Tree Signatures for XML Querying and Navigation

Pavel Zezula Giuseppe Amato

ISTI-CNR
Pisa, Italy
g.amato@iei.pi.cnr.it

Masaryk University
Brno, Czech Republic
zezula@fi.muni.cz

Abstract

In order to accelerate the performance of
various matching and navigational operations
on collections of XML documents, new in-
dexing structures, called tree signatures, are
proposed. We show that XML tree struc-
tures can be efficiently represented as ordered
sequences of preorder and postorder ranks.
Two proposed versions of tree signatures dif-
fer in the amount of information they contain,
and extensive performance evaluation demon-
strates the tradeoff between the space and per-
formance of executing different XPath axes.
We also show how to apply tree signatures
in query processing and demonstrate that a
speedup of up to one order of magnitude can
be achieved with respect to the containment
join strategy. Other alternatives of using the
tree signatures in intelligent XML searching
are outlined in the conclusions.

Categories and Subject Descriptors: E.1 [Data
Structures]: Records, H.2.2 [Database Management]:
Physical Design- Access Methods, H.3.3 [Information
Storage and Retrieval]: Information Searching and
Retrieval- Search process

Free Keywords: XML searching, Tree signatures,
XML query processing

1 Introduction

With the rapidly increasing popularity of XML for
data representation, there is a lot of interest in query
processing over data that conforms to a labelled-tree
data model. A variety of languages have been pro-
posed for this purpose, all of which can be viewed as
consisting of a pattern language and construction ex-
pressions. Since the data objects are typically trees,
tree pattern matching is the central issue.

The idea behind evaluating tree pattern queries,
sometimes called the twig queries, is to find all the
ways of embedding the pattern in the data. Because
this lies in the core of most languages for processing

Franca Debole Fausto Rabitti

ISTI-CNR
Pisa, Italy
f.debole@iei.pi.cnr.it

ISTI-CNR
Pisa, Italy
f.rabitti@cnuce.cnr.it

XML data, efficient evaluation techniques for these
languages require relevant indexing structures.

Contrary to previous approaches, trying to acceler-
ate retrieval through the application of joins [ZND+01,
BKS02, CVZ02], we apply the signature file approach.
In general, signatures are compact (small) represen-
tations of important features extracted from actual
documents in such a way that query processing can
be performed on the signatures instead of the doc-
uments. In the past, see e.g. [TZ95] for a survey,
such principle has been suggested as an alternative to
the inverted file indexes. Recently, it has been suc-
cessfully applied to indexing of multi-dimensional vec-
tors for similarity-based searching [WSB98], image re-
trieval [NTC02], and data mining [NM02].

We define the tree signature as a compact sequence
of tree-node entries, containing node names and their
structural relationships. Though other possibilities
are also discussed, we show how these signatures can
be used for efficient tree navigation and twig pattern
matching. In Section 2, we explain the motivations for
developing tree signatures. The necessary background
is surveyed in Section 3. The tree signatures are speci-
fied in Section 4. In Section 5, we show the advantages
of tree signatures for XPath navigation, and in Section
6 we elaborate on the XML query processing applica-
tion. Extensive performance evaluation is discussed in
Section 7. Conclusions and a discussion on alternative
search strategies is in Section 8.

2 Motivation

XML employs a tree-structured model for represent-
ing data. Queries in XML query languages typically
specify patterns of selection predicates on multiple
elements that have some specified tree structured
relationships. For example, the XPath expression:
project[title = "XML"]//partner[institution
= "ISTI" and leader = "Fausto"]

selects partner elements that have child elements
institution with content "ISTI” and leader with
content ”"Fausto”. The selected partner elements
must be descendants of a project with a child
element title containing text "XML”. This ex-

project

e NN

title partner

e hY

institution leader

Figure 1: Query twig

pression can be represented as a node-labelled small
tree pattern (or a twig) with elements and strings
as node labels. See Figure 1 for an illustration of
the elements’ structure, where the single arrows
represent parent-child relationships while the double
arrows indicate the more general ancestor-descendant
relationships between tree nodes.

Given a query twig pattern () and an XML database
D, a match of Q) in D is identified by a mapping from
nodes in @ to nodes in D, such that: (i) query node
predicates are true, and (ii) the structural (ancestor-
descendant and preceding-following) relationships be-
tween query nodes are satisfied by the corresponding
database nodes. In principle, there are two ways to
evaluate such queries [MW99]:

e we first find all qualifying predicates in a docu-
ment and determine their position in the structure
—for example by using traditional attribute-based
indexes. Then we check to see if their structural
relationships are satisfied;

e we first find relevant structural instances of the
twig in a document and then check their predi-
cates for qualification.

Naturally, these two approaches can also be combined.
For example, consider the query above and assume
that we have only an index on the institution at-
tribute. If in this document there is only one instance
of the institution ”"ISTT”, then we have to find the
query twig in the document with this institution as
constant, and if such a twig exists, we have to check
all the other predicates for qualification. Such an ap-
proach consequently implies a form of tree navigation.

Though the predicate evaluation and the structural
control are closely related, in this article, we mainly
consider the process of evaluating the structural rela-
tionships, because indexing techniques to support effi-
cient evaluation of predicates already exist.

