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Abstract Among the challenges characterising the Ser-
vice-oriented Computing there is the service composi-
tion one and the need to support transactions across
the composed services. REpresentational State Transfer
(REST) is one of the approaches used for implement-
ing Web services that is gaining momentum thanks to
its features making it suitable for cloud computing and
microservices based contexts. This paper introduces Re-
Lock, a resilient RESTful transaction model introduc-
ing general purpose transactions on RESTful services
by a layered approach and a two-phase locking mecha-
nism not requesting any change to the RESTful services
involved in a transaction.

Keywords RESTful web services · RESTful Transac-
tion Model · ACID · Two-Phase Locking · Resiliency

1 Introduction

Service-oriented Computing is a paradigm promoting
the development of applications and business processes
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by combining loosely coupled services (application com-
ponents) spanning organisations and computing plat-
forms [25,5]. Among the challenges characterising this
paradigm there is the service composition one and the
need to support transactions across the composed ser-
vices [9,24,17,5]. In fact, transaction processing are mech-
anisms aiming at guaranteeing that a set of interdepen-
dent operations are either all completed successfully or
all cancelled successfully thus to keep the overall state
of the “system” consistent [4]. When the interdependent
operations are performed by services on the Web, im-
plementing transaction processing mechanisms become
even more challenging [16,17].

Web services (the most common way of implement-
ing services) can be implemented by using a variety of
approaches, methodologies, and technologies. Among
these approaches there is the REpresentational State
Transfer (REST) architectural style [11]. It is not an In-
ternet standard. Nevertheless, it has gained popularity
and emerged as best practice especially in the context
of cloud computing and microservices mainly because it
favours high scalability while keeping the complexity of
Web services design, implementation, and deployment
at very a↵ordable costs [28].

REST is characterised by the following architectural
constraints: (i) Client-Server architecture, (ii) State-
lessness, (iii) Cacheability, (iv) Layered system, (v)
Uniform interface. Each of these constraints ensures
that the service gains desirable non-functional proper-
ties, such as scalability, simplicity, portability, perfor-
mance, and reliability. Web services compliant with all
of them are usually referred as RESTful services. The
REST architectural style promotes a specific idea of or-
ganising a modern client-server application governing
state transition, whose states are potentially extensible
to infinite.
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A common misuse of the REST architectural style
results from the misinterpretation of the “representa-
tional” adjective and the idea that it relates to the re-
source state. This often leads to build applications (i)
erroneously focusing on object structures to commu-
nicate/transfer to the calling clients and (ii) encapsu-
lating information about resource state into the object
structures to be transferred. Rather, it is the transfer to
be “representational”, and so it is important to design
applications that make use of the “representational”
ability to support transfers among client-server com-
ponents. Apart from violating one or more REST con-
straints, this misuse hides the problem of transactional
operations. Such violations are commonly accepted to
simulate what other approaches o↵ers (e.g., see the WS-
Transaction standard [6]). However, this results in a
dangerous binding of the transaction information to the
specific call.

In this manuscript we introduce ReLock, a Resilient
Two-Phase Locking RESTful Transaction Model. The
objective of the proposed approach is to manage general
purpose transactions that are completely unrelated to
the actual data exchanges of the specific REST call and
capable to work across calls and services. The proposed
approach outperforms state of the art approaches dis-
cussed by Mihindukulasooriya et al. [20,21] by (i) being
capable to satisfy all the scenarios discussed in prelimi-
nary works; (ii) overcoming all the challenges identified
so far; and (iii) being RESTful-friendly, i.e., it does not
violate any of the REST constraints.

The remainder of this paper is organised as follows:
Section 2 gives an overview of the background principles
needed to contextualise the ReLock approach; Section
3 presents the ReLock solution; Section 4 discusses the
state of the art of RESTful transactions; Section 5 pro-
vides an analysis of the presented solution and some
comparisons with other works; Finally, Section 6 con-
cludes the paper and describes future work.

2 Background

To fully appreciate the ReLock approach, it is needed
to establish a common understanding on three aspects
characterising the settings of transactions management
across RESTful services, namely: the REST architec-
tural style (cf. Sec. 2.1); the Resource Oriented Ar-
chitecture (ROA) proposing a concrete architecture for
REST (cf. Sec. 2.2); and, the properties characterising
transactions (cf. Sec. 2.3).

2.1 REpresentational State Transfer (REST)

By having the design rationale of the web architecture
as a driving principle, six principles have been defined
to characterise the REST architectural style [11]:

– Client-Server Paradigm: it refers to the separation
of concern between client and server. Both the server
and the client can evolve independently, provided
that the exposed interface be left unaltered;

– Statelessness: it indicates that the server does not
store any information regarding previous interaction
with the client. Instead, the client sends to the server
all the information required to understand and elab-
orate the request correctly. The intent of this prin-
ciple is to improve “visibility, reliability and scala-
bility while decreasing network performances” [11];

– Cacheability : it indicates to clients (and intermedi-
ates such as a proxy) that they have to cache the
responses based on server indication (explicit or im-
plicit). Cacheability allows clients to reuse data and
reduce the needs of some interactions with servers.
Cacheability helps to balance and/or mitigate the
potential ine�ciency in network performance intro-
duced with the stateless principle;

– Uniform Interface: it allows decoupling the archi-
tecture from the implementation. This principle in-
troduces four specific constraints:

– Identification of Resources : it clarifies the key
concept of resource by stating that “A resource
is any information that can be named. It is any
concept that might be the target of an author’s
hypertext reference” [11]. Every resource must
be individually identifiable and the identifier does
not change if the resource representation changes;

– Manipulation of Resources through representa-
tions : it implies that the resource representation
captures the state of the resource transferred be-
tween components;

– Self-descriptive messages: it means that every
message exchanged between client and server must
contain all information regarding how to elabo-
rate the message itself “in order to support in-
termediate processing of interactions [11]” (e.g.,
the media type of the resource representation,
cache control information);

– Hypermedia As The Engine Of Application State
(HATEOAS): it suggests that the use of hyper-
media drives clients interaction with servers.

– Layered system: it envisages the possibility to add
an arbitrary number of intermediary components
between the client and the server. This property al-
lows to decouple the service logic from higher level
facilities. Layers can be used for reasons including:
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to improve the system scalability; to provide en-
capsulation facility for legacy and non-rest systems
(by exposing them through the uniform interface);
to achieve transparent cacheability across di↵erent
clients; to add higher-level facilities such as secu-
rity. As a counterpart, layering adds overhead and
network latency;

– Code on demand : this is an optional principle de-
pending on the application and context. It indicates
that the server can extend its functionality by pro-
viding clients code to execute. It allows distribut-
ing the computational load. It is only an optional
constraint because in some cases some intermediary
can/must limit the transfer of code (e.g., for security
reason).

Overall, these principles highlight that (i) the interac-
tion between client and server is based on the represen-
tation of a “resourse” they manage to exchange, and
(ii) whenever the client receives the resource represen-
tation it is posed in a specific state.

2.2 Resource Oriented Architecture (ROA)

The ROA is a concrete architecture for REST relying on
technologies such as Uniform Resource Identifier (URI),
HyperText Transfer Protocol (HTTP) and eXtensible
Markup Language (XML) [30]. It uses standard HTTP
methods applied to URI to realise Create, Read, Up-
date, Delete (CRUD) operations on resources [19].

ROA gives particular emphasis on “make it a re-
source” paradigm and proposes descriptive and pre-
dictable URI as technology to satisfy the resource iden-
tification constraint. Hence, any resource in ROA has
a URI. Moreover, to satisfy the uniform interface con-
straint, ROA indicates the way to construct URI for
resources and how to use HTTP methods to them. An
example extracted from [30] on how to create a book-
mark service adhering to the ROA architecture is given
in Table 1.

