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Abstract The community structure is one of the most

studied features of the Online Social Networks (OSNs).

Community detection guarantees several advantages for

both centralized and decentralized social networks. De-

centralized Online Social Networks (DOSNs) have been

proposed to provide more control over private data.

Several challenges in DOSNs can be faced by exploit-

ing communities. The detection of communities and the

management of their evolution represents a hard pro-

cess, especially in highly dynamic environments, where

churn is a real problem. In this paper, we focus our

attention on the analysis of dynamic community detec-

tion in DOSNs by studying a real Facebook dataset.

We evaluate two different dynamic community discov-

ery classes to understand which of them can be applied

to a distributed environment. Results prove that the so-

cial graph has high instability and distributed solutions

to manage the dynamism are needed and show that a

Temporal Trade-off class is the most promising one.

Keywords Decentralized Online Social Networks,

P2P, dynamic community detection

1 Introduction

Static features, such as clustering coefficient or central-

ity of Online Social Networks (OSNs) have been largely

studied. In particular, the community structure is one
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of the most studied feature of the OSNs and it has

attracted wide attention. The general notion of com-

munity refers to the fact that nodes tend to form clus-

ters which are more densely interconnected through so-

cial relationships, relatively to the rest of the network.

Communities reflect the behaviour of users and a high

percentage of shared contents are generated by com-

munities (or groups) of social users. During the last ten

years, the increase of the amount of social data pro-

duced by social users, has put users inside several pri-

vacy issues. Centralized solutions for OSNs have been

considered the main weak point in the problem of guar-

antee a certain level of privacy. To overcome this issue,

decentralized solutions, known as Decentralized Online

Social Networks (DOSNs), have been proposed. The de-

centralization includes several benefits, in particular in

terms of privacy preserving, but it introduces new chal-

lenges that have to be faced. In particular, the problem

of data availability is one of the most important ones.

Current proposals manage the problem of data avail-

ability through a user-centric point of view, and no ap-

proaches take into account groups (or communities) of

users. However, communities are useful to face other

issues concerned DOSNs, such as information diffusion

and privacy.

Several studies are proposed to manage the commu-

nity detection in dynamic environments, such as Mobile

Networks or Opportunistic Networks. However these

studies manage scenarios in which mobile devices make

contact with each other and they consider a community

as a group of connected nodes.

By considering the importance of community detec-

tion and the high level of dynamism in DOSNs, this

work propose a study concerns the need of community

discovery algorithms in DOSNs. Our analysis have been

conducted by exploiting a real dataset, gathered from
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Facebook. We analyse two different community detec-

tion approach and we analyse the pros and cons of them

when applied in a distributed environment. The final

goal of our work is to show how centralized community

detection differs from the reality and which kind of ap-

proach we have to use to develop a distributed commu-

nity detection algorithm. To understand how central-

ized analysis differs from a distributed one, we define a

set of community change events that permit us to un-

derstand the dynamic of the social network. We study

dynamic communities from a user-centric point of view,

by exploiting the ego network model, to evaluate how

frequent the communities change over time and which

events are more frequent. All our studies show the need

of a distributed approach to manage the problem of the

high instability of the social graph over time when we

consider the online presence of users, and we show that

among the three main classes proposed for Dynamic

Community Detection [26], the Temporal Trade-off ap-

proach seems to be the most promising one. This work

is an extended version of [17]. In the original work the

main idea was to study the communities in a dynamic

fashion and evaluate the possibility and the method to

use dynamic communities to address a specific problem

of DOSNs: the one of data availability. With respect to

the original work, in this work we generalize and extend

the possibility to use dynamic communities as support

tool also for other interesting and challenging problems

of DOSNs: information diffusion and privacy in primis,

but also to the other problems. We put more empha-

sis also in the feasibility of adopting a specific dynamic

community detection method and we show that some

methods cannot be borrowed from literature because of

the information they use to perform the task. We ex-

tended this work with a study involving a new commu-

nity detection algorithm with a logic that is completely

different from the one used in the original work. This is

meant to show that the community detection problem

can be understood in many different ways, thus lead-

ing to different and often non compatible results. We

performed the same set of analyses with the second al-

gorithm and compared them with the results obtained

in the previous work. Then, we also extended the sets

of analyses with a study in terms of similarity between

communities detected by the two approaches.

In this contribution we pose ourselves two research

questions:

1. is it really necessary to consider dynamic approaches

when we study problems in context where churn is

a real thing? Studying networks statically is much

easier because they do not change over time, so the

study can be carried out only once. Switching to a

dynamic study adds some problems, one of which is

addressed by the second research question.

2. Among all the techniques to study dynamic com-

munities, is there any technique that fits better the

classical scenario of the DOSNs?

As we will see in the following sections of this paper,

node churn is critical in DOSNs, thus requiring us to

study these networks in a dynamic fashion. Moreover,

we will also show that not all dynamic community de-

tection algorithms fit the scenario of DOSNs, making

a class of approaches more suitable for the aim with

respect to others.

The important contribution of this work is that,

even we consider a specific scenario, such as a DOSNs,

our contribution could be applied to other distributed

systems (i.e. wireless sensor networks), by taking into

account the specific constraints.

This paper is organized as follow. In Section 2 we

describe the related work. In Section 3 we introduce the

dynamic community analysis in DOSNs. A preliminary

analysis is showed in Section 6. Section 4 introduce our

DOSN scenario and how dynamic community detection

is important to manage main DOSNs’ issues. Section 5

show our study by focusing on two of the three dynamic

community detection approaches. In Section 6 we intro-

duce our results obtained by analysing a real dataset.

Finally, conclusions and future work are presented in

Section 7.

2 Related Work

In this section we describe the two fields involved in our
work. First of all, we introduce current DOSN proposals

by describing their characteristics. Afterwards, we in-

troduce the state of the art in the dynamic community

detection field.

2.1 DOSN’s approaches

DOSNs [9] have been proposed, mainly, in order to over-

come the privacy issues of the centralized OSNs. The

decentralization of most of the current proposals is usu-

ally implemented by a P2P network.

Diaspora1, with about 669,000 users, is one of the

most successful DOSN proposal currently active and

deployed in a decentralized way. A user joining the ser-

vice must register himself to a so-called pod. Pods can

be seen as servers containing the information of the

users registered to them, and can communicate with

1 https://joindiaspora.com/
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each other thus forming a network. Diaspora also in-

troduces the aspects as a mechanism to share informa-

tion with specific subsets of one’s contacts. Each user

can define his own aspects which are sets of his friends

on the DOSN. A content shared with an aspect will

not be seen by users outside it. This mechanisms allow

the users to have a high level of privacy both inside,

with respect to other users, and outside, with respect

to third parties, the DOSN.

PeerSoN [2] is one of the most well-known DOSN

after Diaspora. It is implemented as a logical two-tier

system. The first tier is used for the lookup service,

while the second tier is used as a communication layer

between users of the DOSN. The look-up service stores

both the meta-data required to find users (IP address)

and the data they store (profile information, contents,

etc...). In the original work, authors used a Distributed

Hash Table (DHT) to implement this layer. A peer, to

connect to another peer, gathers the needed informa-

tion from the look-up service, then directly connects to

it.

SafeBook [8] is made of two layers: a P2P overlay

implementing lookup services, and a user-centric social

overlay implementing the main functionalities of the so-

cial network. The social overlay is composed by a set

of structures named Matryoshkas, which are concen-

tric rings of peers built around each user. Matryoshkas

are connected through radial paths from the outer one,

through inner ones, up to the core node. These paths

are built over the social network itself by using trusted

relationships. The social overlay guarantees a trusted

data storage, profile retrieval, and an obscure commu-

nication through indirection.