3 Preliminaries

Tree signatures are based on a sequential representa-
tion of tree structures. In the following, we briefly
survey the necessary background information.

a
vd hN

b f

b\ hN

c g h

vd hN vd hN

d e o p
pre: a b c¢c d e g f h o p
post: d e ¢ g b o p h f a

Figure 2: Preorder and postorder sequences of a tree

3.1 Labelled ordered trees

Let ¥ be an alphabet of size |X|. Let €, not in ¥, rep-
resent the null symbol. An ordered tree T is a rooted
tree in which the children of each node are ordered.
If a node ¢ € T has k children then the children are
uniquely identified, left to right, as i1,i2,...,i5. A
labelled tree T' associates a label t[i] € ¥ with each
node i € T. If the path from the root to ¢ has the
length n, we say that the node ¢ is on the level n, i.e.
level(i) = n. Finally, size(i) denotes the size of sub-
tree rooted at i — the size of any leaf node is zero. In
the following, we consider ordered labelled trees.

3.2 Preorder and postorder sequences and
their properties

Though there are several ways of transforming ordered
trees into sequences, we apply the preorder and the
postorder ranks, as recently suggested in [Gr02]. The
preorder and postorder sequences are ranked lists of all
nodes of a given tree T'. In a preorder sequence, a tree
node v is traversed and assigned its (increasing) pre-
order rank, pre(v), before its children are recursively
traversed from left to right. In the postorder sequence,
a tree node v is traversed and assigned its (increasing)
postorder rank, post(v), after its children are recur-
sively traversed from left to right. For illustration, see
the preorder and postorder sequences of our sample
tree in Figure 2 — the node’s position in the sequence
is its preorder/postorder rank.

Given a node v € T' with pre(v) and post(v) ranks,
the following properties are of importance to our ob-
jectives:

e all nodes z with pre(z) < pre(v) are either the
ancestors of v or nodes preceding v in T}

e all nodes z with pre(z) > pre(v) are either the
descendants of v or nodes following v in T

o all nodes x with post(z) < post(v) are either the
descendants of v or nodes preceding v in T;

o all nodes x with post(z) > post(v) are either the
ancestors of v or nodes following v in T

A
post

5
>

e

o i RSO [——

=

P

Figure 3: Properties of the preorder and postorder
ranks.

o for any v € T, we have pre(v) —post(v)+size(v) =
level(v).

As proposed in [Gr02], such properties can be sum-
marized in a two dimensional diagram, as illustrated
in Figure 3, where the ancestors (A), descendants (D),
preceding (P), and following (F) nodes of v are clearly
separated in their proper regions.

3.3 Longest common subsequence

The edit distance between two strings z = z1,...,%y
and ¥y = y1,...,Ym i8 the minimum number of the
insert, delete, and modify operations on characters
needed to transform z into y. A dynamic program-
ming solution is defined by a (n+ 1) x (m + 1) matrix
M[-,-] that is filled so that for every 0 < ¢ < n and
0 < j < m,Ml[i,j] is the minimum number of opera-
tions to transform z1,...,; into yq,...,y;.

A specialized task of the edit distance is the longest
common subsequence. In general, a subsequence of
a string is obtained by taking a string and possi-
bly deleting elements. If z1,...,z, is a string and
1 <4 <ig < ... <1 <nis a strictly increasing
sequence of indices, then z;,,%;,,...,%;, iS a subse-
quence of z. For example, art is a subsequence of
algorithm. In the longest common subsequence (l.c.s.)
problem, given strings and y we want to find the
longest string that is a subsequence of both. For
example, art is the longest common subsequence of
algorithm and parachute.

By analogy to edit distance, the computation uses
an (n + 1) x (m + 1) matrix M such that for every
0<i<nand0<j<m, M[ij] contains the length
of the l.c.s. between z1,...,z; and yi,...,y;. The
matrix has the following formal definition:

e MI[i,0] = MJ0,j] =0, otherwise

o Ml[i,j] = maz{M[i — 1,3]; M[i,j — 1];
where eq(z;,y;) = 1 if z; = y;, eq(zi,y;) = 0
otherwise.

The following is the content of the matrix for the
words ”algorithm” and ”parachute”.

D

Bl |ct|=|r|o|oa|—lo|>

LW NN N == O
QIO W DD D] = | =t bt | =t | O]
LW W N = - - O

O|IoIo|Ioo|IcIoooIoe

RSy Sy [y sy sy Y i S - 1R

NN N NN === =IO

NN N NN === =IO

NN N NN = ==Oo

Wl NN R R==ols

[l vl Hen] fen] Hen] Ren] Hav] Hen] Han) Nan)

Obviously, the matrix can be filled in O(n - m) time.
But algorithms such as [HS77] can find l.c.s. much
faster.

3.4 The sequence inclusion

A string is sequence-included in another string, if their
longest common subsequence is equal to the shorter
of the strings. Assume strings © = z1,...,%, and
Y=19Y1,---,Ym with n < m. The string z is sequence-
included in the string y if the L.c.s. of z and y is x.

Note that sequence-inclusion and string-inclusion
are very different concepts. String z is included in
y if characters of z occur contiguously in y, whereas
characters of £ might be interspersed in y with char-
acters not in z. If string z is string-included in y, it
is also sequence-included in y, but not the other way
around.

For example, if we search for the l.c.s. of the strings
”art” and ”parachute”, we obtain the matrix

Alpla|lrlalc|h|jul|t]|e
Al0O|JOjO|O|O]|O]|O|O|O]|O
alO(O0O|1l]|1 111|111
r|{0]0|1]2(2|2[2(2]|2]|2
t|{0|0|1(2]|2(2]|2(2]|3|3

Using the l.c.s. approach, one string is sequence-
included in the other if M[n,m] = n = min{m,n}.
But because we do not have to compute all elements of
the matrix, the complexity is O(m) | m = maz{m,n}.

4 Tree Signatures

The idea of the tree signature is to maintain a small
but sufficient representation of the tree structures, able
to decide the tree inclusion problem as needed for XML
query processing. Intuitively, we use the preorder and
postorder ranks to linearize the tree structures and
apply the sequence inclusion algorithms for strings.

