Part I of D2.1-A successfully. The group
has decided to adopt the software artefacts developed within the PERSONA project after comparing
all the candidates in the light of the group design decisions. As a matter of fact, this will also facilitate
the integration work with the middleware, because universAAL has decided to reuse the PERSONA
middleware, as well. Please refer to http://depot.universaal.org/wiki/cm:Overview for the details of the
design decisions and the results of the evaluation of the “distance” of the input projects to the design
decisions of the group.

Apart from harmonizing all of the imported software artefacts with the guidelines of D2.3-A, this
group has also performed some preliminary development work: (1) all artefacts were adapted to the
changes posed by the middleware expert group, and (2) the context ontology has been modularized
further in order to improve ontology sharing and deployment conditions.

The following are the software artefacts that implement the responsibilities of the context
management.

3.1.1 Context Bus

Black-box
description

The Context Bus is built on the middleware providing publish-subscribe mechanism
for peers of the AAL Space where they can forward Context Events, built with
ontological descriptions. Artefacts deliver these events by extending the abstract
class ContextPublisher and using its event publishing capabilities; they can register
for listening to events based on patterns by extending the abstract class
ContextSubscriber and using the provided subscription mechanism.

Wiki link http://depot.universaal.org/wiki/cm:Context_Bus

SVN link http://depot.universaal.org/svn/cm/trunk/bus.context/

Nexus link http://depot.universaal.org/maven-repo/org/universAAL/cm/mw.bus.context

Current status/ The bus is in charge of the semantic matchmaking between published events and the

1 An update of the integration strategy originally specified in D2.3-A and modified later as described in D2.1-A.

D2.2-A: universAAL Generic Platform Services, AAL platform services Part I: Report on the development work
and ontology artefacts

Last printed 05/04/11 16:58 Part I: Page 10 of 25

functionalities registered patterns from the listeners. There can be as many instances of the same
bus in an AAL space as there are AAL-aware nodes running the universAAL
middleware. When a context provider publishes an event to one these bus instances,
the event will be broadcast to all instances of the middleware, then each instance of
the context bus performs the matchmaking locally and delivers the appropriate
event to the matching local subscribers.

The artefact contains:

• The basic model, mainly consisting of events, patterns, publishers, and
subscribers, that is used by artefacts interacting with the Context Bus.

• Implementation of the actual engine behind the matchmaking of the bus.

Development
agenda

ITACA: 2PMs

Fh-IGD: 0.5
PM

• M21: Enhance matchmaking to incorporate permissions

• M24: provide support for activating and deactivating context publishers
depending on available subscriptions and Situation Reasoner rules (considering
“always-on” cases) enhance the ContextProvider ontology to force context
publishers to also provide info about the patterns that apply to their context
events

3.1.2 Jena Conversion

Black-box
description

This artefact has been imported but may not be required in the end because the
performance of the Jena database for RDF data was not satisfactory. However, it
serves as a placeholder for design decision about the new RDF database and the
associated data conversion (in both directions) among the middleware
implementation of RDF+OWL and the target model, no matter which other existing
implementation is taken. If the expert group decides to implement its own database
model from scratch, the effort needed for the implementation of the new database
model (while having the middleware implementation of RDF+OWL in mind)
substitutes the development effort for a new conversion.

The module for converting the middleware implementation of RDF+OWL to Jena
implementation and vice versa. Both are Java implementations but not compatible.
The Jena implementation was needed because of using the Jena database for
persistent storage of context events. The middleware had avoided using Jena
implementation because it is too complete and general-purpose and hence too big
with many features not needed at all. The middleware implementation was very
compact, targeted towards specific needs, and also runs under Java 1.3 without the
need for external libraries.

Wiki link http://depot.universaal.org/wiki/cm:Jena_Conversion

SVN link http://depot.universaal.org/svn/cm/trunk/ctxt.jena.converter/

Nexus link http://depot.universaal.org/maven-repo/org/universAAL/cm/ctxt.jena.converter

Current status/
functionalities

• The artefact contains two packages, one with the interface of the parser and the
other with the activator and the implementation.

Development • M18: Finalize design decisions on the RDF database with SPARQL engine

D2.2-A: universAAL Generic Platform Services, AAL platform services Part I: Report on the development work
and ontology artefacts

Last printed 05/04/11 16:58 Part I: Page 11 of 25

agenda

ITACA: 1.5
PMs

(contribution by ENT, Fh-IGD, and UPM)

• M21: perform the resulted development task (either an own DB schema with
own implementation for working with the DB, or a new conversion software)

3.1.3 Context and Profiling Ontology Artefacts

Black-box
description

Pluggable ontology artefacts to support context-awareness and personalization,
corresponding to the Common Model Extension building block in the universAAL
reference architecture as introduced in D1.3-B.

