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A B S T R A C T

The Normalized Difference Vegetation Index (NDVI) is a valuable indicator of plant vigor that is frequently used
in agronomic practices to make timely and targeted decisions with the aim of increasing the productivity of the
system. NDVI measurements of large-scale fields are typically performed using remote sensing from satellite
and aerial imaging devices. However, due to their low spatial and temporal resolution, these technologies
may have limitations in precision viticulture. This paper investigates the potential of a proximal sensing
system to characterize the vine foliage that makes use of data collected by a farmer robot equipped with
an Intel RealSense D435 camera. The camera includes two infrared (IR) sensors in stereoscopic configuration
and one RGB sensor, which provide, for each observation, both infrared and visible red channel information,
thus making possible pixel-per-pixel NDVI calculation. Solutions to IR filtering and radiometric calibration
issues are proposed that significantly improve measurement accuracy and reliability. Since the camera also
provides stereo-based 3D scene reconstruction, depth information can be used to separate the plant canopy
from the background before NDVI measurement. At the same time, range data can be employed to extract
geometric properties of the crop, such as plant height and/or volume. The system is validated in the field in
a commercial vineyard at different phenological stages, from the formation of the berries to leaf discoloration
and fall. Experimental results show good agreement compared with ground truth provided by a GreenSeeker,
with a mean absolute percentage error in the NDVI estimation of 4.6% and a 𝑅2 of 0.87 tested over the
whole grapevine cycle. Therefore, the proposed sensing system could be a feasible solution to automated
NDVI estimation at plant-scale.
. Introduction

Quantitative metrics of plant status serve as the foundation for
gronomic treatments in precision farming. Among them, the Normal-
zed Difference Vegetation Index (NDVI) is the most widely adopted
o monitor plant growth and vigor. Plants can be distinguished from
ther elements like soil and water by their chlorophyll, which mostly
eflects near-infrared (NIR) light and absorbs red light [1]. Based on
his principle, the NDVI is defined as the ratio of the difference between
he reflectance in NIR and red channels, and the sum of both. Several
tudies have shown that the NDVI is correlated to leaf area index [2],
iomass [3], plant health [4], chlorophyll and nitrogen contents [5,
].

NDVI measurements can be performed at various scales, mainly
sing optical devices in remote or proximal sensing configuration.
hile remote sensing based on multispectral or hyperspectral im-

ges from satellites and airborne devices have been in use for some
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decades to rapidly survey wide areas and provide prescription maps
at a regional/territorial level, they generally lack the spatio-temporal
resolution needed for precision farming applications. In addition, in-
formation can be affected by interference from clouds, moisture, or
fog. These limitations can be overcome using unmanned aerial vehi-
cle (UAV)-based remote sensing techniques that provide data with a
ground sample distance of a few millimeters, resulting in higher spatial
resolution than satellites and more flexible measurement schedules.
In high-density crops, however, collecting information on biophysical
properties at plant or leaf level via aerial sensing may be still infeasible.
As a result, ground-based sensing has emerged as a complementary
technology to provide proximal in-field measurements at a smaller
scale.

In this work, a novel solution to map NDVI of vineyards by a
ground robotic vehicle equipped with a consumer-grade RGB-D camera,
namely the Intel RealSense D435, is proposed. This sensing device
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List of Acronyms

3D Three-dimensional
CMOS Complementary Metal-Oxide Semiconduc-

tor
Full HD Full High Definition
GS GreenSeeker
IR Infrared
NDVI Normalized Difference Vegetation Index
NIR Near Infrared
RGB Red Green Blue
RGB-D Red Green Blue Depth
RGBN Red Green Blue Near infrared
RS RealSense
UAV Unmanned Aerial Vehicle
UGV Unmanned Ground Vehicle
UV Ultra-violet
VIS Visible
vNDVI visible NDVI