4.1 The signature

The tree signature is a list of pairs. Each pair con-
tains a tree node name along with the corresponding

postorder rank. The list is ordered according to the
preorder rank of nodes.

Definition 4.1 Let T be an ordered labelled tree.
The signature of T is a sequence, sig(T) =
(t1,post(t1); ta, post(ta); .. . tn,post(ty)), of n = |T|
entries, where t; is a name of the node with pre(t;) = i.
The post(t;) is the postorder value of the node named
t; and the preorder value i.

For example, (a, 10; b, 5; ¢, 3;d, 1;¢,2; 9,4; f,9; h, 8; 0,6;
p,7) is the signature of the tree from Figure 2, and
{(a,5;a,1;a,4;a,2;a,3) is the signature of the tree
from Figure 5. By analogy, tree signatures can also
be constructed for query trees, so {(h,3;0,1;p,2;) is
the signature of the query tree form Figure 4.

4.1.1 Tree inclusion evaluation

Suppose the data tree T specified by signature

sig(T) = (t1, post(ty); ta, post(te);. .. ty, Dost(tm)),

and the query tree () defined by its signature

5ig(Q) = (q1,post(q1); g2, post(q2); - - - gn, POst(qn))-

Let sub_sigo(T) be the sub-signature (i.e. a subse-
quence) of sig(T) determined by sequence inclusion
(see Section 3.4) of node names of sig(Q) in sig(T).
A gpecific query signature can determine zero or more
data sub-signatures. Clearly, if we only consider node
names, any sub_sigo(T) = sig(Q), because ¢; = t; for
all i. However, the entries of sub_sigg(T) can have
postorder values different than corresponding entries
in sig(Q). It is also important to understand that the
sequence positions of entries in sub-signatures need not
correspond to sequence positions (i.e. the preorder val-
ues) of the corresponding entries in sig(T).

Lemma 4.1 The query tree Q) is included in the data
tree T' if the following two conditions are satisfied: (1)
on the level of node names, sig(Q) is sequence-included
in sig(T) determining sub_sigg(T), (2) for all pairs
of entries ¢ and i + 1 in sig(Q) and sub_sigo(T),
i = 1,2,...|Q| — 1, post(giy1) > post(q;) implies
post(ti41) > post(t;).

Proof 4.1 Because the index i increases according to
the preorder sequence, node © + 1 must be either the
descendant or the following node of i. If post(g;11) <
post(q;), the node i + 1 in the query is a descendant
of the node i, thus also post(tit1) < post(t;) is re-
quired. By analogy, if post(g;+1) > post(q;), the node
i+ 1 in the query is a following node of i, thus also
post(ti41) > post(t;) must hold.

For example, consider the data tree T in Figure
2 and the query tree () in Figure 4. Such query

v ¢
0 P

s5i9(Q) = (h,3;0,1;p,2)

Figure 4: Sample query tree @

ai
vd AN
ao as

e hY

[¢2] as

Slg(T) = ((11,5; as, 1;0'374; aq, 2;0'573)

Figure 5: Sample tree T with redundant names

qualifies in T, because sig(Q) = (h,3;0,1;p,2) deter-
mines sub_sigg(T) = (h,8;0,6;p,7) that is identical
to the query signature on the level of names. Besides,
the trends in postorder directions between neighbor-
ing entries of sig(Q)) and sub_sigg(T) are the same.
If we change in our query h for f, we get sig(Q) =
(f,3;0,1;p,2). Such a modified query tree is also in-
cluded in T, because Lemma 4.1 does not insist in the
strict parent-child relationships, and implicitly con-
siders all such relationships as ancestor-descendant.
However, the query tree with the root g, resulting in
si9(Q) = (g, 3;0,1; p, 2}, does not qualify, even though
it is also sequence-included (on the level of names) as
the sub-signature sub_sigo(T) = (g,4;0,6;p,7). The
reagon is that the query requires the postorder to go
down from g to o (from 3 to 1) , while in the sub-
signature it actually goes up (from 4 to 6). That means
that o is not a descendant node of g, as required by the
query, but a node that follows g, which can be verified
in Figure 2.

Multiple nodes with common names may result in
multiple tree inclusions. In order to make our ap-
proach work correctly also for redundant names, we
have to distinguish between the node names, which can
be redundant, and their unique occurrences in trees.
For motivation, see the tree in Figure 5, where all 5
nodes are labelled with the same name a. To dis-
tinguish between individual node occurrences of the
tree, we use numeric subscripts. Note that the indices
are only important and valid locally within a specific
tree to distinguish among individual (redundant) node
name instances. Whenever the tree sequence represen-
tations are compared regarding the names, indices are
not considered, so on the name level, a; is the same
label as, for example, a;.

Consider the tree from Figure 5, which is defined by
signature sig(T) = (a1, 5; a2, 1; a3,4;04,2;a5,3). As-

| SZg(Q) | (11,4 | 0/2,1 | 0’372 | 0,4,3 |
subsigs(T) | a1,5 | az,1 | a3,4 | a4,2
subsigy(T) | a1,5 | a,1 | a3, 4 | a5,3
subsigy(T) | a1,5 | a2,1 | a4,2 | a5,3
subsign(T) | a1,5 | a3,4 | as,2 | a5,3
subsigy(T) | a2,1 | as,4 | a4,2 | 05,3

Table 1: Sub-signature inclusions

sume a query tree consisting of 4 nodes identically la-
belled a from which one is the root and the others are
independent descendants of the root. This tree results
in signature sig(Q) = {a1,4; as, 1; as, 2; a4, 3). The se-
quence sig(Q) is, on the level of names, sequence in-
cluded in sig(T") 5 times. Table 1 reports a summary
of the query tree signature and the corresponding 5
sub-signatures of the data tree. The bold values of pos-
torder indicate discrepancies between the required (se-
quence) trends of these values defined by the query sig-
nature with respect to the proper sub-signature. Ac-
cordingly, only the 3rd sub-signature qualifies, because
whenever the postorder in sig(Q) goes up (down), the
postorder of sub_sigg (T") moves in the same direction.
This means that the query tree is included in the data
tree from Figure 5 as the pattern consisting of nodes
ai, 2,04, as.