Wiki link Currently, distributed in three pages due to the original bundling in PERSONA:

http://depot.universaal.org/wiki/cm:CASF_Ontology

http://depot.universaal.org/wiki/cm:Profiling_Ontology

http://depot.universaal.org/wiki/cm:CASF_Ontology_Extension

SVN link Ontologies can be shared between all expert groups; for this reason, they have their
own SVN repository:

http://depot.universaal.org/svn/ontologies/trunk/

Nexus link Collection of ontology artefacts available in

http://depot.universaal.org/maven-repo/org/universAAL/ontology

Current status/
functionalities

PERSONA had bundled the whole ontologies in only three bundles: (1) The
Context Awareness Supporting Framework (CASF) Ontology contained an eclectic
set of ontology domains. Domains ranged from the most basic "physical thing" and
"location" concepts to other concepts needed for the integration of devices, such as
"temperature". (2) The profiling ontology contained all data related to user model. It
was based on the CASF ontology and defined multiple user types and accordingly
profiles, each with specific additional information such as identification,
preferences, impairments and illnesses. (3) An extension to the CASF ontology with
simultaneous reference to the profiling ontology that was bundled separately in
order to avoid cyclic references between the CASF and profiling ontologies.

When importing to universAAL, we started to split the original artefacts to several
smaller ontology modules to be able to work on their improvement more effectively
while supporting a better management of ontological dependencies (e.g., generally
resolving the possible problems with cycles) and facilitating the efficient
deployment of ontology modules. The splitting has not finished yet; the following
modules have been created so far: audio_video, blind, device.extra, furniture,
lighting, location.extra, measurement, medication, physical.world, powersocket,
profiling, weather, and window.

• There are two location ontologies: one more exhaustive model in
physical.world with support for image recognition, positioning of objects and
space configurations and one compacter model in location.extra.

• There is an ontology supporting multimedia streaming communications in
audio_video.

• There are some concepts related to medication but there is no medicine or

D2.2-A: universAAL Generic Platform Services, AAL platform services Part I: Report on the development work
and ontology artefacts

Last printed 05/04/11 16:58 Part I: Page 12 of 25

health ontology.

• The weather and measurement ontologies are very incomplete.

• Some device ontologies lack the ‘Service’ class needed on the service bus.

Development
agenda

• M15: decide about which location ontology to use in universAAL (design
decision by the whole CM EG)

• M16: complete the modularization task for all parts of the PERSONA artefacts
casf.ont, casf.ont.ext, and prof.ont (ITACA, Fh-IGD)

• M17: stabilize the user model (design decision by the whole CM EG)

• M18: adapt the existing ontologies to the changes planned by the middleware
group for mw.data.representation, improve them (e.g., add the ‘Service’
classes), and complete their documentation (Fh-IGD: 0.75 PM, ITACA 0.75
PM)

• M27: continuously add new ontologies as need arises (all partners from WP2,
WP3, and WP4; efforts classified as side effect of the actual development work
that arose the need)

3.1.4 Context History Entrepôt

Black-box
description

A singleton component that takes care of logging every context event that is
published on the context bus. It gathers the events by subscribing to the context bus
with a Context Subscriber that defines a "pass-all" filter so that every context event
received from the bus is forwarded to the component. These events are stored in a
relational database as reified RDF statements that can be held in an external (to
CHE) database server.
An external RDF database allows all components in the network that have an
appropriate DB account to access it directly without passing through the CHE.
However, this kind of access must be reserved only for platform components, e.g.,
the Situation Reasoner, apart from CHE itself. All the pluggable components will
have to use CHE services on the service bus to access the historical data. There are
ongoing discussions about the necessity of allowing this distributed access to DB to
other components. In any case always some access to the knowledge on the
database would be provided.
There is also a mobile version of the CHE that only gives the functionality of
storing context events. It is assumed that no component in the mobile device will
have to access these stored events. They are only saved to be transferred to the
central CHE at home. Therefore it provides no services in the Service Bus, at least
in the current version. It just connects to the Context Bus and stores every event in
serialized XML form inside a file that will be moved to the main computer when the
user gets home.

Wiki link http://depot.universaal.org/wiki/cm:Context_History_Entrepot_Artefact

Mobile:
http://depot.universaal.org/wiki/cm:Context_History_Entrepot_Mobile_Artefact

SVN link http://depot.universaal.org/svn/cm/trunk/ctxt.che/

Mobile: http://depot.universaal.org/svn/cm/trunk/ctxt.che.mobile/

D2.2-A: universAAL Generic Platform Services, AAL platform services Part I: Report on the development work
and ontology artefacts

Last printed 05/04/11 16:58 Part I: Page 13 of 25

Nexus link http://depot.universaal.org/maven-repo/org/universAAL/cm/ctxt.che

Mobile:

http://depot.universaal.org/maven-repo/org/universAAL/cm/ctxt.che.mobile

Current status/
functionalities

• Automatic storage of context history: The component stores every context event
forwarded through the context bus.