For the implementation of CRUD operations, ROA
suggests to use POST, GET, PUT and DELETE. Table 2
shows how CRUD operations are performed by HTTP
methods. Moreover, it shows the per operation expec-
tation in terms of safety and idempotency property. In
particular – according to HTTP specification [23,12]:

– the POST method is used to create a new resource
without providing the URI of the resource to create.
The representation of the resource is sent, as part of
the HTTP body, to the collection that will contain
the resource. The server determines its appropriate
location, and provides the client with the resulting
URI. The PUT method can be used to create a new

Table 2 Mapping between CRUD operations and HTTP
methods enriched by safety and idempotency property they
must satisfy.

Operation HTTP Method Safe Idempotent

Create POST No No
Read GET Yes Yes
Update PUT No Yes 1

Delete DELETE No Yes 2

1 PUT can be also used to create a resource when used
with the URI where the resource will be available

2 Allamaraju [1] argues that DELETEidempotency should be
accomplished client-side. The server should inform the
client if a delete succeeded because the resource was really
deleted or it was not found i.e., 404 Not Found error is
suggested instead of 204 No Content. The latter situation
should be treated as idempotent by the client.

resource if the client is willing to provide the URI
of the resource to create.

– the GET method is used to obtain the representation
of a resource.

– the PUT method is used to update an existing re-
source. This operation instructs the server to apply
a new representation as a replacement of the previ-
ous one.

– the DELETE method is used to remove an existing
resource.

– the GET, PUT and DELETE methods must be idem-
potent, i.e., the same operation executed multiple
times has the same e↵ect than executing it one time
only. Moreover, “repeating the request will have the
same intended e↵ect, even if the original request suc-
ceeded, though the response might di↵er” [12].

– the GET method must be safe, i.e., it must have
no side e↵ect. “This does not prevent an imple-
mentation from including behaviour that is poten-
tially harmful, that is not entirely read-only, or that
causes side e↵ects while invoking a safe method”
[12].

Apart from the above methods, HTTP 1.1 defines
also the HTTP methods HEAD, CONNECT, OPTIONS and
TRACE [12]:

– the HEAD method is identical to GET except that
the server must not send a message body in the
response. This method can be used for obtaining
metadata about the selected representation with-
out transferring the representation data and is often
used for testing hypertext links for validity, accessi-
bility, and recent modification;

– the CONNECT method requests that the recipient es-
tablishes a tunnel to the destination origin server
identified by the request-target and, if successful,
thereafter restricts its behaviour to blind forward-
ing of packets, in both directions, until the tunnel is
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Table 1 ROA compliant URI compared to non REST service.

Operation HTTP Method ROA URI1 Non-ROA API2

Listing GET /users/{USERNAME}/bookmarks GET/posts/list
Create POST /users/{USERNAME}/bookmarks GET/posts/add
Create PUT /users/{USERNAME}/bookmarks/{URI-MD5} GET/posts/add
Read GET /users/{USERNAME}/bookmarks/{URI-MD5} GET/posts/get
Update PUT /users/{USERNAME}/bookmarks/{URI-MD5} GET/posts/update
Delete DELETE /users/{USERNAME}/bookmarks/{URI-MD5} GET/posts/delete
1 The path variable parameters are shown within {} and using capital letters. This convention will be
used in the rest of the paper.

2 The information regarding which username and URL save as bookmark or which URL retrieve are
provided via GETURL parameters not shown in the table.

closed. CONNECT is intended only for use in requests
to a proxy;

– the OPTIONS method requests information about
the communication options available for the target
resource, at either the origin server or an interven-
ing intermediary. This method allows a client to de-
termine the options or the requirements associated
with a resource, or the capabilities of a server, with-
out implying a resource action. A OPTIONS request
with an asterisk (“*”) as the request-target applies
to the server in general rather than to a specific re-
source;

– the TRACE method requests a remote, application-
level loop-back of the request message.

From the ROA perspective [30]: (a) HEAD and OPTIONS

methods are also part of the uniform interface design,
their use is suggested; (b) HTTP methods usage defined
for Web-based Distributed Authoring and Versioning
(WebDAV) [8] is a plus to respect the uniform interface
(e.g., see MOVE and COPY) yet might lead to deviations
from “make it as resource” paradigm. Their suggestion
was to create lock collections and manipulate them like
all the others collections (by using POST, GET, PUT, DE
LETE) in place of using LOCK and UNLOCK methods to
resource URI.

2.3 Transaction Properties

A transaction is a group of Web service interactions
that achieve a logic (sub-)goal within a service com-
position only if all interactions complete successfully
[4]. If error occurs in a transaction, the actions of the
transaction that have already been performed must be
compensated, that is, rolled back until the status right
before the transaction started.

Four properties characterise them and are commonly
referred by the ACID acronym: (i) Atomicity, i.e., it ex-
ecutes completely or not at all, no possibility to execute
part of a transaction is allowed; (ii) Consistency, i.e.,

the transaction maintains the consistency of the “sys-
tem” and it is a shared responsibility between the trans-
action developer and the transaction processing imple-
mentation; (iii) Isolation, i.e., the e↵ect of the entire
transaction on the “system” state is equal to the e↵ect
of the single interactions executed one by one; and (iv)
Durability, i.e., when a transaction completes executing
all its updates are stored.

3 The ReLock Approach

ReLock is an approach for transactions management
where transactions involves RESTful services, i.e., web
services compliant with the set of ROA and REST prin-
ciples discussed in Sec. 2. The approach is called to pro-
pose an implementation of the two-phase locking pro-
tocol [35]. Moreover, the approach is conceived thus to
guarantee the “independence” of both (i) RESTful ser-
vices involved in each transaction, i.e., the development
and operation of RESTful services is not impacted by
any change for supporting transactions; (ii) clients that
are not conceived to develop their business logic by re-
lying on transactions

Fig. 1 ReLock Transaction Model Architecture.
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Figure 1 depicts the ReLock transaction manage-
ment architecture highlighting the layering of the ap-
proach. In practice, the ReLock services implementing
the transaction model realise an overlay layer on top of
the RESTful service(s) the clients will interface with.

Three services are conceived to implement the Re-
Lock transaction management:

– the Transaction Proxy called to intercept all re-
quests made by clients to the target RESTful service
and forwards these requests to the RESTful service
when suitable according to the transaction manage-
ment protocol. Hereafter, we will refer to this com-
ponent as proxy or transaction proxy;

– the Transaction Service implementing transactions
as resource facilities. It also exposes transaction log-
ging facilities as resources. Logging is used to achieve
compensations in case of rollbacks;

– the Lock Service implementing lock capabilities for
resources exposed by the target RESTful service.

Networking policies play a key important role in this
architecture. The following rules are defined: (i) the
RESTful service(s) is only accessible from Transaction
Proxy and Transaction Service; (ii) the Lock Service
is only accessible from Transaction Proxy and Trans-
action Service; (iii) the Transaction Proxy intercepts
every request coming from clients and directed to the
target RESTful service.

Two typologies of clients are envisaged in the Re-
Lock approach: Non-transactional clients and Transac-
tional clients.

A Non-transactional Client is either a client which
is not aware of ReLock and its transaction model (e.g.,
any legacy client) or a client which is not interested in
creating a transaction. This typology of client behaves
as it would have been if there were no transactions. It
performs REST requests to the RESTful Service and
uses the responses (intercepted and managed by the
Transaction Proxy) to continue its workflow.