If we change the implicit relationships between
the query root and the leaves from the ancestor-
descendant to the parent-child relationships, we have
to check if a; is actually the parent of as,as and as.
In general, given a node with preorder position i, de-
fined by the i-th entry of the corresponding signature,
the parent node of i = j | post(j) = min{post(j) |
Jj < i A post(j) > post(i)}, which is a natural ap-
plication of the basic properties of the preorder and
postorder ranks. If we apply the parent definition on
sig(T) = {a1,5; as, 1;as,4; a4, 2; as, 3), we see that as
has a, as the parent, because post(a;) > post(az) and
a1 is the only node before as. But the node before
a4 with the minimum postorder greater than post(a4)
is ag, so the node as rather than a; is the parent of
a4. The same applies for a5 with post(as) = 3. That
means that for such modified query, the data tree does
not qualify.

4.1.2 Extended signatures

In order to further increase the efficiency of various
matching and navigation operations, we also propose
the extended signatures. For motivation, see the sketch
of a signature in Figure 6, where A, P, D, F represent
areas of ancestor, preceding, descendant, and follow-
ing nodes with respect to the generic node v. Observe
that all descendants are on the right of v before the
following nodes of v. At the same time, all ancestors
are on the left of v, acting as separators of subsets of

N 0

8 —
No”

Figure 6: Signature structure

preceding nodes. This suggests extending entries of
tree signatures by two preorder numbers representing
pointers to the first following, ff, and the first ances-
tor, fa, nodes. The general structure of the extended
signature of tree T is

Slg(T) = (tlapo’St(tl)afflafa’l;t27p08t(t2)7ff27fa’2; BN

tnaPOSt(tn)a ffn) fa’n>7

where ff, (fa;) is the preorder value of the first fol-
lowing (ancestor) node of that with the preorder rank
i. If no terminal node exists, the value of the first an-
cestor is zero and the value of the first following node
is n+ 1. For illustration, the extended signature of the
tree from Figure 2 has the form

sig(T) = (a,10,11,0;b,5,7, 1;¢,3,6,2:d,1,5,3: ¢,2, 6, 3;

9,4,7,2; £,9,11,1; h,8,11,7; 0,6, 10, 8; p, 7,11, 8)

Given a node with index %, the cardinality of the
descendant node set can now be computed as

size(i) = ff;, —i—1,
and the level of the node with index 7 is
level(i) =i —post(i) + ff,—i— 1= ff, —post(i)—1

Observe that the level of a node can be determined by
using only the node’s tree signature data.

4.2 Partial signatures

Traditional data value indexes typically process infor-
mation specific to individual tree nodes, e.g. titles or
institutions, so the following problem is relevant:

Given a query tree (and a set the signa-
ture entries for only some nodes of T', can T
qualify for Q) or not?

The answer depends on how much and what kind of
information about T is available. If one of the node
names of the partial data tree specification is known
and if it matches a name of @), the evaluation is MAY-
BE, and additional information is needed. If there
are 2 < |Q| matching names, we can never be sure
about the positive qualification, but we may decide
that the data tree does not qualify for (). Specifically,
if the relative positions, determined by the preorder

and postorder numbers, of the nodes in () do not com-
ply with the positions in the data tree, the answer is
NO, because we are sure about the not possible quali-
fication. Such an approach can easily be extended for
more than two node names.

Another way to increase the number of NO cases
is to take into account levels on which nodes appear
in the data tree. For example, we may know that
a specific node must be on a certain level, or that a
difference between levels of two nodes is equal to a
certain value. As we have already demonstrated, levels
are easy to compute from isolated signature entries by
means of the extended signatures, while with the short
signatures we can only compute the levels of leaf nodes
as level(i) =i — post(i).

5 Evaluation of XPath expressions

XPath [WWW99] is a language for specifying naviga-
tion within an XML document. The result of evalu-
ating an XPath expression on a given XML document
is a set of nodes stored according to document order,
so we can say that the result nodes are selected by
an XPath expression. An XPath expression has the
following syntax:

Path ::= /Step;/Stepy/ ... /Stepy
where each XPath Step is defined as follows:
Step ::= Axis :: Node — test(Predicate)*

An XPath expression is evaluated sequentially, ”step”
by ”step”, and an XPath Step is applied to a single
node, called the contezxt node, and selects a set of result
nodes. Each node of the result node set is then used
as the context node to evaluate the following Step.
The initial context node is the root of the input doc-
ument. The result of evaluating an XPath expression
is the union of node sets selected by the last Step. In
principle, we can say that the evaluation of an XPath
expression is a recursive top-down process.