LifeSocial [13] is a plugin-based social network. This

philosophy makes it highly modular and easily extensi-

ble. Data within the service is stored by using a DHT

and cryptography. In particular both symmetric and

asymmetric techniques are used to provide a high level

of privacy. Also messaging between users is handled

through the overlay given by the DHT.

A similar approach is Cachet [23], which replicates

profiles on the DHT to guarantee the data availabil-

ity. Read-policies are used to increase the privacy of

users by controlling who can read each user’s data,

while write-policies protects the system from malicious

data overwrites. Access policies, both read and write,

are enforced by the extensive usage of cryptographic

techniques. One original contribution by this work is a

social caching algorithm. Furthermore, a gossip-based

algorithm is proposed to let peers exchange cached, un-

encrypted social data.

DiDuSoNet [15], similarly to others, is made of two

layers: a lookup overlay and a social overlay. The lookup

overlay is implemented with a DHT, instead the social

overlay is a Dunbar-based social overlay where connec-

tions between nodes correspond to social relations be-

tween users in the Dunbar-based ego network and it

is used to manage the main social services provided

by the system. For instance, to address the problem of

data availability, the concept of Point of Storage (PoS)

is introduced as a particular instance of a replica-based

technique. The number of replicas of each profile is min-

imized by considering only two replicas.

2.2 Dynamic Community Detection

Community Discovery is a relatively novel, yet intrigu-

ing, task in complex network analysis [1,3]. There is

no a formal definition of the task that is widely ac-

cepted, but, intuitively, its goal is to identify clusters

of highly connected nodes. A first definition of commu-

nity is given by [6], where a community is defined as a

set of entities that share some closely correlated sets of

actions with the other entities of the community.

Up to now, most of the research in this field fo-

cused on static networks, modeled by static graphs that

do not change over time. Unfortunately, this simplifica-

tion does not describe well real-world scenarios and the

dynamic nature of most complex networks. As for the

static case, it is hard to formally define what a dynamic

community is. A very abstract definition is proposed in

[26], which does not make any assumption on the com-

munities to be found and the method to find them.

Up to date, the two most practical models used to
represent dynamic networks are the Temporal Networks

and the Network Snapshots.

Temporal Networks model is the most complex

method which provides all possible temporal details.

In this approach the information is decomposed into

elementary bricks: series of temporally ordered, times-

tamped, relations. This representation of the network,

which is the closest to the real-world scenario, allow a

very fine-grained representation of the dynamics.

The idea behind the Network Snapshots model is

to aggregate data over a discretization of time. Rather

than storing every single perturbation of the network,

the network is observed at, possibly periodic, instant of

times and its state is recorded. This gives us an ordered

set of networks, each representing the state of the net-

work as observed at a particular instant of time. Even if

this model is less expressive than the previous one, it is

also easier to use it as each snapshot can be considered

as a standalone network.
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2.2.1 Dynamic Community Detection approaches

Dynamic Community Detection Algorithms can be di-

vided into three main classes [26]: Instant-optimal Com-

munity Detection, Temporal Trade-off Community De-

tection, and Cross-Time Community Detection. Each of

these three classes corresponds to a different definition

of Dynamic community with respect of which informa-

tion is used to determine communities at a given time

instant t.

In the Instant-optimal Community Detection

class, communities existing at time t only depend on

the state of the network at time t. No past or future,

with respect to time t, information is used in discov-

ering communities at time t. The network evolution is

seen as a series of successive steps, which makes the

Network Snapshot a more natural model to work with.

In the second class, Temporal Trade-off Commu-

nity Detection, communities defined at a time instant

t depend on the actual state of the network and the

past information, possibly up to the initial known state.

Typically this is done by an iterative procedure which

consist of an initial bootstrap and successive updates.

During the bootstrap communities are found in the ini-

tial state of the network, while during the successive up-

dates communities are updated using the current state

of the network, current communities and other past in-

formation. Finally, we find in the Cross-Time Com-

munity Detection class all the methods that use all

available information, i.e. past, current and future, to

identify communities at instant t.

Dynamic communities show a life-cycle during their

evolution. In detail, several studies [24,31,3] have an-

alyzed the dynamic behaviour of social communities,

and a list of events are proposed:

– Birth: this event is identified when a new community

appears for the first time;

– Death: a community is vanished: all nodes belonging

to the vanished community lose this membership;

– Growth: a community increases its size due to the

adding of one or more nodes (or relations) to the

social graph;

– Contraction: some nodes are rejected by a commu-

nity thus reducing its size;

– Merge: two or more existing communities merge into

a single one due to changes to the social graph;

– Split : a community, as consequence of node/edge

vanishing, splits into two or more components;

– Continue: a community remains unchanged;

– Resurgence: a community vanishes for a period, then

comes back without perturbations as if it has never

stopped existing. This event can be seen as a fake

death-birth pair involving the same node set over a

lagged time period (example: seasonal behaviors).

Figure 1 shows a graphical representation of the

above events. This toy example captures the eight

events that regulates dynamic community life. In the

first row Birth and Death; in the second row Growth

and Contraction; in the third row Merge and Split; in

the fourth row Continue; in the last row Resurgence.

Growth Contraction

Merge Split

Birth Death

Continue

t t+nt+n-1t+1

Resurgence

Fig. 1 Graphical representation of Community events.

3 Dynamic community analysis in complex

dynamic networks

Dynamic Community Discovery is an interesting novel

task in the area of Complex Networks. There are sev-

eral techniques to address it, each showing peculiar

strengths and weaknesses. Up to now, all the studies
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concerning Dynamic Community Discovery focus on

the a posteriori study of the evolution of the community

structure through time and they are executed in a cen-

tralized way (low end entities can gather data which is

transfered to powerful clusters where the actual compu-

tation is made). Clearly, Dynamic Community Discov-

ery is very important and it can be used to better un-

derstand how networks evolve through time. However,

the analyses are run only when all the data is collected,

and there is no waste of computing power because all

data is available when the computation starts.

However, distributed systems, such as P2P networks

or IoT, require some constraints that were not needed

in centralized systems, or in the a posteriori analysis.

In detail, problems rise when the community structure

itself, or a derivative analysis result, is needed on the

fly as the system lives and changes. In this cases, a

posteriori analyses are not useful tools because, for in-

stance, results are too old to be used when they are

ready. Moreover, there exist distributed systems which

needs to change their behaviour on the fly in respect of

the results of the analysis. One of the main constraint

in these systems concerns the high dynamism of the

network they model.

Several approaches proposed to manage the prob-

lem of community detection in social networks take into

account the evolution of the social graph in term of

friendship relationships (or co-authorships [30,29]), or

in term of interactions between users (or call graphs

[14]).

Focusing on a single user, its friendship relation-

ships do not change so frequently. Instead, interactions

of each nature (calls, emails, posts, tweets, etc...) suffer

of a different level of dynamism. However, the study of

the interactions graph represents a different evaluation

of the social graph, because the interaction graph is an

abstraction of the social graph that should be repre-

sented as a weighted and usually directed graph [16].

In a distributed system, such as a DOSN, an interest-

ing evaluation concerns the study of dynamic commu-

nity by considering the temporal behaviour of users. As

showed in our previous work [28], the static view of an

ego network and, as a consequence, its communities are

completely different when we consider the time-varying

ego network.

The aim of this paper is to show that there is a

huge difference in the results when the analyses must

be performed on the fly with respect to the a posteriori

ones. In detail, we will take the DOSNs as case study

and perform some investigations.

In the follow, we describe more in detail our DOSN’s

architecture by explaining how our architecture is or-

ganized. Moreover, we explain the problems of DOSNs,

with a special focus on privacy, information diffusion,

and data availability. Finally, we give our definition of

the events occurred during the normal activity of a

DOSN which involve the dynamic communities.

