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Extended Abstract 

The reconstruction of large-scale real outdoor environments is crucial for promoting the adoption 
of Extended Reality (XR) in industrial and entertainment sectors. This task often requires significant 
resources such as depth cameras, LiDAR sensors, drones, and others, alongside traditional data 
processing pipelines like Structure-from-Motion (SfM), which demand extensive computational 
resources, thus preventing real-time processing. Additional constraints arise from the limited 
accessibility to the aforementioned resources. While 3D laser scanners (e.g., LiDAR) are precise and fast, 
they are expensive, often bulky  especially the high-quality models  and their effectiveness is 
contingent on the type of environment being scanned. Depth sensors offer a more affordable and 
compact alternative; however, due to their limited range, they are ideal only for indoor settings. 
Photogrammetry, while capable of producing high-quality results at a lower cost, can be time-
consuming and computationally intensive. It also suffers from limited accuracy, strong dependence on 
lighting conditions, and the need for numerous photos from various angles that can be not always easily 
accessible. 

To address these limitations, we initially proposed a Spatio-Temporal Diffusion neural architecture 
(Federico et al., 2024), a generative architecture based on diffusion models. This solution integrates 
simple and cost-effective temporal information (a brief temporally ordered sequence of photographs) 
with spatial information (a rough approximation of the environment to be reconstructed) to rapidly 
reconstruct complex 3D environments, filling in missing or noisy information. The use of a neural 
architecture stems from the need to achieve real-time processing, while the application of generative 
artificial intelligence serves to compensate for the lack of information, arising from the absence of access 
to costly resources or situations where certain data are unattainable (e.g., an unreachable viewpoint). 
We also introduced a novel 3D representation termed the Most Informative Part (SDF_MIP), a 
modification of the well-known Signed Distance Field (SDF) that aims to symmetrically distribute positive 
and negative voxels — a requirement we identified as essential during network training, particularly for 



 

 

Page 2202 of 3317 

WebAR for Construction Visualization 
Riedlinger, U. 

outdoor environments. Our model comprises a two-stage network: the first stage fuses temporal and 
spatial information to generate the missing data Figure P 29, left), while the second stage converts the 
SDF_MIP representation back to SDF (Figure P 29, right). An optimal trade-off between reconstruction 
quality and execution speed was achieved using the DDIM scheduler. 

 

 

 
 
         
 

 
 

Figure P 29. Stage 1 (left) and Stage 2 (right) of our Spatio-Temporal Diffusion Neural Architecture. 

 
Despite encouraging results, the reconstruction of complex environments required prohibitively 

long training times and high computational costs, failing to overcome the aforementioned limitations. 
Furthermore, the proposed solution does not scale well with the resolution and complexity of the target 
environment. We are currently developing a generative network architecture called Neural-Clipmap and 
an associated algorithm that alleviates training burdens, enables scalability, and minimizes 
computational and memory requirements. Specifically, the algorithm hallucinates and build a high 
quality version of a complex environment with a divide and conquer strategy by enhancing the structure 
of the underlying supporting octree, where each leaf is an atomic unit of computation (Figure P 30). 
Supported by the generative network (the diffusion one) (Ho et al., 2020), it determines whether a leaf 
node requires a coarsening operation (i.e., the input leaf is overly detailed and should be removed, 
refinement (i.e., the leaf requires further detailing), or no operation at all. The algorithm operates in two 
iterative phases (Figure P 30). In the first phase, for each leaf of the coarse octree, the generative network 
uses contextual information to modify it: a series of frames of color images of an hypothetical actor 
driving around a path, and the spatial neighbors of the leaf. The latter are taken at multiple levels. In 
particular, given a leaf, its spatial neighbors correspond to the nodes around it and, going up a level, 
those around the leaf's parent and so on up to the root. These two phases dynamically allow the octree 
levels to be pruned or increased. The generative network leverages the contextual information from our 
initial work (Federico et al., 2024), but it now employs a video vision encoder Arnab et al., 2021) to create 
a compact representation of the RGB frames. In this phase, we encountered challenges with training 
when using SDF or SDF_MIP, as the network struggled to appropriately correlate the contextual 
information. Consequently, we adopted the Triplane representation Chan et al, 2022), inspired by recent 
successes in neural representations, yielding more promising preliminary results. 
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Figure P 30. The Neural-Clipmap algorithm progressively converts a coarse octree into a detailed octree. 

 

However, generating the Triplane representation for every leaf of the octree and for each model in 
our dataset results in a frustrating delay. Additionally, increasing the model resolution exponentially 
raises the number of leaves, thereby contradicting our goal of easy scalability with resolution. 
Concurrently, we are exploring the use of 2D diffusion models (Ho et al., 2020) as priors for 
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reconstructing complex 3D environments. In this new attempt we minimize the input data by using only 
sequences of RGB images. Through a monocular depth estimator (Yang et al., 2024), we generate an 
initial point cloud of the environment, serving as the initialization for a 3D Gaussian Splatting 
representation (Kerbl et al., 2023). However, these points represent partial information, as the RGB image 
sequence covers only a portion of the environment. Thus, we employ 2D diffusion models as priors, 
utilizing a recent technique known as Score Distillation Sampling (SDS) (Poole et al., 2022) to reconstruct 
the missing information by moving the camera to points of interest. Unlike other works based on this 
technique (Lin et al., 2023; Tang et al., 2024; Liu et al., 2023) our challenge lies in starting from images 
rather than text and ensuring the consistency of the generated missing information with the existing 
data (termed "anchors"). SDS has been employed to generate simple 3D models and, despite this, 
suffers from various issues such as the Janus problem (Armandpour et al., 2023) difficulty in determining 
the appropriate guidance value, and overly saturated or blurred colors. To compensate for the lack of 
text guidance for the SDS, we used an image prompt adapter Ye et al., 2023). To tackle the issues of 
overly saturated or blurred colors, we devised a two-phase approach. The first phase uses the SDS (with 
an inpainting diffusion model) for initializing the missing parts, which may exhibit the aforementioned 
problems. The subsequent phase involves inpainting over the areas initialized by the SDS. For inpainting 
to work effectively, the missing parts require some initialization coherent with the real information 
available. Classical approaches include initializing the missing region with the average color of the real 
data, Perlin Noise, or, though slower, using an algorithm known as Patch Match (Connelly et al., 2009). 
We propose using SDS (Figure P 31, top) as a new method for initializing the missing areas and 
employing inpainting in the next phase (Figure P 31, below) to mitigate issues with saturated and blurred 
colors. Stage 1 is crucial not only for initializing the missing regions but also for performing multi-view 
inpainting in a manner consistent with other views, which would be unfeasible if starting directly from 
Stage 2. Furthermore, we could introduce a third Refine phase, where we add some noise to the 
rendered views and subsequently employ a standard diffusion model to denoise them, thereby 
eliminating any residual noise that may persist after Stage 2. For better quality results, the diffusion 
model for the refinement phase will likely be fine-tuned using the anchor images with the prior 
preservation technique (Ruiz et al., 2023) 
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Figure P 31. Starting from a sequence of images (the anchors), a monocular depth estimator is used to initialize the 
point cloud and then gaussian splatting is used to render the views and optimize its parameters via Score 

Distillation Sampling (Stage 1, above). The inpainting model is then used to realistically fill the parts filled but 
blurred by Stage 1 (Stage 2, below) 
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