Within an XPath Step, an Axis specifies the direc-
tion in which the document should be explored. Given
a context node v, XPath supports 12 axes for naviga-
tion. Assuming the context node is at position ¢ in the
signature, we describe how the most significant axes
can be evaluated in the extended signatures, using the
tree from Figure 2 as reference:

Child The first child is the first descendant, that
is a node with index i + 1 such that post(i) >
post(i + 1). The second child is indicated by
pointer ff; . ,, provided the value is smaller than
ff;, otherwise the child node does not exist. All
the other children nodes are determined recur-
sively until the bound ff; is reached. For exam-
ple, consider the node b with index 7 = 2. Since
ff2 =7, there are 4 descending nodes, so the node

with index ¢4+ 1 = 3 (i.e. node ¢) must be the first
child. The first following pointer of ¢, ff; . ; = 6,
determines the second child b (i.e. node g), be-
cause 6 < 7. Due to the fact that ffs = ff;, =7,
there are no other child nodes.

Descendant The descendant nodes (if any) start im-
mediately after the reference object, that is at po-
sition ¢+ 1, and the last descendant object is at po-
sition ff, — 1. If we consider node ¢ (with ¢ = 3),
we immediately decide that the descendants are
at positions starting from i +1=4to ffs—1=25,
i.e. nodes d and e.

Parent The parent node is directly given by the
pointer fa. The Ancestor axis is just a recur-
sive closure of Parent.

Following The following nodes of the reference at po-
sition ¢ (if they exist) start at position ff, and
include all nodes up to the end of the signature
sequence. All nodes following ¢ (with ¢ = 3) are
in the suffix of the signature starting at position

ffs=6.

Preceding All preceding nodes are on the left of the
reference node as a set of intervals separated by
the ancestors. Given a node with index i, fa;
points to the first ancestor (i.e. the parent) of
i, and the nodes (if they exist) between i and
fa; precede ¢ in the tree. If we recursively con-
tinue from fa;, we find all the preceding nodes
of i. For example, consider the node g with
i = 6: following the ancestor pointer, we get
fag =2, fay =1, fa; =0, so the ancestors nodes
are b and a, because fa; = 0 indicates the root.
The preceding nodes of g are only in the interval
fromi—1=>51t0 fag+1 =3, i.e. nodes ¢, d, and
e.

Following-sibling In order to get the following sib-
lings, we just follow the ff pointers while the fol-
lowing objects exist and the fa pointers are the
same as fa;. For example, given the node ¢ with
i = 3 and fag = 2, the f f3 pointer moves us to the
node with index 6, that is the node g. The node g
is the sibling following ¢, because fag = fas = 2.
But this is also the last following sibling, because

ffe="Tand fa; # fas.

Preceding-sibling All preceding siblings must be
between the context node with index 7 and its
parent with index fa; < 4. The first node af-
ter the i-th parent, which has the index fa;+1, is
the first sibling. Then use the Following-sibling
strategy up to the sibling with index i. Consider
the node f (i = 7) as the context node. The
first sibling of the i-th parent is b, determined by
pointer fa; + 1 = 2. Then the pointer ff, =7

leads us back to the context node f, so b is the
only preceding sibling node of f.

Node-test specifies a simple test on the XML nodes
found along the step’s axis. The most commonly
used Node-test examines node names. For example,
the step child: :1eader would select child nodes that
have the name ”leader”. Since tree signatures also
contain node names, node tests can easily be imple-
mented. Naturally, the often used Node-test ”*”,
which evaluates to true for all element nodes, is im-
plicitly determined by the tree signatures.

An XPath step can also include a sequence of pred-
icates. The predicates are applied to the node set se-
lected by the step. Only nodes for which all predi-
cates evaluate to true, are returned. Since tree signa-
tures do not contain the actual data values, we limit
our discussion to predicates of the form [position()
= n]. Such a predicate selects all nodes whose po-
sition (index) within the context node set equals
to n. For example, child::leader[position()=2]
selects the second child named ”leader” whereas
descendant: :leader [position()=2] selects second
such a descendant. Since signatures are representa-
tions of ordered trees, the implementation of predi-
cates on position is straightforward.

6 Query Processing

Processing a query Q on a collection of XML doc-
uments represents a process of finding sub-trees for
which content predicates and structural relationships,
defined by the query, are satisfied. Query execution
strategies determine the ways the query’s predicates
are evaluated. In principle, a predicate can be decided
either by accessing a specific part of the document or
by means of an index. So a specific strategy depends
on the availability of indexes. We assume that tree
signatures are used to support verification of required
structural relationships.

A query processor can also exploit tree signatures to
evaluate set-oriented primitives similar to the XPath
axes. For instance, given a set of elements R, the eval-
uation of Parent(R,article) gives back the set of el-
ements named article, which are parents of elements
contained in R. We suppose that elements are identi-
fied by their preorder values, so sets of elements are in
fact sets of element identifiers.

Verifying structural relationships can easily be inte-
grated with evaluating content predicates. If indexes
are available, a preferable strategy is to use these in-
dexes to obtain sets of elements satisfying the pred-
icates first, and then verify the structural relation-
ships using signatures. Consider the following XQuery
[XQ02] query:

for $a in //people
where
$a/name/first="John" and

$a/name/last="Smith"

return
$a/address
Suppose that content indexes are available
on the first and last elements. A possi-
ble efficient execution plan for this query is:

. let Ry = ContentIndexSearch(last — idz, Smith);
. let Ry = ContentIndexSearch(first — idz, John);
. let Ry = Parent(R; name);

. let Ry = Parent(Rq,name);

. let Ry = Intersect(Rs,Ry);

. let Rg = Parent(Rj,people);

. let Ry = Child(Rg,address);

OO R W=

First, the content indexes are used to obtain R; and
R, ie. the sets of elements that satisfy the con-
tent predicates. Then, tree signatures are used to
navigate through the structure and verify structural
relationships.