4 DOSN: our scenario

A current trend of DOSNs is the usage of a social over-

lay [15], which represents in some way the friendship

relationships between users, to implement the needed

services. The network topology resulting is generally

known as a Friend to Friend network (F2F) in which

users only make direct connections with people they

know, i.e. their friends on the DOSN. Usually, the so-

cial graph of each user is referred by using a well-known

social network model known as Ego Network [21]. The

Ego Network is a structure built around the ego which

represents the user’s knowledge of the network. In fact,

the Ego Network of a user is made of his direct friends,

known as alters, and the existing ego-alter and alter-

alter relations (Figure 2). Formally, each vertex u ∈ V
can be seen as an ego and EN(u) = (Vu, Eu) is the ego

network of u where Vu = {u} ∪ {v ∈ V |(u, v) ∈ E},
Eu = {(a, b) ∈ E|{a, b} ⊆ Vu} and E is the set of edges

present in the original graph. N(u) = Vu − {u} is the

set of adjacent nodes of u.

Fig. 2 This image shows an example of an Ego Network.
The ego, the red node, is connected to all its alters, the blue
nodes. Also the relations between alters are included in the
Ego Network.

In a DOSN, the Ego Network model reflects the lo-

cal and limited knowledge that each user has about the

whole network. A F2F network can be formally repre-

sented by using an Ego Network to model the social

graph and we assume a one-to-one mapping between

the users of the OSN and the nodes of the DOSN [15].
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4.1 Problems in DOSNs

Decentralization brings major benefits mostly to users

in terms of privacy, but also introduces new interesting

challenges and problems to be addressed by the devel-

opers. We now briefly discuss this problems:

– Dynamism. In a DOSN there are two types of dy-

namism: a social and an infrastructure dynamism.

The social dynamism concerns social relationships

which can change due to the variation of relations

between users, i.e. users forming new relations or

breaking existing ones, and of the total number of

users registered on the DOSN. This kind of dy-

namism is present also in centralized OSNs, but in

DOSNs it has a major impact on the service de-

livered because it affects the structure of the so-

cial overlay. The infrastructure dynamism is related

to the underlying overlay network. Users arbitrarily

decide when they go online or offline in the sys-

tem, accordingly nodes in the underlying network

representing users may appear or disappear. In dif-

ferent time instants, the available connections of

the overlay may change in term of active links and

nodes. Now, even though both types of dynamism

are present in DOSNs, social dynamism is less dan-

gerous because it is a quite rarer effect. Moreover,

in this case, it is more common to create new links

rather than destroying existent ones [20]. This high

level of dynamism must thoughtfully be taken into

account when developing the service and, most of

the times, very specific algorithms are needed.

– Data availability/persistence. Without a central en-

tity providing data, proper storing methods must

be designed to let it always be available. Data avail-

ability is a real hard problem for every distributed

environment. One of the main used technique is the

replication [32]. Several proposed solutions have ex-

ploited the social overlay to store data among nodes

in the networks. A current trend is to use trustwor-

thiness to choose replica nodes because of the need

of a high level of privacy inside the system, such as

in My3 [22]. In [15,11] a friendship-based replication

schema is proposed. A friendship-based replication

schema chooses replica nodes by taking into account

the friendship relationships between users. Indeed,

consider an ego node e, only its friend nodes can be

chosen to be its replica nodes.

– Scalability. Scalability is a crucial property of large

scale systems. Simply mapping a social graph onto

a distributed network can be very expensive due to

the number of social links for each node, so the cost

of mirroring the social network links into distributed

network links can be high. It can also be very inef-

ficient. As discussed previously, most of the social

links are inactive (i.e. two friends who rarely inter-

act online).

– Topology. Nodes should be connected according to

their social connections in order to cluster friends

in the overlay network. This should facilitate oper-

ations as information diffusion or data storage. As

a downside, this would limit the availability and ro-

bustness of data access if a user has only few online

friends.

– Information diffusion. This issue is related to how

to deal with updates, i.e. new content generated by

users. A key feature for a successful DOSN is the one

of making the service the closest possible to a real-

time service to supply the freshest possible informa-

tions to the users. For this reason it is very impor-

tant to design an effective mechanism that imple-

ments Information diffusion. In centralized OSNs,

the spread of new content to other users is granted

for free in such system thanks to the uniqueness of

this repository because all users can only receive

informations through it. In decentralized systems,

users have a limited knowledge of the network and

communication between users’ devices happen on

the overlay. In DOSNs based on a Social Overlay,

users can directly communicate each other if there

is a social link connecting them [5], and, since data

can only travel through social links, there is the need

of specific information dissemination strategies to

spread information over the DOSN.

– Privacy. While having an increased level of privacy

was the main motivation to move to a decentral-

ized implementation of the service, maintaining an

overall high level of privacy is a complex problem

for DOSNs. In the centralized version, privacy was

granted by the service provider, as long as its servers

are secure from attacks. The major downside is the

fact that the service provider itself could maliciously

violate the users’ privacy by exploiting their data,

for instance by selling them to third parts. In dis-

tributed services this is no more possible because,

in principle, each user decides who can access their

data. Current DOSNs typically make use of encryp-

tion, both symmetric and asymmetric, to preserve

the privacy of a user with respect to other users.

In this paper, we focus our attention on the usage

of community discovery to manage three of the main

problems of DOSNs: Data availability, Information dif-

fusion and Privacy.
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4.2 Dynamic Community Analysis to manage DOSN

issues

Community structure is of great interest in the study

of complex networks. In addition to the interest by the

algorithmic point of view, it is also interesting because

it can uncover hidden properties if properly carried out.

A relatively novel usage of community structure is the

one to improve systems that can be modeled through

a network by actively exploiting it in the implementa-

tion of the system. The usage of community in DOSNs

represents a promising and uncovered solution. As dis-

cussed in Section 3, DOSNs suffer of a high level of dy-

namism and for this reason, we are interested in study-

ing how communities evolve during the online activity

of the system due to the online/offline of users to under-

stand which events could happen and the frequency of

them. Communities in DOSNs can be applied to man-

age the problem of data availability by implementing

a new content-based replication technique to address

data availability. For sake of clarity, a content based

point of view concerns the problem of finding groups

of users which are interested into the same content to

minimize the number of replicas [17]. The presence of

densely connected groups of nodes can be exploited to

increase the level of data availability and to minimize

the replicas. A possible approach could be to exploit

the community structure to store at least one replica

of the whole profile or of interest content for the users

belonging to the community [17]. Furthermore, com-

munity structure can be exploited to manage the in-

formation diffusion issue by discovering groups of users

which share the same interested and guide the infor-

mation among the discovered communities. Finally, in

terms of privacy, community structure can be exploited

to study problem of privacy, and to guarantee a high

level of privacy.

Some studies about community detection in dy-

namic P2P networks have been presented. Many of

these approaches are basically just a distributed version

of the Label propagation [25] approach. For instance,

in [4] authors propose a revised label propagation di-

vided in five phases, each of which has a different rule

to update the labels of nodes. A simpler approach is

presented in [18], where the rule to update the labels of

the nodes is based on a similarity metric. Moreover, in

[19], authors propose a distributed approach for local

dynamic community detection and three implementa-

tion variants. In this case, the distributed nature of the

algorithm induces a very weak consistency among the

nodes of the network. Contrary to the presented works,

the distributed approach we consider is missing in lit-

erature should be a pure Temporal Trade-off approach,

which can be implemented by exploiting a P2P net-

works, and by exploiting a super-peer approach, when

super-peer nodes can build and manage the evolution

of communities.