• Retrieval of context events from/to/between timestamps: It provides methods
(services in Service Callee) to retrieve the list of all events form, to or between
given timestamps (given in the Service Request).

• SPARQL query over service bus functionality: A service (in Service Callee) is
provided that takes as input a SPARQL query, formatted as a String, which will
be executed in the CHE database. The resulting events are returned to the client,
so the query must be properly formatted to ask for context events.

• SPARQL query over database functionality: Since the history is stored in a Jena
RDF relational database any component with access to this database can use
Jena to ask directly for whatever data it wants, using SPARQL.

• Automatic removal of context history: Removal of context history is performed
periodically to keep the database size under control and prevent it from growing
unlimitedly.

• Short-term context history storage: The CHE provides interfaces (Service
ontology) to allow other components implement their own context history
storage for a short period and act as a short-term CHE.

• Mobile version synchronization: The CHE is in charge of synchronizing events
stored in the mobile version. To do this first the mobile device will have bulked
the context history file it uses into the running folder of PERSONA. Then the
CHE parses this file and stores each parsed event it contains into the database.

Mobile:
• Automatic storage of context history: The component stores every context event

forwarded through the context bus.
• Automatic removal of context history: Removal of context history is performed

periodically to keep the stored data size under control and prevent it from
growing unlimitedly.

NOTE: The synchronization capability of the mobile version is not implemented
yet. It should consist only of a feature to copy the stored data file in the main home
computer when the mobile device gets at home.

Development
agenda

ITACA: 1.5
PMs

• M21: Adapt to the storage system selected / implemented under 3.1.2

• M24: Implement and test the synchronization of the mobile version with the
stationary version. Enhance the stationary synchronization with mobile version
once that is implemented.

3.1.5 Situation Reasoner

Black-box
description

A general-purpose reasoner that uses the database of CHE (and the possibility of
ontological reasoning of its storage engine) and builds up new contextual
information using the power of the RDF query language SPARQL. It stores
“situation queries” persistently and indexes them based on context events that must
trigger its evaluation – as they are not meant as a one-time query that are answered

D2.2-A: universAAL Generic Platform Services, AAL platform services Part I: Report on the development work
and ontology artefacts

Last printed 05/04/11 16:58 Part I: Page 14 of 25

and then forgotten, but they must generate related situational events whenever
appropriate, depending on changes in the context.
In this conjunction, the CM expert group believes that there is need for a graphically
interactive tool to facilitate the definition and editing of rules based on the
knowledge about available providers and / or loaded ontologies. This development
task is however assumed to be done in Task 3.5.

Wiki link http://depot.universaal.org/wiki/cm:Situation_Reasoner

SVN link http://depot.universaal.org/svn/cm/trunk/ctxt.gen.reasoner/

Nexus link http://depot.universaal.org/maven-repo/org/universAAL/cm/ctxt.sr

Current status/
functionalities

• Scripted MySQL plug-in that is installed in the CHE database. It allows to
monitor and react to the storage of new events that must be taken into account
for the situation detection

• It was supposed to provide two services on the service bus, one for accepting
new situation queries and the other for dropping them, but these services are not
realized.

• Introduction of new rules currently is only possible by writing SQL insert
statements and running them on the console of MySQL.

• The source of data that can be used in the declaration of a situation is limited to
the shared context.

• Only situations that can be derived by a single SPARQL query can be
recognized.

Development
agenda

Fh-IGD: 1.5
PMs

ITACA: 1
PMs

• M21: Adapt to the storage system selected / implemented under 3.1.2

• M21: provide services on the service bus

3.1.6 AAL Space Manager

Black-box
description

This component is supposed to be a synthesis of four different artefacts from
two of the input projects:

• The space.conf artefact of PERSONA that provided services with regard
to defined locations and physical things with their shapes and
coordinates. It worked in tight connection to the physical world ontology
with related inference power and could answer queries about the
configuration and state of the current AAL space.

• The prof.server artefact of PERSONA that provided specific services for
handling requests related to the different user types and their profiles.

• The prof.editor artefact of PERSONA as an admin application for
viewing and editing profiling data.

• The “little world” editor from SOPRANO that was used to describe the
initial state of AAL spaces.