A Transactional Client is a client willing to bene-
fit from transactions. Its interaction with the ReLock
services and the target RESTful service(s) is described
hereafter. It discovers the Transaction Service by re-
questing OPTIONS to the resource collection URI. The
request is intercepted and managed by the Transaction
Proxy which provides the list of supported Transac-
tion Services. The client creates a transaction by send-
ing a POST to the Transaction Service and then it re-
quests all the transaction operations via the Transac-
tion Proxy. This client always sends the owned trans-
action URI in the header of the HTTP request (using
X-Transaction-URI header). The Transactional Client
collects every lock URI it receives (via X-Lock-URI

header in the response) and associates them to the
proper resource (using the resource URI). Anytime the
Transactional Client requests an action, it indicates the
owned locks using the HTTP headers. If a Transactional
Client does not include the lock it already owns, it re-
ceives the errors code 423 Locked [8, section 11.3]. If a
Transactional Client receives a parent lock URI, it asso-
ciates the lock to the resource collection which it sends
within any succeeding resources creation and deletion
requests. The Transactional Client can terminate the
transaction by sending either a commit (by using PUT)
or rollback (by using DELETE) request.

ReLock services support both XML and JavaScript
Object Notation (JSON) as the content format to repre-
sent the resources involved in the transaction. Thus the
proposed solution not enforces Transactional clients to
deal with di↵erent formats, the content format adopted
by the RESTful Service is made available by using the
format selected by the client for managing the trans-
action. The Transactional client indicates the required
format resources by indicating it (i.e., application/xm
l or application/json) in Accept HTTP header [12,
section 5.3.2] or in Content-Type HTTP header [12,
section 3.1.1.5]. Each ReLock service replies indicating
the format in Content-Type header field according to
the received request. In this paper, we present all the
examples using the JSON format.

In the remainder of the section the details of the
ReLock approach are presented by first showcasing a
sequence diagram of a transaction supported by ReLock
and then describing the behaviour of the Transaction
Proxy, the Transaction Service, and the Lock Service.

3.1 The sequence diagram of a transaction

Figure 2 shows a sequence diagram representing the
interactions among the di↵erent components involved
in a transaction consisting of a read and an update
operation on a resource made by a Transactional Client.

This diagram highlights how the entire process is
mediated by the ReLock services that catch and man-
age every request originated from the client to interact
with the target RESTful service.

3.2 The ReLock Transaction Proxy

The Transaction Proxy intercepts all requests directed
to every RESTful Service. It forwards the requests to
the RESTful service only after it has performed the
actions required to guarantee the transaction properties
(c.f. Sec. 2.3).
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Fig. 2 Example of a sequence diagram showing the interactions between the components involved in a transaction. A Trans-
actional Client creates the transaction, reads a resource, and then updates such a resource. Finally, the client commits the
transaction.

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



ReLock: a Resilient Two-Phase Locking RESTful Transaction Model 7

Listing 1 Pseudo Code for Proxy function receiving HTTP request from clients

1 function onReceive(httpRequest):
2 global var contentType = getContentType(httpRequest)
3
4 if httpMethod == OPTIONS then
5 return sendSupportedTransactionServicesList ()
6 endif
7
8 if httpMethod in [ HEAD , GET , PUT , DELETE ] then
9 var transactionURI = httpRequest.getHeader("X-Transaction -URI")

10 if transactionURI != null then
11 // Transactional Client

12 return manageTransactionAction(httpRequest , transactionURI)
13 else
14 // Non - Transactional Client

15 return createMiniTransaction(httpRequest)
16 endif
17 endif
18
19 // POST and other methods are not allowed

20 return sendErrorResponseToClient (405, "Method Not Allowed")

Listing 1 describes the algorithm the Transaction
Proxy uses to manage the requests.

As first action, the Transaction Proxy extracts the
content of the request type (Listing 1: line 2) to use it
both for (a) any interaction with ReLock Services and
(b) to generate a suitable response independently of the
response format o↵ered by the RESTful Service.

Then, the Transaction Proxy checks the HTTP
Method. If the HTTP method is OPTIONS (line 4), it
sends the list of supported Transaction Services to the
client (Listing 1: line 5). It exposes the OPTIONS Appli-
cation Programming Interface (API) to the resources
collection shown in Table 3.

Table 3 Transaction Proxy exposed APIs

Operation HTTP Method URL

Supported Transac-
tion Service

OPTIONS /resources

An example of OPTIONS response is shown in list-
ing 2. OPTIONS allows any Transactional client to know
which Transaction Service(s) can be used to perform
the transaction on the RESTful Service with no prior
knowledge (see section 5).

Listing 2 Example of Transaction Proxy response to OPTI
ONS request

{
"transaction -managers": [{

"uri": "http :// transaction.

example.org/transactions"

}]

}

If the HTTP method is not one of HEAD, GET, PUT
or DELETE (Listing 1: lines 8 and 20), the Transaction
Proxy replies to the client with an error 405 Method N

ot Allowed [12, Section 6.5.5].
When the HTTP method is supported, the Trans-

action Proxy checks if the request contains the HTTP
header X-Transaction-URI (Listing 1: line 9,10). Re-
quests containing this header (Listing 1: line 12) came
from a Transactional Client and are managed as de-
scribed in Sec. 3.2.1. Instead, requests arriving with-
out X-Transaction-URI (Listing 1: line 15) came from
a Non-Transactional Client and it are managed like a
“mini transaction” as described in Sec. 3.2.2.

3.2.1 Managing Requests from Transactional Clients

Listing 3 shows how the Transaction Proxy manages
requests in the context of a transaction.

First of all, it checks if the request contains any ref-
erences to previous obtained locks (i.e., lockURI, List-
ing 3: lines 2 and 3).

If the Transactional Client does not provide any lock
reference then the Transaction Proxy creates the lock
for the target resource URI by the createLock() function
(line 4). The createLock() function send a POST request
to the Lock Service that creates the lock representation
by using the provided argument as discussed in Sec. 3.4
(Listing 9). The HTTP Method (i.e., httpMethod) ar-
gument is used to specify the lock type. Table 4 shows
the mapping between the HTTP Method and the re-
quired lock type. When the lock is granted, the Trans-
action Proxy reads the resource on the RESTful Service
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Listing 3 Pseudo Code for Proxy function which handles any transaction action

1 function manageTransactionAction(httpRequest , transactionURI):
2 var lockURI = httpRequest.getHeader("X-Lock -URI")
3 if lockURI == null then
4 lockURI = createLock(httpMethod , transactionURI , resourceURI)
5 var response = getResource(resourceURI)
6 var content = response.content
7 var initialResourceURI = createInitialResource(transactionURI , resourceURI ,

lockURI , content)
8 else
9 verifyAndUpgradeLock(httpMethod , lockURI , transactionURI , resourceURI)

10 var initialResourceURI = getInitialResourceURI(transactionURI , resourceURI)
11 var content = getContentFromInitialResource(initialResourceURI)
12 endif
13
14 if httpRequest.getHeader("X-Parent -Lock -URI") != null then
15 var parentLockURI = httpRequest.getHeader("X-Parent -Lock -URI")
16 verifyParentLock(parentLockURI , transactionURI)
17 else
18 if httpMethod == PUT AND content == null then
19 var create = true;
20 endif
21 if create OR httpMethod == DELETE then
22 var parentURI = getParentURI(resourceURI)
23 var parentLockURI = createLock(httpMethod , transactionURI , parentURI)
24 // initial resource of collection is not needed

25 endif
26 else
27
28 endif
29
30 logRequest(initialResourceURI , httpRequest)
31
32 HttpResponse actionResponse = forwardAction(httpRequest)
33
34 actionResponse.setHeader("X-Lock -URI", lockURI)
35 if parentLockURI != null then
36 actionResponse.setHeader("X-Parent -Lock -URI", parentLockURI)
37 endif
38 return actionResponse

Table 4 Transaction Proxy Mapping with
HTTP Method and required Lock

HTTP Method Required Lock Type

POST Not Supported
HEAD Shared
GET Shared
PUT eXclusive
DELETE eXclusive

with GET (Listing 3: line 5) and creates the initial re-
source on the Transaction Service (cf. Sec. 3.3, Listing
3; line 7) using the function createInitialResource().