Now suppose that a content index is only available
on the last element, the predicate on the first ele-
ment has to be processed by accessing the content of
XML documents. Though the specific technique for ef-
ficiently accessing the content depends on the storage
format of the XML documents (plain text files, rela-
tional transformation, etc.), a viable query execution
plan is the following:

let Ry = Parent(R;,name);

let Ry = Child(Rs,first);

let Ry = FilterContent(Rg,John);
let Rs = Parent(R4,name);

let R¢ = Parent(Rs,people);

let Ry = Child(Rg,address).

Noos e

Here, the content index is first used to find Ry, i.e.
the set of elements containing Smith. The tree
signature is used to produce Rz, that is the set of the
corresponding first elements. Then, these elements
are accessed to verify that their content is John.
Finally, tree signatures are used again to verify the
remaining structural relationships.

7 Experimental evaluation

We have experimentally evaluated the tradeoff be-
tween the space and the efficiency of executing differ-
ent XPath axes by means of short and extended sig-
natures (Section 7.2). We have also conducted exper-
iments to demonstrate the efficiency of the extended
signatures for query processing (Section 7.3).

7.1 TImplementation

The length of a signature sig(T") is proportional to the
number of the tree nodes |T'|, and the actual length de-

let Ry = ContentIndexSearch(last — idz, Smith);

pends on the size of individual signature entries. The
postorder (preorder) values in each signature entry are
numbers, and in many cases even two bytes suffice to
store such values. In general, the tag names are of
variable size, which can cause some problems when
implementing the tree inclusion algorithms. But also
the domain of tag names is usually a closed domain
of known or upper-bounded cardinality. In such case,
we can use a dictionary of the tag names and trans-
form each of the names to its numeric representation
(a code) of fixed length. For example, if the number
of tag names and the number of tree nodes are never
greater than 65,536, both entities of a signature en-
try can be represented on 2 bytes, so the length of the
signature sig(T) is 4 - |T'| for the short version, and
8 - |T| for the extended version. With a stack of max-
imum size equal to the tree hight, signatures can be
generated in linear time.

In our implementation, the signature of an XML file
was maintained in a corresponding signature file con-
sisting of a list of records. Each record contained two
(for the short signature) or four (for the extended sig-
nature) integers, each represented by four bytes. Ac-
cessing signature records was implemented by a seek in
the signature file and by reading in a buffer the corre-
sponding two or four integers (i.e. 8 or 16 bytes) with a
single read. No explicit buffering or paging techniques
were implemented to optimize access to the signature
file. Everything was implemented in Java, JDK 1.4.0
and run on a PC with a 1800 GHz Intel pentium 4,
512 Mb main memory, EIDE disk, running Windows
2000 Professional edition with NT file system (NTFS).

7.2 Performance of XPath navigation steps

To study the tradeoff between the space and the ef-
ficiency of executing different axes by means of the
short and extended signatures, we conducted the fol-
lowing experiments. We generated three signatures,
representing one small (2,000 nodes) and two kinds of
large (20,000 nodes) trees — one large high tree with
a small branching factor, and one large low tree with
a high branching factor. By randomly choosing ref-
erence nodes in sufficient quantity, we have measured
the execution time of the individual axis needed by
algorithms operating on the short and extended sig-
natures. For reference, we also implemented the nav-
igation algorithms on a DOM structure, obtained by
the Xerces parser [Xer]. Results of the experiments are
summarized in Table 2, where S-E represents the aver-
age speedup of the extended signature with respect to
the short signature, and D-E is the average speedup
of the extended signature with respect to the DOM
implementation.

The experiments confirm that implementations on
extended signatures are always faster than on the short
signatures, and the larger the signature, the better.
The biggest advantage can be observed in the ancestor

axis small large-high large-low

SE|D-E[SE|[DE]SE |D-E
child 143 | 081|243 | 09 | 1.6 | 091
descendant | 1.09 | 3.40 | 1.14 | 2.82 | 1.18 | 4.39
ancestor 14.1 | 0.71 | 178 | 0.55 | 662 | 0.84
following 111 | 1.62 | 1.43 | 3.16 | 1.45 | 3.3
preceding 1.08 | 259 | 1.4 | 415 | 1.42 | 4.14
foll-sibling | 1.44 | 0.63 | 2.62 | 0.83 | 1.46 | 0.50
pre-sibling | 148 | 0.75 | 1.79 | 1.03 | 1.34 | 0.5

Table 2: Performance comparison

axis, mainly when processing large low trees. For all
the other axes, the performance improvements are less
significant and actual values depend on the shape of
the tree and the position of the reference.

As expected, the DOM structure is very suitable
for navigation. Except when processing the descen-
dant, following, and preceding axes, the DOM struc-
ture was slightly better than the extended signatures.
Observe that the performance of the DOM algorithms
was maximally 2 times better (speedup 0.5), compared
to the more than 4 times better performance (speedup
4.39) of the extended signatures in some other situa-
tions. However, the space requirements of the DOM
only structural part was 3 times the extended signa-
ture size and 6 times more of the short signature. In
real applications, the DOM structure also contains the
data, which can result in very large data objects, un-
able to be processed in internal memory.

7.3 Query evaluation

We compared the extended signatures with the con-
tainment join according to the implementation from
[ZND+01]. An Element Index was used to associate
each element of XML documents with its start and
end positions — start and end positions are, respec-
tively, the positions of the start and the end tags of el-
ements in XML documents. This information is main-
tained in an inverted index, where each element name
is mapped to the list of its occurrences in each XML
file. The inverted index was implemented by using
the BerkeleyDB. Specifically, we used Bt-trees with
multiple keys. Retrieval of the inverted list associ-
ated with a key (the element name) was implemented
with the bulk retrieval functionality, provided by the
BerkeleyDB. The containment join was implemented
as the Multi Predicate MerGe JoiN (MPMGJN), as
described in [ZND-+01].