4.2.1 How community change events affect DOSNs

In this study we refer to the events proposed in [30]

and we do not consider the event survive, usually re-

ferred as growth and shrink, due to the fact that this

event gives little information about the evolution of the

communities in the network.

Considering the problems concerned DOSNs and, in

detail the proposed community-based replication tech-

nique explained in Sec. 4.2, the events birth, death, split

and merge can affect the level of data availability. More-

over, these events can affect the diffusion of the infor-

mation. Birth events are critical, especially with respect

to the data availability, and they are one of the main

issue that has to be faced. Indeed, a newly formed com-

munity may have no information about the most fresh

contents created by the ego and nodes inside such com-

munities and it must find a way to retrieve the informa-

tion. Death events, reported to give us more information

about node churn in such dynamic context, are no con-

cern in a replication technique because offline nodes do

not need any content. Instead, they have a huge impact

in the information diffusion problem: when a commu-

nity disappears a community-based routing technique

must adapt accordingly. Finally, Merge and split events

are important because, in the former case, nodes that

belong to different communities converge in the same

community, so they should merge the available infor-

mation, both social and routing, and probably a few

replicas of data can be dropped. In the latter case, split-

ted communities suggest that communities may become

more distant over time, so the content may need to

be redistributed and replicated over the newly formed

communities.

5 Our Dynamic Community Study

A real interest in studying the dynamic community in

distributed environments is to understand how the net-

work changes and in particular, after defining what we

intend as community, how the community evolves dur-

ing the time.

As explained in section 2.2.1, the current dynamic

community detection approaches are three: the Instant-

optimal Community Detection, the Temporal Trade-off

Community Detection, and the Cross-Time Community

Detection. Each of them have some peculiarities, both

in the way communities are discovered and the result
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itself. This fact, ultimately pose the systems develop-

ers a big question: which is the best dynamic commu-

nity detection method considering our scenario? We al-

ready know that there is no approach that is clearly

and always better than the others, but rather they show

better results according to their strengths. Before mov-

ing into the study of the different Dynamic Community

Discovery approaches, we make some considerations on

the feasibility of the application of this methods in our

scenario. Both the Instant-optimal and the Temporal

Trade-off approaches are applicable because communi-

ties are evaluated considering only the current state of

the network in the first case, and considering also past

information in the latter case. However, the Cross-time

Community Discovery approach can not be useful in

this kind of environment because, since communities

are used within the functioning of the system, it must

be possible to discover them while the system lives. This

fact makes the third approach unusable because it also

requires all the future possible information which is not

available. For this reason, in the following sections, we

present the two approaches we used to study the dy-

namic nature of communities.

In first place we present the instant-optimal study,

which is a common way to study dynamic communities

due to the intuitive reasoning behind it. Then we move

to a temporal trade-off one, which is still quite easy to

understand, but very closer to a real-world distributed

application.

In the Instant-optimal study we analysed the com-

munity evolution at periodic time instants. In particu-

lar we extracted a Network Snapshots representation

of the network from our dataset, then we extracted
communities for each of this snapshots using a static

community discovery algorithm taken from literature.

This process yields a set of communities for each of

the snapshot. Finally, to evaluate the dynamism of the

community structure, we need to match this commu-

nities using some metric. After choosing such a metric

from the literature, we redefined the community events

relevant to us, according to our scenario.

Considering the fact that Community Discovery is

a complex task, we believe that re-evaluating commu-

nities from scratch whenever they are needed may be a

waste of time and computing power. Therefore in the

Temporal Trade-off study we analysed the network with

an approach in which communities are updated, rather

than computed from scratch, every time a new entity

joins the network. In this case, we only had to choose

an algorithm in the Temporal Trade-off approach capa-

ble of handling these updates. There is, in principle, no

need to redefine the events describing a dynamic com-

munity life cycle, and therefore no need to define a sim-

ilarity metric to match communities found at different

time slots. This is because the Dynamic Community

Discovery algorithm itself is able to record whenever

one of the main event happens.

5.1 The instant-optimal approach

Given its simplicity, the first technique to analyze our

dataset was an Instant-Optimal Community Discovery

technique. In our approach, also due to the fact that

our dataset is represented with a Temporal Networks

model, we decided to periodically extract communities

and match them at a second time.

We use DEMON[7] to discover static community for

two main reason: a definition of community similar to

the one adopted in this paper and the theoretical linear,

with respect to the number of nodes, time complexity.

In the follow, we describe more in detail how DEMON

works.

5.1.1 DEMON

DEMON, acronym for Democratic Estimation of the

Modular Organization of a Network, is a static commu-

nity discovery algorithm that falls in the Model-based

approach. The novelty of the algorithm is the fact that

communities are discovered in a ”democratic” fashion:

each node of the network proposes a set of communities

based on its local view. Then these local communities

are merged together to build the global communities.

The algorithm uses two useful concepts: the Ego

Network, the same we presented in section 4, and the

Ego Minus Ego. The ego minus ego of a node u can

be obtained from its ego network by simply removing

node u itself and all its incident edges. The ego minus

ego of a user u is therefore the set of its alters with the

interactions between them.

The algorithm proceeds in two steps: firstly with the

extraction of local communities, lastly with the merging

of local communities up to the global communities.

To extract local communities, the algorithm com-

putes the ego minus ego for each node and, on the

obtained smaller networks, it performs a community

discovery algorithm. To discover communities in the

ego minus ego network, the authors chose the Label

propagation algorithm [?]. In the Label propagation al-

gorithm, each node is given a label which represent a

community membership. Labels are propagated itera-

tively, until convergence is met. There is convergence

when nodes do not change labels after a propagation.

The steps of the algorithm are shown in algorithm

1. DEMON discovers local communities, in the sense

that these communities are the ones proposed by each
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node, based only on the node’s view of the network.

These communities based on local views, are then to

be merged in order to build global communities.

Algorithm 1 Label propagation steps
1: Assign to each node in the network a different label.
2: Set t = 1.
3: Shuffle the set of nodes V .
4: For each node v ∈ V , update the label of v with the

most frequent label among its neighbours. Ties are broken
uniformly at random.

5: If labels did not change from last iteration, or t reached
a maximum established value, stop the algorithm. Oth-
erwise set t = t + 1 and go to step 3.

5.1.2 The application of the algorithm

We represent an ego network through time e as a set

of n snapshots (EGe
1, EG

e
2, ..., EG

e
n). Each of this snap-

shot represents the state of the ego network at the cor-

responding instant of time, i.e. considering only online

nodes. At each snapshot of an ego network e at time

i, identified as EGe
i , is associated a set of communities

C = (C1
i , C

2
i , ..., C

m
i ), which represents the community

structure present at time i. In this paper a commu-

nity is identified with nodes that are densely linked to

each other, directly or through other nodes. We are in-

terested in evaluating the evolution of communities in

term of the community change events explained in de-

tail in [30]. For sake of readiness, communities events

are merge, split, death, and birth.

Communities are extracted at each time snapshot

independently using DEMON, then communities be-

longing to adjacent snapshots are matched according to

a similarity metric. To evaluate the similarity between

communities, we use a revised version of the similarity

metric proposed in [30]. In detail, consider an ego net-

work e and two snapshot EGe
i and EGe

j , the revised

similarity metric is introduced by the Eq. (1),

sim(Cp
i−1, C

q
i ) =

|V p
i−1 ∩ V

q
i |

max(|V p
i−1|, |V

q
i |)

(1)

where Cq
i is the community q included in EGe

i and

Cp
i−1 is the community p included in EGe

i−1. Instead,

V p
i−1 is the set of nodes contained in Cp

i−1 and V q
i is the

set of nodes contained in Cq
i .