D2.2-A: universAAL Generic Platform Services, AAL platform services Part I: Report on the development work
and ontology artefacts

Last printed 05/04/11 16:58 Part I: Page 15 of 25

Wiki link prof.server:

http://depot.universaal.org/wiki/cm:Profiling_Server

SVN link No software imported yet

Nexus link ditto

Current status/
functionalities

Still under the discussion how to combine the four above-mentioned artefacts and
where to put the boundary between Task 2.2 and Task 3.5

Development
agenda

Fh-IGD: 1 PM

FZI: 3 PMs

• M18: finalize the design

• M27: finish the implementation

3.1.7 Platform-information Providers and Rules

Black-box
description

All of the software artefacts for runtime support produced in tasks 2.1 and 2.2 have
certain knowledge about the operation of the system, especially the artefacts of the
middleware. Here, the expert group will analyze how this knowledge can be shared
as context info for increasing the reliability in system and adding diagnostic
features.

Wiki link There are some discussions related to this topic in the wiki pages of the middleware expert
group, however, there is no specific wiki page dedicated to this topic yet. One might see also
some relationships between this action point and the wiki page available under
http://depot.universaal.org/wiki/cm:Common_Up-lifters_&_Providers_Building_Blocks

SVN link Possible artefacts will be added to:

http://depot.universaal.org/svn/cm/trunk/

Nexus link Possible artefacts will be deployed to

http://depot.universaal.org/maven-repo/org/universAAL/cm/

Current status/
functionalities

There is nothing existing.

Development
agenda

Fh-IGD: 1 PM

USIEG: 5
PMs

• M18: Cooperate with the middleware group to analyze how the noticeable
issues in the operation of the system found out by the middleware artefacts can
be pushed up and caught here in order to produce and publish the appropriate
context events.

• M24: Provide the context publishing code in accordance with the design
decisions in the previous step

• M27: Specify diagnostic rules for the Situation Reasoner

• M33: Provide appropriate handlers for critical situations

D2.2-A: universAAL Generic Platform Services, AAL platform services Part I: Report on the development work
and ontology artefacts

Last printed 05/04/11 16:58 Part I: Page 16 of 25

3.2 SIEG – Service Infrastructure Expert Group
This group has finished the procedure defined in Section 3 of Part I of D2.1-A successfully. The group
has decided to adopt the service bus implementation from PERSONA but develop a new service
orchestrator from scratch. The following two paragraphs provide an overview of the reasons for taking
these decisions, but for more details, you can refer to http://depot.universaal.org/wiki/sieg:Overview.

The reason for adopting the PERSONA service bus was mainly because it provides a distributed
service infrastructure that enables semantic interoperability to an extent that resolves the problem of a-
priori agreement between Service Providers and Service Requesters about APIs so that they can
formulate Service Profiles and Service Requests using an ontology of their own choice, possibly
different ones, and develop their applications independently. The mapping between different
ontologies used by Service Providers and Service Requesters can be created later, even by third
parties. There were some similar approaches also in SOPRANO and OASIS, but due to usage of
technologies with a longer tradition and bigger community (e.g., OWL-S as opposed to Diane) and
also due to creating less programming overhead in comparison to other alternatives, the Service bus
implementation of Persona was chosen. As a matter of fact, this will also facilitate the integration
work with the middleware, because universAAL has decided to reuse the PERSONA middleware, as
well.

The reason for developing the Service Orchestrator from scratch is that all of the input projects had
used BPEL as the scripting language for service composition and all were reporting about difficulties
in real usage. Finally, the group decided to develop a new scripting language that combines the service
composition ontology provided by OWL-S with a simple embedding of work with the middleware
buses (registering service profiles, sending service requests, publishing events, and subscribing for
events) so that powerful scripts can be written as an easy and fast way for realizing AAL applications.

The following are the related software artefacts in the scope of SIEG.

3.2.1 The Service Bus

Black-box
description

Extends the middleware by providing for service-based semantic interoperability. It
mediates between independently developed provider and requester agents that might
be arbitrarily distributed on different nodes within an AAL space. It hides the
distribution and the possible heterogeneity of the execution environment of the
provider and requester agents. It defines protocols for provider agents how to
advertise their service utilities by semantically describing them in service profiles
and how to cooperate in the processing of service requests. It also defines protocols
for requester agents how to formulate their requests semantically in terms of goals
that they want to reach. Finally, it resolves the mediation task by matchmaking
between the received service requests and the advertised service profiles and by
taking over all the necessary conversions for realizing the targeted end-to-end
communication without the need that the two ends know each other. It should be
sufficient that they share the same or at least a compatible understating of the
related domain.

Wiki link http://depot.universaal.org/wiki/sieg:Profiles_Requests

http://depot.universaal.org/wiki/sieg:MatchMaking

http://depot.universaal.org/wiki/sieg:Protocol

http://depot.universaal.org/wiki/sieg:Querying

SVN link http://depot.universaal.org/svn/sieg/trunk/bus.service

Nexus link http://depot.universaal.org/maven-repo/org/universAAL/sieg/mw.bus.service/

D2.2-A: universAAL Generic Platform Services, AAL platform services Part I: Report on the development work
and ontology artefacts

Last printed 05/04/11 16:58 Part I: Page 17 of 25

Current status/
functionalities

• Provides an enhanced implementation of OWL-S in Java for creating
service profiles and a mechanism for registering them by provider agents.
The registered profiles are indexed appropriately for later use in
matchmaking.