We have compared signatures and containment
joins using XQuery queries of the following template:

for $a in //<e_name>
where <pred($a)>
return

<result>

element name | # elements
phdthesis 71

book 827
inproceedings 198960
author 679696
year 3135631
title 313559
pages 304044

Table 3: Selectivity of element names

predicate # elements
$a/author="Michael J. Franklin" 73
$a/year="1980" 2595
$a/year="1997" 21492

Table 4: Selectivity of predicates

$a/<e_1>
$a/<en>
</result>

In this way, we are able to generate queries that
have different element name selectivity (i.e. the num-
ber of elements having a given element name), element
content selectivity (i.e. the number of elements having
a given content), and the number of navigation steps
to follow in the pattern tree (twig), corresponding to
the query. Specifically, by varying the element name
<e_name> we can control the element name selectivity,
by varying the predicate <pred($a)> we can control
the content selectivity, and by varying the number n
of the expression in the return clause, we can control
the number of navigation steps.

We run our experiments by using the XML DBLP
data set containing 3,181,399 elements and occu-
pying 120 Mb of memory. We chose three de-
grees of the element name selectivity by setting
<e_name> to phdthesis for high selectivity, to book
for medium selectivity, and to inproceedings for
low selectivity. The degree of content selectivity was
controlled by setting the predicate <pred($a)> to
$a/author="Michael J. Franklin" for high selec-
tivity, $a/year="1980" for medium selectivity, and
$a/year="1997" for low selectivity. In the return
clause, we have used title as <e_1> and pages as
<e2>. Table 3 shows the number of occurrences of
the element names that we used in our experiments,
while Table 4 shows the number of elements satisfying
the predicates used.

Each query generated from the previously described
query template is coded as "QNCn”, where N and
C indicate, respectively, the element name and the
content selectivity, and can be H(igh), M(edium), or
L(ow). The parameter n can be 1 or 2 to indicate the
number of steps in the return clause.

The query execution plan to process our queries
with the signatures is the following:

1. let R; = ContentIndexSearch(<pred>);
2. let Ry = Parent(R;,<e_name>);

3. let Ry = Child(Rq,<e_1>);

4. let Ry = Child(R2,<e_2>).

We process content predicates by using a content
index. The remaining processing steps are executed
using the support for the XPath axes offered by the
extended signatures.

The query execution plan to process the queries
through containment joins is the following:

. let Ry = ContentIndexSearch(<pred>);

. let Ry = ElementIndexSearch(<e name>);
let Ry = ContainingParent(Rq, Ry);

let Ry = ElementIndezSearch(<e_1>);

let Rs = ContainedChild(R4, R3);

let Rg = ElementIndezSearch(<e_2>);

. let Ry = ContainedChild(Rg, R3).

NOo o W

By analogy, we first process the content predicate by
using a content index. Containment joins are used to
check containment relationships: first the list of occur-
rences of necessary elements is retrieved by using an el-
ement index (ElementIndexSearch); then, structural
relationships are verified by using the containment join
(ContainingParent and ContainedC hild).

For queries with n = 1, step 4, for the signature
based query plan, and steps 6 and 7, for the contain-
ment join based query plan, do not apply.

7.3.1 Analysis

Results of performance comparison are summarized in
Table 5, where the processing time in milliseconds and
the number of elements retrieved by each query are
reported. As intuition suggests, performance of ex-
tended tree signatures is better when the selectivity
is high. In such case, improvements of one order of
magnitude are obtained.

The containment join strategy seems to be affected
by the selectivity of the element name more than by
the tree signature approach. In fact, using high con-
tent selective predicates, performance of signature files
is always high, independently of the element name se-
lectivity. This can be explained by the fact that, using
the signature technique, only these signature records
corresponding to elements that have parent relation-
ships with the few elements satisfying the predicate
are accessed. On the other hand, the containment join
strategy has to process a large list of elements associ-
ated with the low selective element names.

In case of low selectivity of the content predicate,
we have a better response than containment join with
the exception of the case where low selectivity of both
content and names of elements are tested. In this case,
structural relationships are verified for a large number

Query | Ext. sign | Cont. join | #Retr. el
QHH1 80 466 1
QHM1 320 738 1
QHL1 538 742 1
QMH1 88 724 1
QMM1 334 832 9
QML1 550 882 60
QLH1 95 740 38
QLM1 410 1421 1065
QLL1 1389 1282 13805
QHH2 90 763 1
QHM2 352 942 1
QHL2 582 966 1
QMH2 130 822 1
QMM2 376 1327 9
QML2 602 1220 60
QLH2 142 1159 38
QLM2 450 1664 1065
QLL2 2041 1589 13805

Table 5: Performance comparison between extended
signatures and containment join. Processing time is
expressed in milliseconds.

of elements satisfying the low selective predicate. We
believe that such queries are not frequent in practice.

The difference in performance of the signature and
the containment join approaches is even more evident
for queries with two steps. While the signature strat-
egy has to follow only one additional step for each
qualifying element, that is to access one more record
in the signature, containment joins have to merge po-
tentially large lists.

8 Concluding remarks

Inspired by the success of signature files in several ap-
plication areas, we propose tree signatures as an auxil-
iary data structure for XML databases. The proposed
signatures are based on the preorder and postorder
ranks and support tree inclusion evaluation, respect-
ing the sibling and ancestor-descendant relationships.
Extended signatures are not only faster than the short
signatures, but can also compute node levels and sizes
of subtrees from only the partial information perti-
nent to specific nodes. Navigation operations, such as
those required by the XPath axes, are computed very
efficiently — extended signatures typically outperform
even the much more space demanding DOM structure.
We demonstrate that query processing can also bene-
fit from the application of the tree signature indexes.
For highly selective queries, i.e. typical user queries,
query processing with the tree signature is about 10
times more efficient, compared to the strategy with
containment joins.