features two infrared sensors in stereo configuration and one RGB
sensor, which provide, for each point of the scene, infrared and visible
information respectively thus making it possible pixel per pixel NDVI
measurement. To enhance the sensor spectral response, both the IR and
the RGB cameras have been endowed with optical filters to block visible
and IR light respectively, attached to the camera through a 3D printed
mounting case. An online radiometric calibration procedure is also pro-
posed to convert pixel intensities to spectral reflectance values and to
deal in real-time with lighting variations between subsequent images,
using diffuse reflecting targets. A flowchart of the proposed approach
is shown in Fig. 1, where the main steps of the processing pipeline are
displayed including: 1) data acquisition, 2) plant segmentation from
the overall scene based on depth data, 3) radiometric calibration for
pixel to reflectance values conversion and 4) pixel per pixel NDVI
calculation.

In the rest of the paper, first an overview of existing research is pre-
sented in Section 2 highlighting the main differences and advantages of
the proposed system. The experimental setup and datasets are described
in Section 3. Then, in Section 4, the imaging system and processing
algorithms to estimate NDVI at plant scale are presented along with
the radiometric calibration approach. Section 5 reports experimental
results obtained for in-field tests carried out at a commercial farm.
Finally, Section 6 draws the conclusions.

2. Related research

Proximal sensing has attracted increasing interest in precision farm-
ing providing in-field measurements at a smaller scale. Many active
sensors have been developed [7–9], which exploit the active emission
of their own light to measure the reflectance properties of the surfaces
and recover reliable and consistent NDVI measurements independent
of environmental lighting conditions. One of the most widely used in
viticulture is the Trimble GreenSeeker. It emits brief bursts of red and
infrared light and measures the amount of each type of light that is
reflected back from the plant. Several works in literature have proved
the effectiveness of this sensor in providing reliable information about
the temporal evolution of NDVI in vineyards [10]. However, it has
been shown that the measurement accuracy is sensitive to distance
and orientation between the target and the measuring head of the
GreenSeeker [11]. Portable field spectrometers covering a wide range
of wavelengths have been also used to measure NDVI [12]. However,
they are expensive and require some post-processing to recover NDVI
2

data. In addition, portable handheld sensors may limit the automation
of the data capturing process, as they generally require the intervention
of human operators for accurate sensor positioning and actuation. More
versatile solutions have been proposed to measure vegetation indexes
using ground-based hyperspectral imaging systems, mostly set on the
ground or mounted on towers [13].

Recently, standard digital RGB cameras have emerged in a number
of agricultural applications including fruit counting, phenotype anal-
ysis, plant classification and disease monitoring [14]. Compared to
multispectral and hyperspectral sensors, RGB cameras are less expen-
sive and are generally easier to operate. The use of RGB cameras for the
measurement of vegetation indexes in the visible spectrum has been
investigated in several works. For instance, a standard RGB camera
mounted on-board a UAV has been employed in [15] for calculating
a visible NDVI (vNDVI), obtained with the regular RGB band values
instead of the red and near-infrared bands. As an alternative, RGBN
cameras have been developed to measure NDVI. RGBN cameras are
obtained by removing the NIR filter typically present in standard RGB
cameras in order to get information in the NIR wavelength. Hence,
NDVI information can be recovered either using two-camera systems
featuring a standard RGB camera for the red channel and an RGBN
camera for the NIR channel or adopting a filter-switching unit, whereby
the visible image and NIR images are acquired by switching the NIR
rejection filter. For instance, in [16] a modified camera fitted with a
near-infrared band-pass filter and a standard RGB camera mounted on
a tripod are used to assess wheat status based on various vegetation
indexes including the NDVI. In [17], the potential of consumer-grade
standard and modified RGB cameras to measure vegetation indexes
from UAVs is evaluated. Two-camera techniques allow for the simul-
taneous collection of information about vegetation visible and NIR
properties, but they pose issues in terms of camera alignment, cross-
calibration, and image capture synchronization. These issues can be
avoided by alternatively applying and removing the NIR filter on a
single camera, as proposed in [18] where a smartphone is used to
collect first the red reflectance and then the NIR reflectance by manu-
ally adding an 800 nm high pass optical filter. A software-controlled
infrared cut filter is proposed in [19], whereby a NIR filter can be
switched on and off based on command scripts running on the camera.
While in this case the practical limitations of manual filter removal
is avoided, image matching issues may result from the time required
by the filter switching mechanism, making this solution unsuitable for
cameras mounted on mobile platforms.