• Provides a Java interface for creating service requests that are equivalent
to an enhanced version of SPARQL particularly developed for service
querying and provides a mechanism for issuing such requests and
receiving the responses both in a synchronized and in an asynchronous
way. The same SPARQL-based interface can be used for querying the
registered service profiles (not implemented fully) as well as for making
“availability subscriptions” (implemented).

• The matchmaking is based on the general reasoning capabilities provided
by mw.data.representation but also particularly tailored to matching
service requests against registered service profiles.

• The whole bus strategy for hiding the distribution is based on a
configurable permanent coordinator instance that might pose a single
point of failure in AAL spaces.

Development
agenda

Fh-IGD: 2
PMs

CERTH: 2.5
PMs

• M18: add support for declaring the required permissions in service profiles and
enhance the matchmaking to check granted permissions against the required
ones (in coordination with enhancements in mw.bus.model and in cooperation
with the security expert group)

• M18: enhance the interfaces to allow direct work with OWL and SPARQL as
strings in addition to the equivalent Java interfaces

• M21: Improve support for non-functional parameters (OWL-S service
parameters) and improve the documentation to push their usage

• M21: complete the implementations for querying service profiles

• M24: Revise bus strategy to avoid single point of failure

• M24: enhance the mechanisms and the Java interface for SPARQL-based
service requests and queries to handle also the case of “composition by query”

3.2.2 AAL Space Orchestrator

Black-box
description

This component is based on the idea of support for Service Composition
using an appropriate “scripting” language, such as BPEL and OWL-S, with a
workflow engine for executing composite services defined in those
languages. However, the AAL Space Orchestrator should work on the basis
of a novel scripting language that allows to utilize the whole functionality
available in AAL spaces, including interaction with human users and
context-aware activation. It should be implemented in a modular way,

D2.2-A: universAAL Generic Platform Services, AAL platform services Part I: Report on the development work
and ontology artefacts

Last printed 05/04/11 16:58 Part I: Page 18 of 25

consisting at least four artefacts:

1. An interpreter for the scripting language2
2. The actual AAL Space Orchestrator that manages a configurable

database of the installed scripts and starts the interpreter to run such
scripts in a situation-aware way

3. A shell added to the OSGi shell that enables developers to run commands
by typing them in the OSGi console, at least for simulating context
events (related to Task 3.1?)

4. A graphically interactive tool to facilitate the development of
orchestrating scripts based on the knowledge about available
functionality and / or loaded ontologies (related to Task 3.5?)

Wiki link http://depot.universaal.org/wiki/sieg:Composition

SVN link No existing software is reused

Nexus link ditto

Current status/
functionalities

Start from scratch!

Development
agenda

• M27: Scripting language specification (Lead by IBM with 3 PMs, contribution
by CERTH, Fh-IGD, and FZI)

• M33: Realization of the language interpreter (IBM 2.5 PMs)

• M33: Realization of the Orchestrator with context-aware activation (Fh-IGD 2
PMs, design contribution by FZI)

3.3 UIM – User Interaction Management
This group has finished the procedure defined in Section 3 of Part I of D2.1-A successfully.

The group has decided to adopt the software artefacts developed within the PERSONA project after
comparing all the candidates in the light of the group design decisions. There was no other input
project that provided a whole and consistent concept for user interaction in AAL spaces in terms of a
UI framework (each project had covered though certain aspects, such as some support for context-
aware and personalized interaction). This was already encountered when the group started to “define
itself” (the scope of its work). For this reason, the group tried to consider external related work:
portable UI from Open Health Tools and Universal Remote Console (URC – proposed to ISO in 2002
and standardized in 2008: ISO/IEC 24752). The first one showed to be in start-up without concrete
results so far; the corresponding working group showed very interested to look at the universAAL
solution once it is completed. In case of URC, several sessions were dedicated to discuss the two

2 We might call this language ASOR (Aal Space ORchestrator); according to Wikipedia “The asor (Hebrew:
 was a musical instrument "of ten strings" mentioned in the (עשר Hebrew for "ten" 'eśer [ayin shin resh ; עָשׂוֹר
Bible.” Then, it would be a good match, not only because of relationship between orchestration and musical
instruments but also because it is going to be specified under the leadership of IBM Research in Haifa, Israel.

D2.2-A: universAAL Generic Platform Services, AAL platform services Part I: Report on the development work
and ontology artefacts

Last printed 05/04/11 16:58 Part I: Page 19 of 25

solutions in comparison, with the inventor of the URC involved. Finally, UIM reached the
understanding that URC is not related to the core business of the group (user interaction in AAL
spaces as smart environments) but to separating user interface development from the business logic of
service components. However, modern service-oriented architectures, such as universAAL, already
provide for this feature per se. Please refer to http://depot.universaal.org/wiki/uim:Overview for more
details.