If the Transactional Client provides the lock URI,
then the Transaction Proxy verifies and eventually up-
grades the lock (from Shared to eXclusive depending
on the requested HTTP Method) by invoking the Lock
Service (Sec. 3.4) (Listing 3: line 9).

Lines 14 to 28 in Listing 3 deals with the manage-
ment of parent locks (i.e., locking at the collection con-
taining the target resource):

– A Transactional Client owning the parent lock URI
(i.e., X-Parent-Lock-URIHTTP header) always sends
it in any request. The Transaction Proxy verifies this
header (Listing 3: line 16) as it does for X-Lock-URI
HTTP header (Listing 3: line 14). The Transaction
Proxy adds the parent lock URI to the response
header if any (Listing 3: lines 35-37).

– If the Transaction Proxy receives a PUT request, it
checks it to discriminate between a create and an
update request (Listing 3: lines 18-20). A create re-
quest is identified by checking the initial content of
the resource (Listing 3: line row 18).

– If a client sends a request either to delete or to cre-
ate a resource, the Transaction Proxy also locks the
parent URI (which represents the resource collec-
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tion) with an eXclusive lock (Listing 3: lines 22 and
23). This lock is required to implement the isolation
property properly (see Section 5).

The Transaction Proxy logs the action with a POST

to the collection “operations” subordinated to the ini-
tial resource before forwarding the request to the target
RESTful service (line 30). The POST content contains
the received HTTP request information (see Listing 8);

Finally, the Transaction Proxy forwards the request
to the target RESTful service and collects the received
response (Listing 3: line 32). The Transaction proxy
adds the lock URI (Listing 3: line row 34) to the re-
ceived response using X-Lock-URI HTTP header and
returns it to the requesting client (Listing 3: row 38).

3.2.2 Managing Requests from Non-transactional
Clients

When the Transaction Proxy receives a request not con-
taining any transaction reference, the client is consid-
ered Non-transactional and the request is managed ac-
cording to Listing 4.

The Transaction Proxy creates a transaction (line
2), then it manages the requested operation like a re-
quest coming from a Transactional client (line 3) just
discussed in Sec. 3.2.1. The Transaction Proxy commits
the transaction (line 4) on behalf of the client. It also
cleans the obtained response from the additional header
before returning the response to the Non-transactional
Client (lines 5-8)

In practice, every request made from a Non-trans-
actional Client is de-facto a mini-transaction involving
a single operation on the target RESTful service.

3.3 The ReLock Transaction Service

The Transaction Service accepts POST, PUT and DELETE

methods to manage transactions (see Table 5). Worth
highlighting that this service does not allow the use of
PUT to create a new transaction because it is for other
intents.

The Transaction Service receives a request to create
a new transaction by a POST. The URI of the created
transaction resource is returned in Location HTTP
header [12, Sec. 7.1.2]. The HTTP 201 Created sta-
tus code is returned to indicate the request succeeded
[12, Sec. 6.3.2]. Listing 5 contains the content of the re-
sponse containing (i) the ‘timestamp’ of the transaction
i.e., unix timestamp expressed in milliseconds; (ii) the
‘timeout’ i.e., the amount of time (expressed in millisec-
onds) the transaction will be automatically rollbacked
if not committed or rollbacked from the client; (iii) the
protocol version i.e., 1.0.

Listing 5 Example of representation of a transaction re-
source

{
"timestamp": 1651442400000,

"timeout": 2400,

"protocol -version": "1.0"

}

In case of failure (i.e., the transaction cannot be cre-
ated) either a 4xx or a 5xx error [12, section 6.5, sec-
tion 6.6] is returned to client depending on which failure
occurred.

The Transaction Service receives a request to com-
mit a transaction by a PUT. The Transaction Service
allows only to add the property “commit” with value
true to the representation of the transaction resource
(Listing 6).

Listing 6 Example of representation of the transaction re-
source sent to commit the transaction

{
"timestamp": 1651442400000,

"timeout": 2400,

"protocol -version": "1.0",

"commit" : true

}

Once the property commit is set to true the transaction
is closed and the Transaction Service denies any further
operation on the transaction resource and subordinates
by returning 403 Forbidden [12, Sec. 6.5.3].

The Transaction Service receives a request to roll-
back a transaction by a DELETE. If the target transac-
tion resource exists and it has not been already com-
mitted, the Transaction Service starts a compensation
procedure (see 3.3.1). The Transaction Service starts
the compensation procedure also if the transaction ex-
pires due to the timeout being exceeded.

3.3.1 The ReLock Compensation Approach

The compensation procedure is activated whenever a
client sends a request to rollback a transaction or the
transaction timeout expires before the commit. It con-
sists in restoring the overall system state thus to make
it consistent like the transaction was not initiated at
all.

In order to support this procedure the Transaction
Service introduces initial resources and a logging mech-
anism.

For each ongoing transaction, the Transaction Ser-
vice allows the Transaction Proxy to create subordi-
nated resources (i.e., “resources that exist in relation
to some other “parent” resource”[30]). The Transaction
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Listing 4 Pseudo Code for Proxy function which handles non-transactional client requests

1 function createMiniTransaction(httpRequest):
2 String transactionURI = createTransaction ()
3 var actionResponse = manageTransactionAction(httpRequest , transactionURI)
4 commitTransation(transactionURI)
5 actionResponse.removeHeader("X-Lock -URI")
6 actionResponse.removeHeader("X-Parent -Lock -URI")
7 actionResponse.removeHeader("X-Transaction -URI")
8 return actionResponse

Table 5 Transaction Service RESTful APIs

Operation HTTP Method URL

Create Transaction POST /transactions
Commit a Transaction PUT /transactions/{TRANSACTION_ID}
Rollback a Transaction DELETE /transactions/{TRANSACTION_ID}
Create Initial Resource PUT /transactions/{TRANSACTION_ID}/{RESOURCE_RELATIVE_PATH}
Create Log Resource POST /transactions/{TRANSACTION_ID}/{RESOURCE_RELATIVE_PATH}/operations/

Proxy creates as subordinates of the transaction the ini-
tial resources, i.e., resources storing the representation
of any resource of a target RESTful service partaking to
the transaction before any attempt of modification to
the resource sent to the target RESTful service. Listing
7 shows an example of the representation of the initial
resource containing: (i) the resource URI; (ii) the URI
of the lock conceived by the Lock Service to access the
resource available to the resource URI; (iii) the con-
tent type of the resource representation; (iv) the initial
representation of the resource on the e↵ective service.

Listing 7 Example of initial resource

{
"resource -uri": "http :// example.org

/resources/A",

"lock -uri": "http :// lock.example.

org/locks/lock -a",

"content -type": "application/json"

"content": {
// Representation of resource

}
}

Every initial resource is created by a PUT to the
URI calculated by composing the transaction URI with
the relative URI of the resource on the target RESTful
service (e.g., http://transactions.example.org/t

ransactions/T1 + /resources/A results in http://

transactions.example.org/transactions/T1/resour

ces/A).
For each initial resource, the Transaction Service ex-

poses a collection, named “operations”, to enable log-
ging of the operations made by the client to the REST-
ful service’s resource (via Transaction Proxy). The Trans-

action Service allows logs creation by POST to the collec-
tion “operations” e.g., POST http://transactions.e

xample.org/transactions/T1/resources/A/operatio

ns. Listing 8 shows an example of a log resource which
contains the HTTP request made by the client.