In any of the cases above, NDVI estimates are either performed
remotely based on aerial vehicles or rely on ground-based measures
using fixed installations or handheld devices. More recently, Unmanned
Ground Vehicles (UGVs) and conventional tractors equipped with imag-
ing sensors have been proposed as a complementary solution to collect
high resolution proximal data and provide information on plant char-
acteristics at centimeter or sub-centimeter scale. While much work has
been done for applications such as fruit detection and counting [20,21],
only a few examples exist in the context of foliage characterization. A
first attempt can be found in [22], where a methodology to generate
globally-referenced vigor maps in vineyards from ground images taken
with a camera mounted on a conventional tractor is proposed. It uses a
monocular camera able to sense in the visible, NIR, and UV spectra, se-
lectively isolated with bandpass filters. In [23], a multispectral camera
mounted on a tractor is proposed to estimate NDVI in vineyards and
results are compared with GreenSeeker measurements. A radiometric
calibration approach is used which exploits a MacBeth color chart to
transform pixel intensities to reflectance values. A wide black panel
is attached to the tractor through a metallic frame as background
screen to ease canopy segmentation. A red-edge multi-spectral cam-
era mounted on-board a farmer robot is also used in [24] to gather
NDVI measurements in vineyards. A sensing system for an autonomous
scouting robot, using artificial lighting and a hyperspectral camera, is
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Fig. 1. Flowchart of the proposed approach for NDVI estimation.
developed in [25] to automatically acquire spectral reflection data and
measure NDVI in soybean fields at night.

A novel approach is proposed in this research where NDVI map
of vineyards is obtained by a ground robotic vehicle equipped with
a consumer-grade RGB-D Intel RealSense D435. Since this device in-
cludes two distinct sensors to provide visible and infrared images, the
proposed system can be classified as a two-camera solution. However,
unlike typical two-camera systems, it features a built-in structure in
which all sensors are spatially and timely synchronized, hence over-
coming image matching issues. As an additional advantage, the sensing
device also provides depth information, which can be exploited to
ease plant segmentation from the background, avoiding the need for
complex data processing or bulky background screens. The proposed
approach is validated in the field at different phenological stages, show-
ing good agreement with measurements provided by a GreenSeeker.
It is worth noticing that the sensing system has a total cost of about
0.4k euros for the camera and the optical filters that is lower than
the Greenseeker (1k euros) and about forty times less expensive than a
standard multispectral camera. An additional cost of about 0.9k euros
should be considered for the calibration targets that however are re-
quired by multispectral approaches as well. Furthermore, the camera’s
ability to generate 3D data allows for simultaneous measurement of
plant morphological traits like height and volume [26]. This source
of information is not available either with the Greenseeker or the
multispectral camera. Hence, the proposed system could be a viable
and cost-effective solution to provide information on individual plant
development and health status.

In summary, the main contributions of this research are:

• the development of a proximal sensing system for NDVI esti-
mation using an Intel RealSense D435 camera, enhanced with
IR optical filters. This system provides a feasible measurement
device that can be easily integrated onboard agricultural vehi-
cles or deployed manually. The use of the RealSense camera in
agricultural applications has been recently demonstrated for tasks
including crop reconstruction and fruit detection, and for robot
navigation purposes. To the best of our knowledge, this is the
first research investigating the potential of a RealSense camera
for NDVI measurement at plant scale by a farmer robot;

• a novel online radiometric calibration procedure to deal with
uncontrolled and rapidly changing lighting conditions, based on
calibration targets integrated with the camera system. This allows
for online estimation of the calibration at every new image ac-
quisition, which can be used to convert image pixel values into
reflectance values ensuring consistent NDVI measures;

• a robotic platform for automated in-field monitoring and char-
acterization at plant scale in viticulture. The platform is also
equipped with an accurate GPS-based localization system that
can be used in conjunction with the imaging device to get high-
resolution NDVI maps.