In the course of importing the related software artefacts from PERSONA, all artefacts were adapted to
the changes posed by the middleware expert group. The group has also scheduled the following
overall task that affect several artefacts:

• M27: Look for easier and more efficient options for configuration and setup

The software artefacts imported by UIM are described in the following subsections.

3.3.1 I/O Buses

Black-box
description

The input and output buses provide for making applications independent from the
concrete I/O infrastructure (set of concrete I/O channels) available in AAL spaces
as they might differ in their occurrences considerably. This is achieved by
distinguishing between an “application” layer and a presentation layer where the I/O
buses sit in between. The components on the imaginary presentation layer can then
be called I/O channel managers (or I/O Handlers, as they were called in PERSONA)
as opposed to applications that reside on the imaginary application layer. For this
purpose, this artefact (1) provides a UI model for the independence between
application layer and presentation layer, (2) facilitates the integration of
"applications" and I/O Handlers possibly running on different nodes in different
execution environments while hiding the possible distribution and heterogeneity of
the related HW/SW artefacts, and (3) provides a context-aware and personalized
brokering mechanism between the presentation and application layers based on the
UI model that effectively contributes to the adaptation of presentation to the user
situation, capabilities, and preferences.

Wiki link http://depot.universaal.org/wiki/uim:IO_Buses

SVN link http://depot.universaal.org/svn/uim/trunk/bus.io/

Nexus link http://depot.universaal.org/maven-repo/org/universAAL/uim/mw.bus.io

Current status/
functionalities

I/O buses enable communication between applications and I/O handlers. The
artefact consists of two buses: the output bus for selecting an appropriate I/O
handler for presenting a dialog (prepared by an application) to the user and the input
bus for transferring the user input in this dialog (captured by the I/O handler) back
to the application. The output bus relies on the Dialog Manager (see the next
artefact) for the realization of the situation-aware selection of the right I/O handler
that is most suitable to process a certain output event.

• provide a dialog package for describing dialogs in a modality- and layout-
neutral way (inspired by XForms)

• handle explicit input by human users and system output addressing human users
based on a publish/subscribe mechanism

D2.2-A: universAAL Generic Platform Services, AAL platform services Part I: Report on the development work
and ontology artefacts

Last printed 05/04/11 16:58 Part I: Page 20 of 25

• responsible for finding best components (subscribers) that are able to process
certain events

• restrict their members and their messages to the ones implementing the right
interfaces

• the output bus accepts registration parameters from I/O handlers that describe
their capabilities in handling output events; I/O handlers can dynamically
update their registration parameters if needed

• the output bus defines protocols for suspending and resuming dialogs, dynamic
adaptation of “rendering” by a previously selected I/O handler during the
dialog is running, and transfer of responsibility to another I/O handler (the latter
two features as a function of changes in the user situation)

• the input bus automatically drops subscriptions when input event is delivered

Development
agenda

ENT: 3PM

Fh-IGD:
0.75PM

• M18: Upgrade the specification in all aspects including the dialog package, the
adaptation parameters, and the protocols, especially for a security-enhanced
matchmaking, support for redundant dialog managers, possibility for supporting
modality fusion and fission on the buses, possible improvement of adaptation
mechanisms, and addition of new features like “apply” and “overlay” protocols

• M21: finalize the provision of adaptation parameters, such as the concrete rules
for determining the modality, the necessity to use private I/O channels resp. the
freedom to use public I/O channels, etc.

• M24: finish the implementation of the upgraded specification

3.3.2 Dialog Manager

Black-box
description

Dialog Manager is the main (application-independent) component for handling
system dialogs. It (1) represents the whole system by providing system menus (a
unified view of all services available), possibilities to search for specific services,
and by handling context-free user input (user input that cannot be assigned to any
running dialog), and (2) assists the I/O buses by (2.1) acting as a representative for
the whole framework supporting context-awareness & personalization (i.e., the
framework under the responsibility of the CM expert group), and by (2.2) providing
user-specific management of dialogs initiated by different applications to protect the
user against a mess of parallel dialogs.