Listing 8 Example of log resource

{
"method": "PUT",

"headers": {
"Accept": "application/json",

"Content -Type": "application/json

"

},
"content -body": { ... }

}

The URI of the created log resource will be created
by appending the timestamp to the log collection URI
(e.g., http://transactions.example.org/transacti
ons/T1/res/A/operations/1651442400363)

The compensation procedure consists in analysing all
the subordinated resources of the transaction (initial re-
sources and logs) and put in place the compensation op-
erations summarized in Table 6. The resources accessed
only with safe operations (GET or HEAD) do not require
any action. Updated resources require (PUT) compensa-
tion to the initial values. Deleted resources have to be
re-created with a PUT to the original resource URI and
using the initial values. The resources created within
the transaction must be deleted (by using DELETE).
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Table 6 Compensation Operations

CRUD Operation HTTP Method Compensation HTTP Method Compensation Body Content

Create PUT DELETE No
Exists HEAD Unneeded N/A
Read GET Unneeded N/A
Update PUT PUT Initial Representation
Delete DELETE PUT Initial Representation

3.4 The ReLock Lock Service

The Lock Service provides locking capabilities. It ex-
poses two types of locks: eXclusive (X) and Shared (S).
A shared lock allows multiple clients to read the refer-
enced resource but does not allow any client to modify
such a resource. Multiple shared locks can exist for the
same resource. The exclusive lock allows only one client
to modify (and read) the referenced resource.

Table 7 Lock compatibility table.

Shared eXclusive

Shared true false
eXclusive false false

The algorithm to grant a lock is pretty straight-
forward. The Lock Service checks only the locks for
the correspondent resource (considering the URI) and
applies the following rules summarized in Table 7: (i)
when a Shared lock is present on a certain URI other
Shared locks can be granted to other clients but not an
eXclusive lock; (ii) when an eXclusive lock is present
on a certain URI no other locks can be granted to other
clients. Moreover, a client holding a Shared lock can ob-
tain an upgrade of the lock from Shared to eXclusive if
and only if there are no other clients holding a Shared
locks related to the same URI. Lock service does not al-
low to change an eXclusive lock to a Shared one. This
procedure is pretty straightforward and allows to e�-
ciently implements the algorithm which is expected to
be very fast.

Table 8 Lock Service RESTful APIs

Operation HTTP Method URL

Create POST /locks/
Read GET /locks/{LOCK_ID}
Update PUT /locks/{LOCK_ID}
Delete DELETE /locks/{LOCK_ID}

Lock Service accepts GET, POST, PUT and DELETE

methods to manage locks as summarised in Table 8:
POST creates a new lock for a resource; PUT can only

modify a lock type; DELETE removes a lock; GET allows
reading the lock resource representation. This service
does not allow the use of PUT to create a new lock.

When the Lock Service receives a request to create
a lock by a POST request and grants the lock, it creates
the resource representing such a lock. Listing 9 presents
an example of the representation of lock resource.

Listing 9 Example of lock resource

{
"type": "X",

"resource -uri": "http :// example.org

/resources/A",

"transaction -uri": "http ://

transaction.example.org/

transactions/T1"

}

The URI of the created lock resource is returned in Lo

cation HTTP header. The HTTP 201 Created status
code is returned to indicate the requested succeeded.

The Lock Service receives a request to modify a lock
by PUT request it allows only to upgrade the lock type
from ‘S’ to ‘X’. It verifies if the lock upgrade can be
conceived and updates the resource. The Lock Service
can use either 200 OK [12, Sec. 6.3.1] or 204 No Con

tent [12, Sec. 6.3.5] status code to indicate that the
request succeeded. The use of 202 Accepted [12, Sec.
6.3.3] which is used for asynchronous operations is not
allowed.

When the Lock Service receives a request to delete
a lock with DELETE, it removes the associated lock re-
source. The Transaction Service is the only service au-
thorised to invoke the removal of a lock and it does it
either on commit or if the rollback procedure (c.f. Sec.
3.3.1) is terminated.

3.5 Resiliency

ReLock services are stateless and can be replicated and
load balanced to improve scalability and availability.

The Transaction Service annotates the progress of
the rollback by annotating each step on the resources
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representing the transaction. In particular, the Trans-
action Service

– adds a property to the transaction resource repre-
sentation to indicate it is starting the rollback;

– for each initial resource representation:
– adds a property to indicate it is going to com-

pensate the corresponding resource;
– modifies the previous property to indicate that

the corresponding resource has been compen-
sated;

– add a property to indicate it is going to release
the associated lock;

– modifies the previous property to indicate it has
released the associated lock;

– modifies the properties on the transaction resource
representation to indicate that the rollback is ter-
minated successfully.

This procedure behaves like a journal which enables
any Transaction Service to take in charge the rollback
procedure of another instance of the service by restart-
ing it from the last completed step.

Clearly, the Lock Service must prevent starvation
and deadlock. It is possible to replicate and distribute
the Lock Service by using one of the distributed dead-
lock detection algorithms surveyed in [10].

4 Related Work

Existing solutions for transaction management on Rest-
ful services are reported in Table 9 and briefly discussed
below.

Table 9 Approaches for transaction management on REST-
ful services

Approach Year Ref.
#1 Batched Transaction with

Overloaded POST
2000 [20,21]

#2 Transaction as Resource 2007 [30]
#3 Optimistic technique for trans-

action using REST
2009 [31]

#4 A consistent and recoverable
RESTful transaction model
(RETRO)

2009 [18,29]

#5 Timestamp-based two phase
commit protocol for RESTful
services (TS2PC4RS)

2010 [32,33]

#6 Try-Cancel/Confirm pattern
(TCC)

2011 [27,26]

#7 Atomic REST batched transac-
tions

2012 [15]

#8 REST+T 2015 [7]

The overloaded POST pattern is the oldest approach
to RESTful transactions known [20,21]. It is charac-

terised by putting several HTTP operations in the pay-
load of a single POST operation. This approach fits well
for batched and short-lived transactions. Unfortunately,
the approach does not respect the HATEOAS constraint
(cf. Sec. 2.1) and is not suitable for distributed trans-
actions.

In 2007, Richardson and Ruby proposed a transac-
tion as resource approach [30]. In their proposal, the
client opens a transaction by creating a resource to a
transaction service. The client performs every subse-
quent operation by creating a resource with PUT as a
subordinate of the transaction resource. This solution
supports only the resources creation.

Khare [13] proposed an enhancement of the REST
architectural style for distributed and decentralised sys-
tems which includes five di↵erent extensions. One of
these extensions, REST with Delegation (REST+D),
dealing with Atomicity, Isolation, Durability and Con-
sistency (ACID) transactions, proposes a mutex lock
proxy component which provides mutually exclusive ac-
cess to the origin server and ensures total serialisation
of all updates to a resource. Their proposal, like REST
which tries to extend, is an architectural style and it
“does not provide any details regarding how to execute
the scenario” [21].

da Silva Maciel et al. [31] proposed an optimistic
technique. In their model, the REST service must sup-
port resource versioning. The proposal uses compensa-
tion techniques to rollback a transaction, which is done
within locks.

Marinos et al. proposed RETRO [18,29] which uses
the concepts of transaction as resource, locks and tem-
porary resources to achieve isolation. Their solution
uses the hyperlink to meet HATEOAS constraint. The
temporary resources approach introduces link trans-
parency issues [21]. Our solution shares some ideas with
RETRO, i.e., transaction as resource, locks and use of
hyperlinks but instead of using the concept of tempo-
rary resources, it uses an approach based on initial re-
source representation and logging as resource to sup-
port rollbacks via the appropriate compensation tech-
nique. RETRO uses non-standard HTTP methods and
header. On the contrary, our solution uses standard
HTTP methods only.

da Silva Maciel et al. [32,33] proposed a timestamp
based two-phase commit RESTful transactions (TS2PC4RS)
designed for reservation-based services. In their last ver-
sion [34], they also introduced the concept of logs “as
a fault-tolerant mechanism capable of recovery connec-
tion and server failures”. ReLock does not require the
e↵ective service to adhere to a specific pattern. ReLock
uses the logs to support compensation and resiliency,
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but we expose logs as resource to fully comply with
ROA.