3. Materials

3.1. Robotic acquisition system

For in-field data collection, a custom-built farmer robot named Poli-
bot (see Fig. 2(a)) is employed. The farmer robot is designed to provide
3

mobility over highly irregular terrain [27], by leveraging on an articu-
lated suspension system that can handle high payload, ensure vibration
isolation, and navigate agricultural terrain similarly to a multi-legged
insect. The control and acquisition systems are implemented using the
Robot Operating System (ROS), which provides a versatile and robust
operating foundation. The robot is outfitted with an Intel RealSense
D435 imaging device (Santa Clara, CA, USA), which is used to capture
RGB, infrared and depth data. It consists of a color camera and a stereo
pair of infrared (IR) cameras that offer depth information. The stereo
imagers feature a field of view of 87(H) × 58(V) deg, maximum depth
resolution of 1280 × 720 px, and frame rate up to 90 fps, with an ideal
perception range of 0.3 m up to 3 m. The IR stereo stream is spatially
calibrated and time synchronized with the color stream provided by
a Full HD (1920 × 1080) CMOS camera, with nominal field of view
of 69(H) × 42(V) deg and a maximum frame rate of 30 fps at full
resolution. To enhance IR images and depth reconstruction, a Quanmin
9.6 mm × 1.0 mm Slim Optical 780 nm cold mirror filter was added in
front of each IR sensors to cut visible light. As the RGB camera has no
built-in IR-cut filter, a Gzikai 650 nm 10 mm × 1 mm UV-IR Cut Filter
was also positioned in front of the RGB sensor. All filters were mounted
on a custom-built support made by 3D printing, as shown in Fig. 2(c).
The camera was mounted on an aluminum frame and attached to the
robot, angled by 90 degrees to collect data in portrait mode.

A close-up of the setup for adaptive radiometric calibration of
the sensors is shown in Fig. 2(b). It consists of two Optopolymer
calibrated reflectance standards with 5% and 70% reflectance grades,
respectively, which were positioned on a metal frame so that both
targets are always visible in the lower section of all captured images
(both RGB and NIR). A sample acquisition result is reported in Fig. 3,
showing from left to right the RGB image, the left IR image and the
depth image. As will be detailed in the following, the RGB and left
IR images are used for NDVI estimation, whereas the depth image is
employed to separate the plant row from the background by setting a
distance range. In addition, the robotic platform is equipped with an
accurate localization system using a dual GPS configuration [28] that
can work in conjunction with the imaging device to get geo-referenced
NDVI information.

3.2. Datasets

Data collection was performed in a commercial vineyard located
in San Donaci (BR), Italy, with grape variety Vitis vinifera, cultivar
‘‘Negroamaro’’ (red grape variety). The available experimental test
site included three vine rows, each one comprising about 100 plants,
covering a total area of approximately 0.1 ha. A Google Earth view of
the test site is shown in Fig. 4, with the experimental region highlighted
by a yellow box. Images were acquired at a frame rate of 6 Hz and
at a distance of about 1 m from the row canopy. Four datasets were
collected in 2023, spanning three stages of grapevine phenological
development, from berry formation and development(June–July), to
the end of grape ripening (September) and after harvesting at the
beginning of leaf discoloration and fall (October). More than 37.000
RGB images and corresponding NIR images with 1280 × 720 pixel
resolution were collected (see Table 1). All acquisitions were mostly
performed around the zenith time to optimize image quality and re-
duce visual artifacts and shadows. Sky conditions varied from fully
sunny to partially or mostly cloudy. The rows were scanned on both
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Fig. 2. Acquisition system: (a) robotic platform; (b) calibration system using Optopolymer calibrated reflectance targets; (c) Intel RealSense D435 enhanced with two cold mirror
filters (applied to the left and right infrared imagers) and an IR-cut filter (applied to the RGB module). The RealSense camera also includes an IR projector, which was kept off
during the experiments.
sides. This resulted in a high level of heterogeneity in the dataset.
Due to such variability, exposure and white balance were set in auto
mode.