Thanks to this similarity metric, each community in

a time instant i is compared with each community of

the time instant i− 1.

Moreover, we need to redefine all the possible com-

munity change events (merge, split, death, birth) to be

applied in a DOSN according to the proposed similarity

metric. We propose our definition of the four events:

– Birth: we say that a community Cp
i is born at

time i if, given the set of communities C∗i−1 =

{C1
i−1, C

2
i−1, · · · , Ck

i−1} at time i− 1, ∀Cj
i−1 ∈ C∗i−1,

we have that sim(Cp
i , C

j
i−1) = 0. This means that

all the communities discovered at the previous time

instant (i− 1) do not share any node with Cp
i .

– Death: we say that a community Cp
i−1 is dead

at time i if, given the set of communities C∗i =

{C1
i , C

2
i , . . . , C

k
i } at time i, ∀Cj

i ∈ C∗i , we have that

sim(Cp
i−1, C

j
i ) = 0. This means that all the com-

munities discovered at time i do not share any node

with Cp
i−1.

– Merge: we say that a set of communities C∗i−1 ={
C1

i−1, C
2
i−1, . . . , C

k
i−1

}
merge into a community Cp

i

if, for each community Cj
i−1 ∈ C∗i−1, we have that

sim(Cj
i−1, C

p
i ) > k, where k is the similarity thresh-

old defined in [30]. This means that k% of mutual

friends between Cp
i and each community in C∗i−1 are

included in Cp
i .

– Split : we say that a community Cp
i−1 splits into a set

of communities C∗i =
{
C1

i , C
2
i , . . . , C

n
i

}
if, for each

community Cj
i ∈ C∗i , we have that sim(Cj

i , C
p
i−1) >

k where k is the similarity threshold as described in

[30]. This means that a community Cp
i is divided in

a set of community identified by C∗i−1.

5.2 The Temporal trade-off approach

The choice of the algorithm to use for this analysis

is very important, because we want to have a view of

the community structure which is the closest possible

to a real world case. Therefore, the chosen algorithm

should be light and quick in updating communities.

These two properties are highly desirable in environ-

ments where entities have low computational power or

highly dynamic such as sensor networks or mobile net-

works. Among the many present in literature, belonging

the temporal trade-off class, we chose TILES [27]. The

choice was driven mainly by the logic behind the algo-

rithm, which can be roughly summarized as: each time

there is a perturbation on the network, update commu-

nities locally with respect to the perturbation. In the

follow, we propose an overview of the algorithm.

5.2.1 TILES: an online algorithm for dynamic

communities

TILES falls in the Temporal Trade-off CD because com-

munities existing at a certain moment in time t de-

pend on the current state of the network and the ex-

isting communities up to time t. The authors suppose

the presence of an interaction streaming source. Each
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time a new interaction is produced or expired, the graph

is modified and the memberships into communities of

the surroundings of the two endpoints of the edge are

reevaluated. Nodes inside a community can have two

different roles: core and peripheral. A node involved

in at least one triangle with other nodes in the same

community is a core node for that community. Instead

peripheral nodes are neighbours of core nodes but they

are not core nodes themselves. Clearly, the algorithm

can output overlapping communities as nothing for-

bids a node of being part of two or more community

cores. The algorithm outputs a chronologically ordered

sequence of sets of communities, each of which repre-

sents the partition of the network at the end of each

interval of duration τ . The pseudo code of the algo-

rithm is shown in Algorithm 2. A queue is used to store

the edges so that the expired ones are always the first

ones to be popped.

Algorithm 2 Tiles
1: Get new edge from source
2: Put the new edge in a priority queue
3: Remove expired edges and update communities
4: Add the new edge to the graph and update communities

By considering the Algorithm 2, when an edge (u, v)

is added to the network we may have 4 distinct cases:

1. both u and v appear in the network for the first

time. In this case, no action is performed because

there is no new triangle;

2. one node is in a peripheral community and the other

appears for the first time or is in a peripheral com-

munity as well. Again, no action is performed be-

cause nodes in peripheral communities do not prop-

agate community memberships unless it exists a

node w such that u, v and w form a triangle. In this

second case a new community should be created;

3. one node is a core node for a community and the

other appears for the first time. The appearing node

inherits the peripheral community membership of

the other node;

4. both u and v are core nodes for two different com-

munities. Here we have two different possibilities:

(a) u and v have no common neighbours, the two

nodes propagate each other the peripheral com-

munity membership;

(b) u and v have common neighbours, communi-

ties memberships are reevaluated and, possibly,

changes are propagated.

When an edge (u, v) is removed from the network,

communities shared by u and v, the roles of u and v

and their neighborhood must be reevaluated. Two are

the scenarios that can happen:

1. The original community is still made of one compo-

nent, only reevaluate the roles at close range with

respect to the removed edge;

2. The original community splits into two or more com-

munities: each of the new communities is considered

as a new community and all the roles are reevalu-

ated.

In the reevaluation phase, the clustering coefficient of

each node within the specific community is computed

and the node remains core if the clustering coefficient is

> 0, while they turn peripheral nodes if the clustering

coefficient is equal to 0.

5.2.2 The application of the algorithm

The algorithm returns a set of communities for each

of the requested observations. Thanks to the nature of

the algorithm, this communities do not need to be suc-

cessively matched using some metric as in the Instant-

optimal analysis. In fact the evolution of the commu-

nities, their events, is recorded as the algorithm runs.

This trait of the algorithm lifts us also from the need of

defining a similarity metric and the need of giving new

definitions of the community events, as the events are

automatically detected by the algorithm itself.

5.3 Comparison between the two approaches

We now briefly underline the positive and negative

traits of both of the presented approaches.

The first presented approach is the instant-optimal

approach, which is very intuitive and pretty straight-

forward. The only requirement to use this approach is

to choose a community discovery algorithm, to discover

communities at each time instant, and to choose a simi-

larity metric, to match the identified communities. Both

the problems, static community detection and set sim-

ilarity, are well studied problems, so in literature we

can find a very large amount of already implemented

and tested approach to choose from. Another impor-

tant fact to consider is that each timeslot can be pro-

cessed independently. Thus, this means that the dis-

covery of communities can be naturally made parallel.

This is the same for the matching phase: each match-

ing can be performed on its own, when the communities

from both timeslots has been discovered. Another good

point of using this approach is that communities are dis-

covered from scratch at each time slot. which prevents

the phenomenon of drifting. This phenomenon happens

when communities at a time instant t are computed by
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updating the ones discovered at earlier time instants to

approximate the ones at time t. Depending on how com-

munities are updated, it may happen that the updates

lead to different communities with respect to the ones

present. Generally speaking, in case we have a drifting

effect, we observe a huge number of tiny communities

which are actually fragments of the real community.

The instant-optimal analysis can be a really power-

ful data mining tool, but when it comes to distributed

environments it may be not the best choice, mainly

because it requires the exact knowledge of the status

of the network at a given time. This translates into

having synchronization, or strong consistency, which is

impossible in truly distributed environments (see FLP

theorem [12]). Another important fact is that commu-

nities discovered with the instant-optimal analysis do

not take into account time. Instead, in our Temporal

Trade-off community detection technique, as we saw

in section 5.2, communities at a given time instant t

are influenced by both current and past information.