Pardon and Pautasso [27,26] proposed a try-cancel/-
confirm (TCC) approach. Their solution shares some
ideas with TS2PC4RS, but TCC is only applicable if
the reservation “fits directly into the business model”
[27] (i.e., a ticket reservation). ReLock does not require
services to adhere to any particular business model.

Kochman et al. [15] proposed a solution based on
batched transactions which use mediators and proxies.
Their solution allows transactional and non-transactional
clients to coexists. Our solution uses a proxy to support
the same clients, but we use a two-phase locking proto-
col instead of the batched transactions.

Dey et al. proposed REST with Transaction (REST+T)
[7]. REST+T is not stateless and uses non-standard
HTTP methods.

5 Discussion

Table 10 sumarises the results of the analysis of ReLock
and the solutions for transaction management listed in
Table 9 and discussed in the previous section. In par-
ticular, the analysis is based on a set of 20 properties
aiming at assessing the capability of the various so-
lutions to satisfy transaction properties, RESTfulness
properties, HTTP properties, and miscellaneous prop-
erties. The set of properties was initially proposed by
Mihindukulasooriya et al. [20,21] and extended in this
work.

Regarding the ability of the various approaches to
provide transaction properties (cf. Sec. 2.3) only atom-
icity and isolation are considered because consistency
and durability are guaranteed by the implementation
of clients and RESTful services. ReLock guarantees the
properties considered thanks to the protocol implemented
by the Transaction Service (cf. Sec. 3.3). In fact, a client
reads the resource collection by using the HTTP GET

method. The only way to modify the resource collec-
tion is by either deleting a resource or creating a new
one. The Lock service grants a lock only by analysing
if another lock exists for the same resource (by using
its URI). To delete a resource, the client performs a
DELETE to the resource URI. ReLock requires two ex-
clusive locks, one for the resource and one for the re-
source collection giving that it is going to modify two
representations (the resource and the collection). The
lock for the resource prevents that any other client can
interact with such a resource. The lock for the collec-
tion prevents that any other client can interact with
the resource collection. To create a resource, the client
has to use the HTTP PUT request. With PUT, the client

performs a request to the URI where the resource will
be available. The resource creation with PUT requires
two exclusive locks, one for the resource and one for
the resource collection for the same considerations of
the delete operation.

It is also worth highlighting that ReLock works with
RESTful services which do not provide nested resource
collection (e.g., the bookmark ROA example presented
in Table 1). To delete a resource having subordinates,
no one should be capable of interact with the sub-
ordinates. To support this scenario, the Lock Service
should be enhanced to use a di↵erent algorithm that
supports subordinated resources. Marinos et al. [18,29]
have formally demonstrated that their locking mecha-
nism (approach #4) is well formed and sound. How-
ever, it supports only read and update operations with
a two-phase locking protocol by releasing acquired locks
only at commit or rollback time. ReLock follows a sim-
ilar approach. ReLock also support the creation (via
HTTP PUT request only) and the deletion of resources.
These operations also generate an update of the re-
source collection (which is a resource per se), and there-
fore our proposal provides a solution to safely interact
with the resource collection besides the created/deleted
resource.

Regarding the RESTfulness of the proposed approach,
i.e., the adherence of the overall solution with respect to
the REST principles (cf. Sec. 2.1): (a) ReLock services
are stateless. The Transaction Service saves an applica-
tion state [30, page 90] to support compensation and
resiliency (cf. Sec. 3.5). Conversely from approach #4
[18,29], such an application state does not create tem-
porary resources thus avoiding the link transparency is-
sue [20, Sec. 3.3]. (b) the ReLock approach is layered, it
respects the uniform interface constraint, and the fours
additional constraints the uniform interface introduces
(cf. Sec. 2.1).

Regarding the compliance with HTTP : (a) the Re-
Lock approach respects the semantics of HTTP 1.1
methods. The usage of PUT method to commit the trans-
action could be criticised. ReLock services use three
non-standards HTTP headers: X-Transaction-URI, X-L
ock-URI and X-Parent-Lock-URI. Lock-Token header
defined for WebDAV [8, Sec. 10.5] could be a possible
standard alternative to X-Lock-URI; (b) the resource
collection URI returns the list of the resources (list of
URIs) according to ROA. Every URI can be considered
a resource per se.

Regarding the miscellaneous properties considered:
(a) ReLock supports CRUD operations. However, re-
source creation with POST is problematic since the URI
of the resource created by POST is not known, and the
Transaction Proxy cannot request a lock for the cre-
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Table 10 Analysis of RESTful transaction approaches

Property
Approach

#1 #2 #3 #4 #5 #6 #7 #8 ReLock

Transaction properties
Atomicity Y Y Y Y Y Y Y Y Y
Isolation Y Y1 N Y N N Y Y2 Y

REST properties
Stateless Y Y3 N Y3 N Y Y N Y
Uniform interface Y N Y Y Y Y Y Y Y
Identification of Resources N Y N Y N Y N Y Y
Manipulation of Resources through Representations Y Y Y Y N N Y Y Y
Self-descriptive Messages Y Y Y Y N N Y Y Y
HATEOAS N N N Y N N N4 N Y
Layered system Y Y N Y N N Y N Y

HTTP related properties
Semantic not violated Y Y Y Y N Y Y ? Y
Common verb supported Y Y N N Y Y Y N Y5

HTTP Methods adherence Y Y N N Y Y Y N Y
Low overhead Y Y Y N N Y Y Y Y6

ROA URI adherence Y Y Y Y Y Y Y Y Y
Miscellaneous properties

CRUD operations supported ? ? Y RU CR(U) CD Y Y Y7

Optionality Y ? ? Y ? ? Y N Y
Discoverable ? ? ? Y ? ? Y N Y
Distributed Transactions N N Y ? Y Y ? ? Y
Service Paradigm Required N N Y ? Y Y N Y N
Heterogeneity of Service Types N/A N/A Y(?) ? ? N ? ? Y
1 Possible Lost Update Problem
2 Clients are made aware of pending uncommitted actions
3 Temporary Resources having Uniform Resource Locator (URL) have been criticized
4 Could be added
5 Three non standard HTTP header field
6 Clients perform three additional requests. The first uses OPTIONS to discover the Transaction Service. The client may cache
the result. Hence, the client performs the OPTIONS request only before the first transaction. The remaining two requests
are used to create and commit (or rollback the transaction). It is the minimum number of additional operations of every
transaction mechanism.

7 Create is supported via PUT (not via POST).

ated resource URIs. The lock for the resource collec-
tion is not enough because a concurrent client could
create a resource with PUT directly to the resource URI
(which could result in an update which violates the iso-
lation property). The Transaction Proxy could trans-
form a POST request into a PUT request only if it is
capable of defining the appropriate URI for the re-
source. This is possible only if the Transaction Proxy
knows the semantic of the target RESTful Service. For
this reason, our transaction model could support POST
only when it is exploited to implement transactions on
“known” RESTful Service(s). ReLock can support the
POST Method but the Proxy must be tailored for the
E↵ective Service. Anyway it is be possible to develop
a Generic Transaction Proxy which could use a mix of
configurations and plugin based approach to support
such a method; (b) clients not conceived to rely on Re-

Lock can coexist with the ones exploiting it, thus Re-
Lock cater for optionality. Services are always not aware
of the extended behaviour introduced by our transac-
tion model, and they do not need to conform to any
particular pattern. They have only to be RESTful and
do not expose subordinated resources; (c) discoverabil-
ity is achieved by the OPTIONS method. This means
that “all the metadata needed to execute the transac-
tions can be discovered in a RESTful manner without
out-of-band knowledge (i.e., following links)” [20]. By
exploiting this feature, our model can exploit the out-
of-band knowledge to support a distributed transaction.
By querying all the involved proxies, a client discovers
if a common transaction service exists. If it exists, then
all the lock services used by the proxies can interact
by implementing a protocol for deadlock detection; (d)
ReLock supports RESTful distributed transactions [13,

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



ReLock: a Resilient Two-Phase Locking RESTful Transaction Model 15

14] under the following additional constraints. First of
all, all the services should trust a common Transaction
Service. The Lock services must share a common dis-
tributed deadlock detection algorithm. Moreover, dis-
tributing the transactions will imply to build the initial
resource URIs encoding the e↵ective services base URI.
This will allow to distinguish di↵erent services and ex-
pose their collections to the same relative URI; (e) Re-
Lock is not posing any request for RESTful service(s)
to adhere to specific service paradigms.