The proposed signature file approach also creates
good bases for dealing with dynamic XML collections.
Even though the preorder and postorder numbering

scheme is affected by document updates — node ranks
change when ingserting or deleting a node — the effects
are always local within specific signatures. So it is up
to the database designer to choose a suitable signature
granularity, which should be rather small for very dy-
namic collections, while relatively stable or static col-
lections can use much larger signatures. This locality
property cannot be easily exploited with approaches
based on containment join or approaches like [Gr02],
where updates (as well as insertions and deletions)
usually require extensive reorganization of the index.

In this paper, we have discussed the tree signatures
from the traditional XML query processing perspec-
tive, that is for navigating within the tree structured
documents and retrieving document trees containing
user defined query twigs. However the tree signatures
can also be used for solving queries such as:

Given a set of tree node names, what is
the most frequent structural arrangement of
these nodes.

or, alternatively

What set of nodes is most frequently ar-
ranged in a given hierarchical structure.

Another alternative is to search through tree signa-
tures by using a query sample tree as a paradigm with
the objective to rank the data signatures with respect
to the query according to a convenient proximity (sim-
ilarity or distance) measure. Such an approach results
in the implementation of the similarity range queries,
the nearest neighbor queries, or the similarity joins.

In general, ranking of search results [TW00, TW02]
is a big challenge for XML searching. Due to the ex-
tensive literature on string processing, see e.g. [Gu97],
the string form of tree signatures offers a lot of flex-
ibility in obtaining different and more sophisticated
forms of comparing and searching. We are planning to
investigate these alternatives in the near future.

References

[BKS02] N. Bruno, N. Koudas, and D. Srivastava.
Holistic Twig Joins: Optimal XML Pat-
tern Matching. Proceedings of the 2002
ACM SIGMOD International Conference
on Management of Data, pp. 310-321,

Madison, Wisconsin, USA, June 2002.

[CVZ02] 8. Chien, Z. Vagena, D. Zhang, V.J. Tsotras
and C. Zaniolo. Efficient Structural Joins
on Indexed XML Documents. Proceedings
of the 28rd VLDB Conference, Hong Kong,

China. 2002, pp. 263-274.

[Gu97] D. Gusfield. Algorithms on Strings, trees,
and Sequences. Cambridge University

Press, 1997.

[Gr02]

[HS77)

[MW99]

[NMO2]

[NTC02]

[TWO00]

[TW02]

[TZ95)

T. Grust. Accelerating XPath location
steps. In Proceedings of the 2002 ACM SIG-
MOD International Conference on Man-
agement of Data, Madison, Wisconsin,
2002, pp. 109-120.

J.W. Hunt and T.G. Szymanski. A Fast
Algorithm for Computing Longest Com-
mon Subsequences. Comm. ACM, 20:350-
53, 1977.

Jason McHugh and Jennifer Widom Query
optimization for xml, Proceedings of 25th
VLDB Conference, September 7-10, 1999,
Edinburgh, Scotland, UK, Morgan Kauf-
mann, 1999, pp. 315-326.

A. Nanopoulos, Y. Manolopoulos. Efficient
similarity search for market basket data.
VLDB Journal, Springer, Vol. 11. No. 2.,
2002, pp. 138-152.

M.A. Nascimento, E. Tousidou,
V. Chitkara, and Y. Manolopoulos. Image
indexing and retrieval using signature
trees. Data and Knowledge Engeneering,
Elsevier, Vol. 43, No. 1, 2002, pp. 57-77

T. Theobald and G. Weikum. Adding Rel-
evance to XML. 3-rd International Work-
shop on the Web and Databases, Dallas,
Texas, 2000, LNCS 1997, Springer, pp. 105-
124.

T. Theobald and G. Weikum. Search En-
gine for Querying XML Data with Rele-
vance Ranking. Proceedings of EDBT 2002,
Prague, 2002, LNCS 2287, Springer, pp.
477-495.

P. Tiberio and P. Zezula. Storage and Re-
trieval: Signature file access. Encyclope-
dia of Microcomputers, Vol. 16, edited by
A. Kent and J.G. Williams. Marcel Dekker,
Inc., New York, 1995, pp, 377-403.

[WWW99] World Wide Web Consortium. XML Path

[XQ02]

[WSB9S]

Language (XPath), Version 1.0, W3C Rec-
ommendation, November 1999.

World Wide Web Consortium. XQuery
1.0: An XML Query Language.
W3C Working Draft, Nov. 2002.

http://www.w3.org/ TR /xquery.

R. Weber, H.J. Schek, S. Blott A Quan-
titative Analysis and Performance Study
for Similarity-Search Methods in High-
Dimensional Spaces. Proceedings of the
24rd VLDB Conference, New York City,
USA. 1998, pp. 194-205.

[Xer]

[ZS97]

Xerces Java,
http://xml.apache.org/xerces-j/

K. Zhang and D. Shasha. Tree Pattern
Matching. Pattern Matching Algorithms,
Apostolico and Galil, Editors, Oxford Uni-
versity Press, 1997.

Parser,

[ZND+01] Chun Zhang, Jeffrey F. Naughton, David J.

DeWitt, Qiong Luo, and Guy M. Lohman.
On supporting containment queries in rela-
tional database management systems. Pro-
ceedings of ACM SIGMOD Conference
2001: Santa Barbara, CA, USA, ACM,
2001.