Taking into account time may potentially lead to some

effects, such as avalanche effect, large community drift-

ing with respect to the static case and high instability

of the process. While this is true, it does not mean

that they are negative or undesirable effects. It is up to

the analyst to choose whether to give great importance

to time or not. Clearly, if we are interested in finding

the optimal partition at a given time instant, without

giving any relevance to time, those are all negative ef-

fects that have to be mitigated somehow. Instead, if we

give a special meaning to the time at which entities or

nodes join or leave the network, then those are desir-

able effects. The drifting of a community may translate

into a finer grained definition of community which is

also based on time information. In addition we cannot

underestimate the fact that in our Temporal Trade-off

approach there is no matching phase between commu-

nities belonging to adjacent timeslots. In fact, trying to

match communities that are different each other can be

a waste of time, while matching two sets of highly over-

lapping communities can lead to guessing the correct

matching. Temporal Trade-off eliminates these two po-

tentially dangerous problems by keeping track of each

community throughout time.

6 A case study: Facebook

To evaluate the dynamics in real OSNs, we retrieved a

real dataset, gathered by a Facebook application, called

SocialCircles!2.

2 https://www.facebook.com/

SocialCircles-244719909045196/

In this section we present the dataset we used for

our experiments, and we also present SocialCircles!3,

the Facebook application that allowed us to retrieve all

the needed data for this analysis.

6.1 The Facebook application SocialCircles!

SocialCircles! was a Facebook application that showed

to registered people interesting facts about their Face-

book ego network. The application was deployed in

2014 and has gone under maintenance on the 1st of May

2015 due to the change of the Facebook APIs which

were substantially reduced in size.

As described in [10], SocialCircles! was able to re-

trieve the following sets of information from registered

users:

Topology and profile information For each regis-

tered users, we obtained its friends and the friend-

ship relationships existing between them or, in other

words, the ego network of the registered users. We

were also able to retrieve the profile informations

about the registered users.

Interactions By analyzing interactions, such as posts,

comments, likes, tags, and photos, between users reg-

istered to the application and their friends, we could

estimate the strength of their interactions. By ag-

gregating all this informations, it is also possible to

weight the links connecting each pair of users and

study the associated graph.

Online presence It was not trivial to collect tem-

poral information since the Facebook API did not

permit it directly, even while the application was

online. The online presence of users was approxi-

mated by monitoring the chat status of registered

users in Facebook periodically. Each time the chat

was monitored, a user can be flagged with 0 if he

is offline, 1 if he is in the active state and 2 if he is

idle (online, but no action performed in the last few

minutes).

During its life, the application was able to build two

datasets: the first one containing more than 300 hun-

dred ego networks and 15 days of temporal session of

users, instead the second one contains 240 ego networks

and 32 consecutive day of temporal information. For our

analysis we use the second one which is also the most

recent one. In details. our dataset contains 240 users

monitored and their complete ego networks (for a to-

tal of 78.129 users). For each of the registered users we

were able to gather their profile and ego network, and

3 https://www.facebook.com/

SocialCircles-244719909045196/
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the interactions between them and the alters. Moreover,

we also obtained temporal information about the total

78.129 users for 32 consecutive days, by sampling all

the registered users and their friends every 5 minutes,

for 32 days (from the 9th March to the 10th April 2015).

Since the time aspect is the cornerstone of our re-

search, we preliminary analyzed the temporal informa-

tion contained in our dataset. This preliminary analysis

is aimed to understand a general trend of online/offline

behaviour of the users on a reference OSN.

We start by recalling that, in our dataset, time is

modeled in a discrete way to represent the online/offline

status of the users. In particular, each day of the mon-

itored period consists of a finite number of time slots

(i.e., 288 time slots each of 5 minutes), for a total num-

ber of 9251 time slots in the whole monitored period.

This choice of the time granularity was driven by the

fact that the machine storing the data was not always

able to cope with finer granularities. In fact, for smaller

choice of granularities, it sometimes happened that a

new set of requests were issued while the reply for old

ones were not yet stored on the application database.

For the sake of our analysis, we do not make any dis-

tinction if the user is in the active status (status=1) or

in the idle status (status=2). This decision was taken

because if a user is online, active or idle, his device

can still help the P2P network in delivering the service.

Thanks to these facts we were able to build a temporal

track for each user: an array of 9251 positions of boolean

values. For each of the 9251 positions, the value of this

array is set to 1 (or true) only if the corresponding user

is found active or idle at the time slot with id equals to

i, it is set to 0 (or false) otherwise. With the temporal

tracks, we had the possibility to lead some experiments

regarding the online/offline behaviour of all the users

on the OSN.

Figure 3 shows the number of online users for each

time slot. The figure shows that there is a clear peri-

odic pattern, probably reflecting the day/night cycle.

By analyzing the amount of users online for each time

slot, we can see that we have at most around 18000

online users, roughly 23% of the total amount, and at

least 3000, 3.8% of the total amount of users.

6.2 Preliminary community evaluation

An important aspect of our research is the topology

of the social network. As we saw, it is very important

to exploit it at our advantage, so, understanding it, is

a primary concern. The main information we wanted

to mine from the dataset, is the possible presence of

the community structure. To this aim, we extracted the

Fig. 3 Online users count during the observed period

Min Max Mean Std. Deviation

Number 1 26 9.49583333 4.401405174
Size 4 1894 99.3878894 141.2894853

Table 1 Statistical measures on number and size of static
communities

communities by executing a community discovery algo-

rithm on the social graph.

We start by recalling that the social graph is a graph

where the nodes are the users and the edges represent,

generally speaking, some sort of relationship between

users. Thanks to SocialCircles!, we had access to friend-

ship relationships of each registered user. In detail, we

got to know, for each registered user, the friends of

the registered user, and the friendship relationships be-

tween pairs of users sharing at least a common ego.

Summing it up, we had access to all friendship rela-

tionships inside each registered user’s ego network.

Since the presence of the ego brings a lot of noise

to the results due to the fact that it drastically reduces

distances and makes the network clusterized, commu-

nities are, in general, not extracted from the ego net-

work itself. For this goal, the ego-minus-ego subgraph is

used. After the extraction of the ego-minus-ego graphs

for each registered used, we proceeded in analyzing the

community structure in this small, yet significant views.

As a preliminary analysis, we computed some statis-

tical measures on the number and size of the dynamic

communities to compare them with the static commu-

nities to demonstrate the need of a dynamic analysis to

model the real life. Table 1 reports the computed sta-

tistical measures for the static communities. This table

show us that the static view of the network has a strong

structure with respect to the static communities. In par-

ticular, we see that, on average, each ego network has

10 communities, each made of 100 nodes.

6.3 Dynamic community discovery introduction

Considering the scope of this study, we decided to define

two analysis frameworks: a periodical one (see section

5.1) and an evolutionary one (see section 5.2). The aim
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Fig. 4 Community events for each time slot of all dynamic
communities

Fig. 5 Community events for each time slot of selected dy-
namic communities

of this work is to show that different community discov-

ery algorithms lead to different results, possibly quite

distant each other. Indeed, while the two kinds of anal-

yses aim to the common result of discovering commu-

nities, they are conceived to run in different situations.

The periodic one is a more canonical kind of analysis,

extremely useful for an a posteriori study of the net-

work. Since static community discovery algorithms are

used for the dynamic periodic community discovery, it

enables a very meaningful comparison between static

and dynamic communities. Not requiring ad hoc algo-

rithms also incentive this kind of analysis. Instead, an

evolutionary analysis, while at first glance may seem

hard to understand, it is more natural when communi-

ties are needed on the fly. It also enables a more efficient

way to discover communities since they can be updated

rather than being recomputed from scratch.

We computed the community events as described in

section 3 considering two different sets of communities:

– All: in this case we considered all the communities

of all ego networks during the observed period of

time of 32 days;

– Selected: consider only the communities in the time

slots where the related ego was offline (inter-arrival

session slots).

With this differentiation we aim to capture a generic,

global view of the dynamism of the network in the first

case, and a more specific, critical view in the second

case. It is very important to understand how the net-

work evolves in time.