Image acquisitions performed with the RealSense were paired with
measurements from a Trimble GreenSeeker handheld sensor. GreenSe-
eker measurements were collected for one of every six plants leading
to around 17 measurements per row, recorded with the smartphone
GreenSeeker BT Logger V 1.0 app. The GreenSeeker emits brief bursts of
red (650 nm) and infrared (770 nm) light and then returns the amount
of each type of light that is reflected back from the plant in terms
of an NDVI reading (ranging from 0.00 to 0.99) on its LCD display
screen. It is worth to note that the GreenSeeker works within a distance
range of 60–120 cm, with a wider field of view the greater the distance
from the object of interest. Given this constraint and the camera field
of view, the GreenSeeker acquisitions were performed by manually
positioning the sensor at about 1 m from the plant with a viewing
direction orthogonal to the plant canopy extension. This assured that
both the GreenSeeker and the RealSense were looking approximately
at the same area.
4

4. Methods

4.1. Adaptive radiometric calibration

During the field experiments, lighting variations between images of
the same dataset can be observed. Such changing conditions prevent
their consistent comparison to determine the physiological status of
vegetation. Therefore, an adaptive radiometric calibration procedure is
proposed. It allows images to be calibrated in reflectance, using two cal-
ibrated targets always visible in the camera field of view as previously
described in Section 3.1. For each spectral channel, a linear regression
can be established between pixel values (𝑝) of the calibration targets
expressed in the range (0–255) and their reflectance (𝜌𝑐ℎ) as [30]:

𝜌𝑐ℎ = 𝑎𝐼𝑐ℎ𝑝 + 𝑏𝐼𝑐ℎ (1)

where (𝑎𝐼𝑐ℎ, 𝑏
𝐼
𝑐ℎ) are the parameters of the linear equation for each

channel 𝑐ℎ (red and NIR) of image 𝐼 . Note that since the targets are
mounted on an aluminum bar attached at a fixed position with respect
to the camera, the image region occupied by the targets (i.e., lower
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Fig. 3. Sample images acquired in the field. From left to right: color, left infrared and depth image.
Fig. 4. Google Earth view of the test site in San Donaci (BR), Italy. The experimental field, including three crop rows (marked as 1-2-3), is highlighted by a yellow box. The
length of each row is of about 100 m and the covered area is approximately of 0.1 ha. Each row was scanned by both sides (A,B).
Table 1
Datasets acquired in 2023 from the beginning of berry formation to leaf discoloration and fall.

Datasets N.1 N.2 N.3 N.4 N.5

Date 06/06/2023 06/21/2023 07/27/2023 09/14/2023 10/19/2023
Hour (CEST) 11:00-12:00 10:00-11:00 10:00-11:00 11:15-12:15 11:00-12:00
Phenological Stage [29] Pea-sized berries (75) Berries beginning to touch (77) Beginning of ripening (81) Berries ripe

for harvest
(89)

Beginning of leaf
discoloration and
fall (92-93)

Nr. of images per channel 6234 5118 6522 12 660 7074
part of the field of view) is fixed and can be defined once at the
beginning of operation. Calibration parameters can be then recalculated
at every new image acquisition and used to convert image pixel values
into reflectance values for successive NDVI computation according
to Eq. (1), as will be described in the following.