5.1 Common transaction scenarios

Nine scenarios have been proposed [21] to evaluate the
coverage of any RESTful transaction model.

In Scenario I, two resources belonging to a single
application are updated. Table 11 shows how our proto-
col supports such a scenario. Our model requires seven
client calls to execute the scenario instead of the four
ideals calls (3-6). Three additional calls represent 75%
of overhead in the presented scenario, but this number
is constant because the number does not change with
the number of operations made in the transaction.

Table 12 presents Scenario II using PUT (POST is
supported in certain conditions only).

Scenario III is similar to Scenario I, but the update
operation must be asynchronous because the call is ex-
pected to take a long time to execute. In this case, the
Response to the client PUT operation is 202 Accepted

in place of 204 No Content. Our proposal could sup-
port this scenario, but it does not have a good fit for
long-running transactions because it uses pessimistic
locks which block resources.

Scenario IV is also similar to the Scenario I, but the
two resources belong to two di↵erent applications, see
Table 13. We support such a scenario for distributed
services but not for decentralised ones. Steps one and
two are executed to discover the supported Transaction
Service. Clearly, the client can proceed only if it finds
a common Transaction Service.

Scenario V is a rollback scenario where a server re-
jects an update (i.e., the second update) by respond-
ing with 409 Conflict [12, Sec. 6.5.8] because another
client updated the same resource before. This scenario
cannot happen in our transaction model because the
actions of the first client lock the resource and the sec-
ond client cannot obtain an Exclusive lock for the same
resource. In such a case, the second client obtains a
403 Forbidden while it tries to read the resource. It is a
duty of the client either to retry after a delay (Scenario
V.a Table 14) or rollback by deleting the transaction
resource (scenario V.b Table 15).

Scenario VI (see table 16) shows a voluntary roll-
back of the client.

In Scenario VII, the client fails in the middle of a
transaction, for instance after the second PUT in Sce-
nario I. In such a situation, the transaction is not com-
mitted. The Transaction Service rollbacks the transac-
tion when the timeout expires.

In Scenario VIII, the server fails in the middle of
a transaction, for instance with a ‘500 Internal Server
Error’ [12, Sec. 6.6.1]. This situation is similar to Sce-
nario V, the client can decide either to retry with a
delay (Scenario V.a) or rollback the transaction (Sce-
nario V.b).

Scenario IX is about communication losses and mes-
sage losses. Either the request or the response message
could get lost due to unreliable network communica-
tion. This scenario opens di↵erent cases to analyse.

The first case occurs when the client does not re-
ceive a reply from the Transaction Proxy while updat-
ing a resource. If the Transaction Proxy fails before
the lock is requested, then the client is still able to get
the lock and proceed by retrying the operation. If in-
stead the Transaction Proxy fails after the lock is ob-
tained (or the reply message is lost due to network is-
sues), then the lock has been set on the resource, but
the client does not receive the lock URI. If the client
retries the operation, it obtains a 403 Forbidden be-
cause the Transaction Proxy is not able to obtain the
lock and the client can only rollback the transaction. In
any case, the Transaction Service rollbacks the trans-
action if the timeout expires. Alternatively, the Lock
Service could use a 301 Moved Permanently [12, Sec.
6.4.2] if it recognises that a Transaction Proxy is try-
ing to create the same lock for the same resource and
transaction.

The second case occurs when the client does not
receive the response. The client can retry the operation
because the PUT operation is idempotent.

6 Conclusion and Future Works

Among the challenges characterising the Service-oriented
Computing there is the service composition one and the
need to support transactions across the composed ser-
vices. This paper presented ReLock, an approach for
transaction management of RESTful services. In partic-
ular, this approach consist of a transaction model and
three specific services implementing it: (i) the Trans-
action Proxy called to intercept all requests made by
clients to the target RESTful service if allowed by the
transaction protocol; (ii) the Transaction Service im-
plementing transactions as resource facilities as well as
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Table 11 ReLock and Scenario I: A transaction that updates two resources

HTTP
Method

URL Response

OPTIONS http://example.org/resources 200 OK
PUT http://transaction.example.org/transactions/ 201 Created

Location:
http://transaction.example.org/transactions/T1

GET http://example.org/resources/A 200 OK
GET http://example.org/resources/B 200 OK
PUT http://example.org/resources/A 204 No Content
PUT http://example.org/resources/B 204 No Content
PUT http://transaction.example.org/transactions/T1 204 No Content

Table 12 ReLock and Scenario II: A transaction involving update, creation, and deletion operations of a resource

HTTP
Method

URL Response

OPTIONS http://example.org/resources 200 OK
PUT http://transaction.example.org/transactions/ 201 Created

Location:
http://transaction.example.org/transactions/T1

GET http://example.org/resources 200 OK
PUT http://example.org/resources/C 201 Created
GET http://example.org/resources/A 200 OK
PUT http://example.org/resources/B 204 No Content
PUT http://transaction.example.org/transactions/T1 204 No Content

Table 13 ReLock and Scenario IV: A transaction that updates resources from di↵erent applications

HTTP
Method

URL Response

OPTIONS http://example.org/resources 200 OK
OPTIONS http://remote.example.org/res 200 OK
PUT http://transaction.example.org/transactions/ 201 Created

Location:
http://transaction.example.org/transactions/T1

GET http://example.org/resources/A 200 OK
GET http://remote.example.org/res/B 200 OK
PUT http://example.org/resources/A 204 No Content
PUT http://remote.example.org/res/B 204 No Content
PUT http://transaction.example.org/transactions/T1 204 No Content

Table 14 ReLock and Scenario V with delayed retry: A transaction with multiple updates where the server rejects an update
because of a conflict with a parallel transaction

HTTP
Method

URL Response

OPTIONS http://example.org/resources 200 OK
PUT http://transaction.example.org/transactions/ 201 Created

Location:
http://transaction.example.org/transactions/T1

GET http://example.org/resources/A 200 OK
PUT http://example.org/resources/A 204 No Content
GET http://example.org/resources/B 403 Forbidden
GET http://example.org/resources/B 200 OK
PUT http://example.org/resources/B 204 No Content
PUT http://transaction.example.org/transactions/T1 204 No Content

exposing transaction logging facilities as resources to
support compensations in case of rollbacks; (iii) the

Lock Service realising lock capabilities for resources ex-
posed by the target RESTful service.
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Table 15 ReLock and Scenario V with rollback: A transaction with multiple updates where the server rejects an update
because of a conflict with a parallel transaction

HTTP
Method

URL Response

OPTIONS http://example.org/resources 200 OK
PUT http://transaction.example.org/transactions/ 201 Created

Location:
http://transaction.example.org/transactions/T1

GET http://example.org/resources/A 200 OK
PUT http://example.org/resources/A 204 No Content
GET http://example.org/resources/B 403 Forbidden
DELETE http://transaction.example.org/transactions/T1 202 Accepted

Table 16 ReLock and Scenario VI: A transaction with multiple updates where the client rollbacks due to some condition in
its business logic

HTTP
Method

URL Response

OPTIONS http://example.org/resources 200 OK
PUT http://transaction.example.org/transactions/ 201 Created

Location:
http://transaction.example.org/transactions/T1

GET http://example.org/resources/A 200 OK
GET http://example.org/resources/B 200 OK
PUT http://example.org/resources/A 204 No Content
DELETE http://transaction.example.org/transactions/T1 202 Accepted

ReLock has a good fit for short-lived ACID transac-
tions. ReLock uses two-phase locking. It exposes trans-
action as resource holding a timeout. When the timeout
is raised the situation is managed as when a client ex-
plicitly invokes a rollback. The procedure is based on
compensation. The compensation procedure uses initial
state representation and logging facilities to properly
work. The proposed solution is resilient to failures.