6.4 Instant-optimal dynamic community discovery

results

To carry out the periodical analysis, the first task to be

accomplished was how to inflate topological informa-

tion with the temporal information in our possession.

Since for this first analysis we needed a series of Net-

work Snapshots, the most intuitive way was to use the

temporal tracks as obtained in section 6.1. In detail,

for each registered user, starting from the ego-minus-

ego defined in section 6.2 we extracted a snapshot for

each of the 9251 snapshots. The ith snapshot is built by

removing from the ego-minus-ego all the nodes, and the

incident edges, which are found offline (ith position of

the temporal track equal to 0). This way, each snapshot

is made only of the online users and the relationships

between them.

Communities are then discovered on each snapshot

of each registered user using DEMON. As last step, to

discover the events occurring, we tried to match com-

munities extracted from a dynamic ego network with

the ones extracted from the dynamic ego network of

the previous time instant. This choice is driven by the

fact that, if we want to use communities in our system,

it is important to know the moments a community is

available or not. This way, if a community disappears,

even for just one time slot, the event is recorded. The

similarity metric used for this matching is the one pre-

sented in 5.1.2. The similarity threshold to detect a

merge or a split event is set to 0. For merge events, as

additional constraint, we also want that, for each of the

source communities, the destination community is the

one with the highest similarity compared to the other

ones in the same time slot. For split events we have a

dual constraint: for each of the destination communi-

ties, the source community is the one with the highest

similarity compared to the other ones in the same time

slot. This additional constraints are used to give value

to the matching of two communities only if the similar-

ity is the highest recorded.

The very first step was to have a general idea of

the community structure. Table 2 reports some statis-

tical measures of all dynamic communities. Just by an-

alyzing these results, we can say that the network is,

as expected, very shattered and not even close to the

static view. When considering the number of communi-

ties, the high value of standard deviation with respect

to the average, suggests that in some particular time

slots some ego networks have no community at all. We

see that in the static case, table 1 we have a lower max-

imum value and a higher average with respect to the

dynamic case, which suggests that it is very unlikely

to have a dynamic ego network that is similar to the
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Min Max Mean Std. Deviation

Number 0 104 2.28143443952 3.75809047
Size 4 452 17.6435637388 22.10944505

Table 2 Statistical measures on number and size of all dy-
namic communities

static one. Also the size statistics confirms this fact:

static communities tend to be larger than the dynamic

ones. We can explain the difference in the two results

by recalling the fact that we have at most less than a

forth of the users online, as reported in figure 3.

To better understand how the events are arranged

during the observed time, we decided to make some

plots. Figure 4 shows the arrangements of the events

when considering all communities of all time slots while

Figure 5 shows the events for the selected communities.

Both the figures show that there is a temporal pattern

in the results, suggesting that the behaviour follows a

daily cycle, confirming the results in figure 3. More-

over, on the peaks, the number of merge/split events

are roughly double the number of death/birth events,

while in the nadirs the number of merge/split events are

slightly less than the number of death/birth events. By

taking a closer look at the arrangements of the events,

we may also observe that peaks and nadirs of merge and

split events are slightly moved on the right with respect

to the ones of birth and death events, which means that,

before observing a variation on the number of split and

merge events, we should see a variation in the number

of birth and death events. It is also worth noticing that,

as expected, at each drop of the events corresponds a

peak in deaths, which probably means that we are ap-

proaching the night time slots. Dually, at each increase

of events, we usually see a peak of birth events, which

should corresponds to the time slots where people wake

up. Another important result is that the two graphs

look similar which is sign that the network behaves in

the same way both when the ego is online or offline.

This is of interest in the sense that all the analysis can

be done regardless that an ego is online or not.

Since the events follow a daily cycle, we are inter-

ested to see how this events are related to the pres-

ence of users on the network. From a comparison be-

tween figures 4 and 5 with figure 3 we can see that

the more users are online, the more events are observed

in the network. This could be very useful to manage

the problem of data availability. Indeed, it means that,

in a community-based replication technique, choosing

the replicas when there are less users on the network is

somewhat easier because the network is more stable in

terms of communities, while, on the other hand, when

there are a lot of users online, we need to handle more

community events, especially split and merge events.

Finally, to get a more generic trend of the dynamism

of the communities, we analysed how much communi-

ties belonging to the same ego network discovered in ad-

jacent time slots are similar to each other. To measure

the similarity between this pairs of sets of communities,

we choose a similarity metric taken from literature: F1-

score.

F1-score is presented as a metric to evaluate the set

of communities X obtained as result of a community

discovery algorithm based on a given set Y of ground

truth communities which is based on the concepts of

precision and recall. Precision and recall are two metrics

used to measure the similarity between two sets of items

and they are defined as follows: given two sets of labeled

nodes, x ∈ X representing an identified community and

y ∈ Y representing a ground truth community

– The Precision is defined as the percentage of nodes

in x which have labels that are also present in y. In

formula: P = |x∩y|
|x|

– The Recall is instead defined as the percentage of

nodes in y which have labels that are also present

in x. In formula: P = |x∩y|
|y|

To evaluate the similarity between the two sets of

communities, each of the identified communities x is

matched to a single ground truth community y based

on the number of common nodes in the two commu-

nities. This matching procedure creates pairs of com-

munities (x, y), with x ∈ X and y ∈ Y , which will be

used to evaluate the similarity. The quality of each pair

is evaluated separately using the F1-measure which is

obtained by combining precision and recall as follows:

F1-measure= 2×precision×recall
precision+recall .

Once we assign a quality for each pair, the F1-score

is simply defined as the average of the F1-measure of

the identified pairs.

In our study we are not evaluating the results of a

novel community discovery algorithm, but we are inter-

ested in evaluating the dynamism of the network at a

community structure level. For this purpose, we evalu-

ate the similarity of the communities identified at each

time step t with the ones, considered as ground, iden-

tified at the previous time step t − 1. Computing the

F1-score between adjacent, in time, sets of communities

should give us an insight on how much communities af-

fectively change over time in term of the nodes present

in each community.

Figures 6 and 7 show the 25th, 50th, and 75th per-

centiles of F1-score obtained respectively for all com-

munities and selected communities. At a first glance we

can observe that figure 6, the one which considers all
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Fig. 6 F1-score for each time slot of all dynamic communities

Fig. 7 F1-score for each time slot of selected dynamic com-
munities

communities, shows values a little more stable. Both the

figures again show a clear day/night cyclic pattern with

peaks which correspond to evening hours and nadirs

immediately after, during night. During the peaks we

observe a very high amount of similarity reaching 0.6

on average and over 0.9 for the 75th percentile, meaning

the the network is very stable in terms of communities.

The fact is that these peaks are very short and only last

for few timeslots, corresponding to less than two hours.

Nadirs are also quite short in time lasting no more than

five hours, and often it happens that also the 75th per-

centile reaches 0. This means that during nighttime the

community structure is mostly absent, so it can’t be ac-

tively used. Finally, during the other hours of the day,

we can see that the similarity is quite low, in fact we

observe that on average the F1-score is just above 0.4.

6.5 Temporal Trade-off dynamic community discovery

results

At this point, we switched our interest in algorithms

capable of updating communities on the fly. There are

plenty of different community discovery algorithms in

literature, each with strengths and weaknesses. We only

had two requirements for the algorithm to use for this

analysis. Obviously, we only took in consideration algo-

rithms with a definition of community quite similar to

the one given by DEMON. Since definitions of commu-

nity may vary a lot from algorithm to algorithm, the

constraint was necessary to get results comparable to

the one obtained for the other analysis. The other con-

straint was related to the nature of the system we plan

to use the result of the algorithm. Since we want to

know and use the community structure for important

functionality of distributed systems, we had to choose

an algorithm which can be possibly implemented in a

P2P fashion. Considering these constraints, the choice

fell on TILES.