4.2. Image processing for NDVI calculation

A method to estimate NDVI from images acquired by the Intel
RealSense sensor is proposed. The NDVI is based on the principle
that chlorophyll absorbs visible light for photosynthesis, while the cell
structure of leaves strongly reflects near-infrared light. The NDVI is
5

defined as:

𝑁𝐷𝑉 𝐼 = 𝑁𝐼𝑅 − 𝑉 𝐼𝑆
𝑁𝐼𝑅 + 𝑉 𝐼𝑆

(2)

where VIS and NIR stand for the spectral reflectance measurements
acquired in the visible (red) and near-infrared regions, respectively. The
NDVI ranges between −1 and 1. Healthy plants typically generate high
NDVI (0.6 or greater) and in the other case, the index is between 0 and
0.3. Lifeless zones produce low results (lower or equal to 0).

The first step necessary to calculate the NDVI index from images
acquired by the RealSense is to separate the plant from the background.
Segmentation is especially critical for plants that have low foliage
density as vineyards, since in this case it is necessary to single out the
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Fig. 5. Image processing steps for NDVI estimation for a sample case. (a) Segmented color image aligned to depth geometry; (b) segmented left NIR image; (c)–(d) reflectance
images after radiometric calibration for the red and NIR channels, respectively; (e) NDVI image with greener points corresponding to higher NDVI values.
canopy from the background that may cover a large image portion and
involve regions that are far away from the surveyed plant. To this end,
depth information is used to select only the points that fall within a
certain distance range from the camera in both the color and the IR
image. While more sophisticated solutions using semantic segmentation
techniques may be used without modifying the overall framework of
the proposed system, distance-based segmentation was found to work
well for our purposes. In this respect, it should be noted that since the
lower part of the camera field of view is occluded by the calibration
targets, only the upper part of the image needs to be processed (see
Fig. 3 as an example). In addition, a 40 cm wide Region of Interest
(ROI) corresponding approximately to the GreenSeeker reading area is
set in the vegetation area to compute NDVI values. Indeed, depth-based
segmentation does not allow for separation of branches, poles and wires
lying in the vicinity of the canopy, which are therefore included in the
vision-based estimates. However, it is worth noting that branches and
other wooden or support structures close to the canopy are not excluded
from GreenSeeker field of view either.

Once the ROI has been selected in both the color and NIR images,
the red and NIR channels are calibrated in reflectance following the
procedure described in Section 4.1. Then, for each segmented scene
6

Table 2
Accuracy of the proposed approach using the RealSense (RS) camera
with respect to GreenSeeker expressed in terms of Mean Absolute
Percentage Error (𝑀𝐴𝑃𝐸), standard deviation (𝜎) and maximum error
(𝑚𝑎𝑥𝑃𝐸) for both the calibrated and uncalibrated case.

𝑀𝐴𝑃𝐸% 𝜎% 𝑚𝑎𝑥𝑃𝐸%

Calibrated RS 4.6 2.0 8.7
Uncalibrated RS 16.4 5.9 25.7

point, the reflectance value in the red image and the corresponding
value in the NIR image are collected and used for pixel per pixel NDVI
computation. The average of all NDVI values for the single image is
finally calculated and used for comparison with the GreenSeeker mea-
surement for the same plant. As an example, Fig. 5 illustrates the steps
of the image processing pipeline for a test case. Specifically, Fig. 5(a)–
(b) show the results of segmentation for the color and NIR images in the
selected ROIs, respectively. The red and NIR channels after radiometric
calibration are displayed in Fig. 5(c)–(d). The resulting NDVI image is
shown in Fig. 5(e).
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Fig. 6. RGB images of a plant of row 1-A during the different phenological stages. The NDVI value estimated by the proposed approach is overlaid on each image.
Fig. 7. Temporal evolution of the NDVI as estimated by the calibrated RealSense camera, the uncalibrated RealSense camera and the GreenSeeker for each row (1-2-3) scanned
from both sides (A–B).
5. Results and discussion

The temporal evolution of the NDVI was analyzed as a function of
the phenological stage. As an example, RealSense NDVI estimates are
reported in Fig. 6 for a plant of row 1, inspected from side A during the
different plant development phases. As apparent from this figure, the
NDVI increases during the summer months, reaching its peak at the end
of July. It inverts its trend in September with a significant drop after
the harvesting stage in mid October.