Wiki link http://depot.universaal.org/wiki/uim:Dialog_Manager

SVN link http://depot.universaal.org/svn/uim/trunk/dm/

Nexus link http://depot.universaal.org/maven-repo/org/universAAL/uim/ui.dm/

Current status/
functionalities

Handles system-wide dialogs:

• Provides for navigation through available service classes based on user- and
language-specific configuration files

• Provides means for users to suspend and resume dialogs (see also the

D2.2-A: universAAL Generic Platform Services, AAL platform services Part I: Report on the development work
and ontology artefacts

Last printed 05/04/11 16:58 Part I: Page 21 of 25

underlying mechanism in assisting I/O buses)

• Handles such user input that could not be assigned to any running dialog (the
so-called context-free user input)

Manages system reactivity (in universAAL, this feature is delegated to the AAL
Space Orchestrator):

• provides a database for associating service calls with situations

• subscribes to the context bus for all situations in the above database that are
associated with actions

• upon occurrence of the above situations, constructs a service request from the
associated action data and sends it to the service bus

Assists the I/O buses

• enriches output events by adding the (personal and situational part of)
adaptation parameters to them

• notifies the output bus to re-do match-making for the selection of the
appropriate I/O handler for any running dialog whenever relevant adaptation
parameters change

• manages parallel dialogs for several users based on priority queues of published
dialogs and takes care that only one dialog is presented to the user at each point
in time

• provides mechanisms for suspending and resuming dialogs

Development
agenda

ENT: 0.8 PM

Fh-IGD: 1.35
PM

• M18: Upgrade the specification in all aspects including

o overlaying of one dialog over another one to see how to upgrade current
solution especially when dealing with important notifications

o automatic main menus as an alternative to configuration files by taking
into account access rights of different users

o simulation mode to dialogs while changing adaptation parameters

o seamless use and interaction by multiple users at once

o possible additional "standard dialogs" beyond suspending running
dialogs & resuming with them

o possibility for proactively initiating dialogs that fit to a current
situation, e.g. "service chaining"

o different ordering of menus according to frequency of use or situational
conditions

• M21: Implement a first set of improvements

• M27: finish the implementation of the upgraded specification

• M33: remove the solution regarding "system reactivity" (see current
functionality") as this is now delegated to the Service Orchestrator in the expert
group for service infrastructure (wait with this action until the substitution is

D2.2-A: universAAL Generic Platform Services, AAL platform services Part I: Report on the development work
and ontology artefacts

Last printed 05/04/11 16:58 Part I: Page 22 of 25

available)

3.3.3 Different I/O Handlers

Black-box
description

Assuming that the separation between presentation and application layers is
achieved by the I/O buses (with the help of the Dialog Manager), I/O handlers and
supporting UI services can be added, removed or replaced dynamically and freely;
hence, they belong to the Common UIs building block of the reference architecture.
This kind of plug-ins will be responsible for capturing input (with or without
modality fusion) and presenting output (with or without modality fission) while
complying with the protocols of the I/O buses. To capture user input, I/O handlers
might decide to connect directly to certain input device types, use intermediate
native managers that handle the low-level connections to input devices and are able
to provide the data in its raw form or already interpreted in a specific context (like
window managers in case of graphical user interfaces), or subscribe to certain
context events that they expect to be published by input device controllers.
Similarly, to present system output to users, I/O handlers might decide to connect
directly to certain output device types, use intermediate native managers that handle
the low-level connections to output devices and provide sophisticated API at
different levels of abstraction (like window managers in case of graphical user
interfaces), or utilize device services on the service bus when they expect such
services to be provided by output device controllers.

Wiki link http://depot.universaal.org/wiki/uim:GUI_Handler

others to be added

SVN link http://depot.universaal.org/svn/uim/trunk/handler.gui/

others to be added

Nexus link http://depot.universaal.org/maven-repo/org/universAAL/uim/ui.handler.gui

Current status/
functionalities

From PERSONA, at least the GUI I/O-Handler and the Web I/O-Handler are going
to be used in universAAL. Currently, only the first one has been imported to the
UIM repositories. It renders the dialogs described in terms of the dialog package of
the I/O buses graphically using Java Swing as an intermediate native manager and
hence has to be installed separately on each node that has both the appropriate I/O
capabilities and the appropriate JVM, e.g. on computing devices with connected (or
integrated) display, mouse, and keyboard or on “all-in-one” TVs. It manages the
complete layout of the screen. Other characteristics are:

• divides layout in 4 areas: top (for title), bottom (for general purpose buttons),
main (for controls form) and right (for submit buttons)

• after receiving the data it manages the screen layout

• layout properties can be altered via .properties files

• 4 types of properties' values are:

o None (if properties file does not exist default values are used)

D2.2-A: universAAL Generic Platform Services, AAL platform services Part I: Report on the development work
and ontology artefacts

Last printed 05/04/11 16:58 Part I: Page 23 of 25

o General values (define layout properties for all services)

o Form values (define certain form's layout)

o Group level values (used by the group of controls based on their depth
level within the form)

Development
agenda

• M24: develop a new I/O-Handler for Android smart phones based on the
current GUI I/O-Handler (IBM: 1 PM)

• M24 & M33: Provide two updates of the GUI I/O-Handler (ENT: 3PM, UPM:
0.2PM)