To be used, TILES requires that the network is rep-

resented with the Temporal Network model. While it

was possible to exactly represent our network accord-

ing to the Network Snapshot model, due to the fact

that the temporal information in our possession was

already discretized, it wasn’t possible for the needed

model. The problem is that we had no information

about the actual order in which nodes joined or left the

OSN. So, to obtain a Temporal Network representation

of our dataset we had to make some modifications to

our dataset. TILES, the algorithm choice for the analy-

ses, requires an edge streaming source but the temporal

information in our possession is node based. To realize

the transformation we proceeded in the following way:

if a node maintains its state from a time slot to the fol-

lowing one, no action is performed. Otherwise, if a node

joins the network, a new edge addition is added to the

interaction source for each of its online friends. The ex-

act order in which these interactions, created when a

node switches its state from offline to online, are added

to the source is completely random, but their time la-

bel is the same. Having the same time label lets us,

when extracting the results, to always consider com-

munities where all the interactions from the same time

slot have been processed. Dually, when a node leaves

the network, switching its state from online to offline,

a new edge deletion is added to the interaction source

for each of its online friends. Offline neighbours are ig-

nored because the interaction with them have already

been deleted when they went offline. Again, the order

in which this set of interactions is added to the source

is random, but they all have the same time label. The

time label of each interaction (addition or deletion) is

the id of the current time slot scanned. For the sake of

clarity, after analyzing all the interactions with id ≤ x,

we have the same network of the x− th snapshot.

Once obtained the complete list of ordered and time

labeled interactions, we were able to extract them us-

ing TILES. Since we have rather meaningful temporal

information about both the joining and the leaving of

users, we decided to use the version of the algorithm

with explicit removal of interactions. In the explicit

version of the algorithm, edges are deleted only when

the source emits a specific interaction deletion. In the

vanilla version of the algorithm, it was possible to set

a time to leave ttl as input parameter. An interaction
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Measure Min Max Mean Std. Deviation

Number 0 74 4.041437412 4.1011431095
Size 3 336 7.609 9.55

Table 3 Statistical measures on number and size of dynamic
communities

is deleted after ttl amount of time after its insertion.

The observation threshold was set to 1, so that com-

munities are extracted once for each time slot and the

results can be compared to the ones obtained from the

previous analysis technique. Finally, we recall that, in

the Temporal Trade-off Community Detection analy-

ses, community events are detected as communities are

reevaluated. Thus, there is no need to define any sim-

ilarity metric, nor to match community anyhow to de-

tect community events.

In a preliminary study, we simply observed the size

and the number of dynamic communities. Table 3 shows

some statistical values on number and size of communi-

ties as returned by TILES. In particular, we see again

that the minimum number of communities is 0, meaning

that there is at least one timeslot during which there are

no communities at all. A lower maximum value together

with an higher mean value suggest us that the commu-

nity structure is even more shattered with respect to

the previous study. In particular, we see that commu-

nities tend to be smaller, with less than half nodes, but

almost double in number.

Figure 8 shows the registered events considering all

communities of all timeslots, while figure 9 only con-

sider the selected communities. The two figures seem

quite similar, the main difference between the two is
that the number merge and split events do not change

substantially, while death and birth event counts are

lower by 200. If we compare these figures with the ones

produced by the previous analysis (figure 4 and figure

5) we see great changes. First of all, while the death

count is again comparable to the birth count, merge

and split counts are quite different each other. Split

events have become quite rare, in fact only few of these

events, during all observation, are detected. In turn, we

observe some merge events which peaks are less empha-

sized with respect to the previous analyses. The second

major change we observe is in the effective number of

events. We recall that in the previous analyses we ob-

served around 75 merge and split events plus 40 death

and birth events. In these new analyses merge events

are again around 75 each timeslot, we already said that

split events are rare, but, unexpectedly, birth and death

registered events are between 500 and 700 during the

central part of the day. During the night, death and

birth events drop below 100, while merges often reach

0. These opposing results can be explained in a great

number of small communities, probably just triangles,

assembling and disassembling at a quick pace. The rel-

atively small amount of communities registered during

the simulation also suggest us that all these commu-

nities hardly live long enough to be registered at the

end of the timeslot. This effect can be considered as in-

terference as these communities has a lifetime so short

that can’t be used anyhow. The only property remained

almost unchanged is the periodic temporal pattern.

Fig. 8 Community events for each time slot of all dynamic
communities

Fig. 9 Community events for each time slot of the selected
dynamic communities

Then, once again, we evaluated the overall stabil-

ity of the community structure with F1-score. Figures

?? and ?? show the 25th, 50th, and 75th percentiles of

F1-score obtained respectively for all communities and

selected communities. The daily pattern guided by the

succession of day and night is still present and follows

the same pattern as the previous analyses: high simi-

larity values during the day, a considerable peak in the

late evening, then a nadir in the night. We can also

observe that, overall, the similarity is significantly in-

creased, in fact the 25th percentile is now around 0.4,

while the 50th percentile is just below 0.6 during the

day, which corresponds to an increase of 0.2 on the F1-

score value. We also observe an increase of about 0.1 to

the F1-score of the 75th percentile. While we observe a

considerable increase in the similarity metric of these

dynamic communities, with respect to the ones discov-

ered in the previous analysis, we still have to say that
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the community structure is pretty unstable. If we con-

sider the events results combined with this similarity

results, we suppose that with further investigation we

can find a subset of these communities which are core

communities, namely communities which are resilient

to churn and have a lifespan much longer than the typ-

ical one.

Fig. 10 F1-score for each time slot of all dynamic communi-
ties

Fig. 11 F1-score for each time slot of selected dynamic com-
munities

7 Conclusion and Future works

In this paper we faced the application of dynamic

community discovery to manage DOSNs challenges.

The paper is led by the two research questions intro-

duced in section 1. Considering the first research ques-

tionwe firstly propose a static analysis of communities

in DOSNs to have a general view of the static case. Re-

sults of our analysis showed that dynamic community

discovery is needed in a distributed environment, such

as a DOSN, because the static community discovery

does not provide a real view of the changes happened

in the social graph. Indeed we observe that the network

is very shattered, not even close to the static view with

respect to both presented frameworks. This difference

clearly suggests us the need a distributed algorithm able

to manage the dynamism of communities. As a conse-

quence, we investigated the second research question.

We focus our attention on two kind of dynamic commu-

nity discovery approaches: the Instant-optimal Commu-

nity Detection and the Temporal Trade-off Community

Detection, proposing an analysis framework for each

approach. Moreover, we also proposed a set of commu-

nity change events which are important in our scenario,

described in this paper. We analysed the arrangement

and the frequency of these events by exploiting a real

Facebook dataset gathered by our Facebook applica-

tion (SocialCircles). The community change events in-

troduced in this paper have a temporal pattern that

is similar to the temporal user behaviour. We analysed

the differences between the two proposed approaches

by considering both the community change events and

the similarity between the communities expressed by

the F1-score. As concerns the second research question,

we analysed in detail the pros and cons of the two ap-

proaches mentioned above, coming to the conclusion

that the Temporal Trade-off Community Discovery rep-

resents the best choice in DOSNs. In the future, we plan

a deep analysis of the instability of the social graph

due to the online/offline status of users. In particular,

we plan to develop a distributed algorithm to detect the

dynamic community by exploiting the Temporal Trade-

off Community Discovery approach, which can be used

in DOSNs to manage several problems, such as data

availability, information diffusion, and privacy.
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