The evolution of the average NDVI values along all rows of the
experimental test site scanned on either side over the course of the
phenological stages is shown in Fig. 7. Specifically, results from both
calibrated and uncalibrated images (i.e., using pixel values instead
of reflectance values) are reported and compared with GreenSeeker
measurements. It can be noticed that all curves show similar outcome
with a decreasing trend of the NDVI from berry formation (June) to
leaf fall (October). The discrepancy between the RealSense camera and
the GreenSeeker measurements can be expressed in terms of absolute
percentage error (𝑃𝐸𝑖) as:

𝑃𝐸𝑖 =
|

|

|

|

𝑁𝐷𝑉 𝐼 𝑖𝑅𝑆 −𝑁𝐷𝑉 𝐼 𝑖𝐺𝑆
𝑖

|

|

|

|

× 100 (3)
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|

𝑁𝐷𝑉 𝐼𝐺𝑆 |
where 𝑁𝐷𝑉 𝐼 𝑖𝑅𝑆 is the average NDVI estimate provided by the proposed
approach using the RealSense camera and 𝑁𝐷𝑉 𝐼 𝑖𝐺𝑆 is the average
measurement provided by the GreenSeeker along a given crop row 𝑖,
with 𝑖 = 1, 2, 3.

Numerical results are collected in Table 2. Specifically, considering
all 𝑃𝐸𝑖, the Mean Absolute Percentage Error (𝑀𝐴𝑃𝐸), the standard
deviation 𝜎 and the maximum error (𝑚𝑎𝑥𝑃𝐸) are reported for both
the calibrated and uncalibrated case. It can be seen that using the
calibrated camera a MAPE of 4.6% with standard deviation of 2.0%
and a maximum absolute percentage error of 8.7% are found, which
demonstrate a good agreement between the two sensing devices. For
the calibrated case, individual 𝑃𝐸𝑖 values are also illustrated in Fig. 8 in
the form of a bar graph. Results are further confirmed in Fig. 9, showing
good correlation between the calibrated RealSense and the GreenSeeker
measurements with a correlation coefficient 𝑅2 of 0.87.

The calibration system proves to be critical for the accuracy of the
vision-based measurement approach. For the uncalibrated imaging ap-
proach, the MAPE increases to 16.4% with a standard deviation of 5.9%
and maximum error of 25.7% as indicated in Table 2. Nevertheless,
the measurements are still well correlated with 𝑅2 of 0.74, as can be
seen by the correlation graph reported in Fig. 10. It should be also
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Fig. 8. Absolute percentage errors 𝑃𝐸𝑖, shown as a bar graph. Each bar of the plot represents the absolute percentage error between of the average NDVI returned by the
calibrated RealSense camera and the GreenSeeker for a given row (i=1,2,3) scanned by side A or B at a given phenological stage. The MAPE calculated over all measurements is
also displayed as a black dashed line.
Fig. 9. Correlation between calibrated RealSense and GreenSeeker NDVI measurements.
Fig. 10. Correlation between uncalibrated RealSense and GreenSeeker NDVI measurements.
noticed that although each single experiment extends over a relatively
short path (around 100 m) and time (approximately 3 min), significant
changes in environmental lighting conditions were observed. Hence,
calibration parameters changed from one image to another. As an
example, the distribution of the calibration parameters (see Eq. (1)) for
one field test is shown in the box plots of Fig. 11 for the red and NIR
channel.
8