• Provide at least one update of the Web I/O-Handler (not scheduled yet)

• M33: develop a new I/O-Handler that works purely gesture-based (Fh-IGD: 3
PMs)

3.4 RIEG – Remote Interoperability Expert Group
Wiki Home: http://depot.universaal.org/wiki/rieg:Overview

This group has finished the procedure defined in Section 3 of Part I of D2.1-A partially: the scope of
the group work and the related requirements have been specified; the design decisions regarding
import and export of functionality between AAL spaces and remote assistance sites has been made;
inspection of reusable code is also mostly done; but, the design decisions regarding support for remote
admin, and gateway-gateway communication between two AAL spaces are not finalized yet; also, the
group is still lacking a clear action plan so that the development plan has remained very roughly;
accordingly, the wiki pages must reflect the latest results as the group makes progress with its design
decisions and action plans.

The reason for a slower progress in comparison to most of the other expert groups is the fact that there
has been little correspondence between what was done in the input projects with what is supposed to
be covered in the scope of RIEG as a novel approach. This causes that the group is forced to reach to
its own design decisions from scratch.

Some parts of the work in the input project OASIS, such as semi-automatic generation of semantic
service descriptions from web service description languages (such as WSDL), seem to be relevant for
RIEG but the group still needs to make more concrete design decisions, on one side, and reach a better
understanding of the boundaries with tools possibly related to WP3, on the other side. Other OASIS
work that was assumed in the beginning to be relevant for RIEG, however, has shown to be more
related to the ontology management tasks in the Middleware expert group and / or to the tool support
by WP3; examples are the OASIS ontology repository and mechanisms for ontology mapping.

The expert group has identified three major components with the following rough division of work but
has not decided yet how to modularize the components in terms of concrete software artefacts in the
SVN repositories:

Major Component Work Item Description Partners’ intentions
already stated

D2.2-A: universAAL Generic Platform Services, AAL platform services Part I: Report on the development work
and ontology artefacts

Last printed 05/04/11 16:58 Part I: Page 24 of 25

AAL Space Gateway3
(ASG)

importing
subcomponent

When the inhabitants of an AAL
space decide to use functionality
provided by an external entity
from within their AAL space in a
seamless way (or the provider is
interested that the functionality is
provided to the AAL space in a
seamless way) then the provider
agent must be “proxied” locally.
This subcomponent defines the
related protocols, provides the
necessary interfaces, and plays the
proxy role for all such external
service agents.

CNR-ISTI and Fh-
IGD contribute to the
specification.

exporting
subcomponent

When software running on remote
assistance sites needs to access
functionality from an AAL space
(e.g., call services or receive
context events) it must register to
the service and context buses of
the AAL space. This can be done
by the same proxy as above by
providing the conversion of access
methods in the reverse direction.
The security mechanisms defined
by the Security expert group must
also be considered.

AIT and Fh-IGD
contribute to the
specification. AIT
plans also about 1 PM
for the
implementation.

ASG-ASG
communication

Provides for the needed level of
connectivity and exchange of
functionality and data between
two AAL spaces.

CERTH, CNR-ISTI,
and Fh-IGD
contribute to the
specification. CNR-
ISTI plans also about
2 PMs for the
implementation.

Mobile version User’s near-body mobile AAL
space needs also such an ASG
functionality that must be
activated on a mobile device worn
or carried, as soon as the user
leaves the home environment.

none

3 Remote access by human users to AAL Spaces, either service personnel of a service provider or the AAL space
inhabitants when outside or any other person with appropriate permissions, can be done by normal Web access
to AAL spaces through the gateway, because the gateway can activate the Web I/O-Handler for this purpose (see
UIM). Hence, there is no remarkable work item in this regard in RIEG.

D2.2-A: universAAL Generic Platform Services, AAL platform services Part I: Report on the development work
and ontology artefacts

Last printed 05/04/11 16:58 Part I: Page 25 of 25

Local agent for
providing services
that can be accessed
by special service
providers (through
the ASG) for
administrating the
AAL space remotely

node-level
admin

Administration services related to
the configuration of individual
nodes in an AAL space

CNR-ISTI contributes
to the specification.

space-level
admin

Administration services related to
the configuration of an AAL space
as a whole

CNR-ISTI contributes
to the specification.

communication
with uStore

When the user decides to
download a certain AAL
application from uStore, then the
uStore software needs access to
certain administrative services in
the AAL space

CERTH and Fh-IGD
contribute to the
specification. CERTH
also plans about 1 PM
for the
implementation.

Tools (WP3?) service profile
generation

In order for the importing
subcomponent of the ASG to
proxy remote service agents, it
needs their set of service profiles.
This tool should automate the
generation of the service profiles
from agent’s original API (e.g.,
from WSDL).

CERTH plans 3 PMs
for the design and
implementation.