Results reported so far have demonstrated the capability of the
proposed system of capturing the temporal evolution of the NDVI in
the field at row level. However, the system is able to perform geo-
referenced localized measures at plant/leaf level as illustrated in Fig. 12
for one of the test rows. This allows for identifying, where needed,
attention spots (i.e., points with lower NDVI values like P1, P2, P3) also
retrieving the corresponding visual images for further inspection. In
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Fig. 11. Variation of calibration parameters for one field test. On each box, the central red line indicates the median, and the bottom and top edges of the box indicate the 25th
and 75th percentiles, respectively. The whiskers extend to the most extreme data points excluding outliers.
Fig. 12. Google Earth projection of NDVI measurements (displayed in winter color map) along row 1 inspected from side B, with greener points denoting higher NDVI values.
Attention spots (points with lower NDVI such as P1, P2, P3) can be easily detected and the corresponding images retrieved for further inspection.
particular, the analysis of the depth-aligned color images in proximity
of the point P3 reveals the absence of vegetation as shown in Fig. 13.
This highlights an additional advantage of the proposed technology,
that is the possibility of estimating plant vigor based on appearance
information (i.e., color and NIR data) and to measure at the same time
morphological characteristics, such as plant height or foliage density,
based on 3D data.

6. Conclusion

In this work, the potential of an Intel RealSense D435 camera
mounted onboard a farmer robot in estimating NDVI in vineyards
was investigated. The camera was enhanced with optical filters to
improve the output signals from both the infrared and visual sensor.
In addition, an online radiometric calibration approach was proposed
to deal with lighting variations and transform pixel intensities into
reflectance values. The NDVI was measured, pixel per pixel, using data
from both near-infrared and red light reflected from the acquired scene
and compared with measurements provided by a Trimble GreenSeeker.
Experimental tests were performed in a Negroamaro commercial vine-
yard over multiple phenological stages from berry formation to leaf
discoloration and fall with the following main findings:
9

• good accuracy performance with a mean percentage error of 4.6%
and a correlation coefficient 𝑅2= 0.87 between RealSense and
GreenSeeker records;

• the online radiometric calibration system was critical to deal
with uncontrolled lighting variations and ensure consistent and
accurate results;

• the use of an RGB-D sensing device allows for the simultane-
ous availability of depth data that can ease image segmentation
and provide additional information on plant status based on
morphological characteristics, such as plant height or volume;

• the camera was integrated onboard a farmer robot to map NDVI
measurements along a vineyard row, showing that the proposed
system provides a useful technology for in-field close range mon-
itoring of crop growth and health status.

It should be noticed that the use of a consumer-grade camera fulfills
the two requirements of cost-effectiveness (< 400 Euros) and user-
friendliness (thanks to the availability of the open-source Intel SDK).
The camera can be mounted onboard a farmer robot or any other
agricultural vehicle. It can also be used in a ground-based or handheld
configuration. In addition, the proposed processing pipeline does not
involve computationally expensive algorithms and it can run real-time
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Fig. 13. Image sequence in proximity of position P3: original color images (up) and depth-based segmented images (bottom). In this case, depth-based segmentation points out
a region with low foliage occupation (plants on the background are filtered out based on distance information). Hence, the system can simultaneously capture appearance and
morphological characteristics of the crop, based on RGB-NIR and depth data, respectively.
on standard or embedded computers. As such, the proposed system
could contribute to make robotic technology more accessible to tradi-
tional farming environments, making farming more attractive for the
young and tech-affine generation, and thus counteracting the emerging
shortage of young, skilled workers.

The current study was performed on a single grape variety and a
relatively limited field extension. Given the promising results, future
research efforts will be devoted to the validation of the system in
different vine cultivars as well as other vegetation species. The in-
fluence of lighting conditions (e.g., sun-angle variations) and of the
camera position with respect to the canopy will also be specifically
investigated. In addition, the use of different optical filter combinations
to further improve the output signals from both the IR and visual sensor
will be researched. The combined use of depth and color information to
enhance image segmentation and reduce the influence on the measure-
ment of non-vegetative areas will be an additional focus of the research.
The comparison with multispectral or hyperspectral imaging devices
will be performed to further verify the potential and reliability of the
proposed system.
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