The proposed solution is not immune from some lim-
itations.

POST could be supported only in a scenario where
the RESTful Service(s) are known to the Transaction
Proxy (cf. Sec. 5) while services exposing subordinated
resources are not supported. Approaches aiming at over-
coming these limitations will be parts of our future
works.

An extensive assessment of the proposed approach
is ongoing to evaluate its e�ciency under di↵erent op-
erational settings and implementation decisions. The
ReLock approach is currently under testing in the con-
text of the D4Science infrastructure [3,2]. This is a large
scale infrastructure that because of the settings and op-
eration context is called to support workflows and pro-
cesses spanning across diverse services not necessarily
conceived to work together.

Thanks to the layered approach, reservation-based
services could coexist with non-reservation based. The
idea for reservation based services is removing lock ser-
vice and propose a di↵erent proxy behind of them which

still take advantage of transaction service. The transac-
tion service must be extended to use try/cancel pattern
in place of compensation for this type of services. This
idea will be presented in a future work.

As a future work, we would add the possibility to
support decentralised transactions. Blockchain [22] tech-
nologies could be a way to face decentralisation.

Acknowledgements This work has received funding from
the European Union’s Horizon 2020 research and innovation
programme under Blue Cloud project (grant agreement No.
862409).

Conflict of interest

The authors declare that they have no conflict of inter-
est.

References

1. Allamaraju, S.: RESTful Web Services Cookbook: Solu-
tions for Improving Scalability and Simplicity, first edn.
O’Reilly (2010)

2. Assante, M., Candela, L., Castelli, D., Cirillo, R., Coro,
G., Frosini, L., Lelii, L., Mangiacrapa, F., Marioli, V.,
Pagano, P., Panichi, G., Perciante, C., Sinibaldi, F.:
The gcube system: Delivering virtual research environ-
ments as-a-service. Future Generation Computer Sys-
tems (2018). DOI https://doi.org/10.1016/j.future.2018.
10.035. URL http://www.sciencedirect.com/science/
article/pii/S0167739X17328364

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



18 Luca Frosini, Pasquale Pagano, Leonardo Candela*, Manuele Simi, Cinzia Bernardeschi

3. Assante, M., Candela, L., Castelli, D., Cirillo, R., Coro,
G., Frosini, L., Lelii, L., Mangiacrapa, F., Pagano, P.,
Panichi, G., Sinibaldi, F.: Enacting open science by
d4science. Future Generation Computer Systems 101,
555 – 563 (2019). DOI https://doi.org/10.1016/j.future
.2019.05.063. URL http://www.sciencedirect.com/sc
ience/article/pii/S0167739X1831464X

4. Bernstein, P.A., Newcomer, E.: Principles of transaction
processing. Morgan Kaufmann (2009)

5. Bouguettaya, A., Singh, M., Huhns, M., Sheng, Q.Z.,
Dong, H., Yu, Q., Neiat, A.G., Mistry, S., Benatallah,
B., Medjahed, B., Ouzzani, M., Casati, F., Liu, X., Wang,
H., Georgakopoulos, D., Chen, L., Nepal, S., Malik, Z.,
Erradi, A., Wang, Y., Blake, B., Dustdar, S., Leymann,
F., Papazoglou, M.: A service computing manifesto: The
next 10 years. Commun. ACM 60(4), 6472 (2017).
DOI 10.1145/2983528. URL https://doi.org/10.1145/
2983528

6. Cabrera, F., Copeland, G., Cox, B., Freund, T., Klein,
J., Storey, T., Thatte, S.: Web services transaction (ws-
transaction). Technical report, BEA Systems, Interna-
tional Business Machines Corporation, Microsoft Corpo-
ration, Inc. (2002). URL http://xml.coverpages.org/W
S-Transaction2002.pdf

7. Dey, A., Fekete, A., Rhm, U.: Rest+t: Scalable trans-
actions over http. In: 2015 IEEE International Con-
ference on Cloud Engineering, pp. 36–41 (2015). DOI
10.1109/IC2E.2015.11

8. Dusseault, L.M.: HTTP Extensions for Web Distributed
Authoring and Versioning (WebDAV). RFC 4918 (2007).
DOI 10.17487/RFC4918. URL https://rfc-editor.or
g/rfc/rfc4918.txt

9. Dustdar, S., Schreiner, W.: A survey on web services com-
position. International Journal of Web and Grid Services
(IJWGS) 1(1), 1–30 (2005). DOI 10.1504/IJWGS.2005.
007545

10. Elmagarmid, A.K.: A survey of distributed deadlock de-
tection algorithms. SIGMOD Rec. 15(3), 37–45 (1986).
DOI 10.1145/15833.15837. URL http://doi.acm.org/
10.1145/15833.15837

11. Fielding, R.T.: Architectural styles and the design of
network-based software architectures. Ph.D. thesis, Uni-
versity of California, Irvine (2000). AAI9980887

12. Fielding, R.T., Reschke, J.: Hypertext Transfer Protocol
(HTTP/1.1): Semantics and Content. RFC 7231 (2014).
DOI 10.17487/RFC7231. URL https://rfc-editor.or
g/rfc/rfc7231.txt

13. Khare, R.: Extending the representational state trans-
fer (rest) architectural style for decentralized systems.
Ph.D. thesis, University of California, Irvine (2003).
AAI3109801

14. Khare, R., Taylor, R.N.: Extending the representational
state transfer (rest) architectural style for decentral-
ized systems. In: Proceedings of the 26th Interna-
tional Conference on Software Engineering, ICSE ’04,
pp. 428–437. IEEE Computer Society, Washington, DC,
USA (2004). URL http://dl.acm.org/citation.cfm?id
=998675.999447

15. Kochman, S., Wojciechowski, P.T., Kmieciak, M.:
Batched transactions for restful web services. In: Pro-
ceedings of the 11th International Conference on Cur-
rent Trends in Web Engineering, ICWE’11, pp. 86–
98. Springer-Verlag, Berlin, Heidelberg (2012). DOI
10.1007/978-3-642-27997-3 8. URL http://dx.doi.org
/10.1007/978-3-642-27997-3_8

16. Lampesberger, H.: Technologies for web and cloud ser-
vice interaction: a survey. Service Oriented Comput-

ing and Applications 10(2), 71–110 (2016). DOI
10.1007/s11761-015-0174-1. URL https://doi.org/10.
1007/s11761-015-0174-1

17. Lemos, A.L., Daniel, F., Benatallah, B.: Web service com-
position: A survey of techniques and tools. ACM Com-
put. Surv. 48(3) (2015). DOI 10.1145/2831270. URL
https://doi.org/10.1145/2831270

18. Marinos, A., Razavi, A., Moschoyiannis, S., Krause, P.:
Retro: A consistent and recoverable restful transaction
model. In: Proceedings of the 2009 IEEE International
Conference on Web Services, ICWS ’09, pp. 181–188.
IEEE Computer Society, Washington, DC, USA (2009).
DOI 10.1109/ICWS.2009.99. URL http://dx.doi.org
/10.1109/ICWS.2009.99

19. Martin, J.: Managing the Database Environment.
Prentice-Hall (1983)

20. Mihindukulasooriya, N., Esteban-Gutiérrez, M., Garćıa-
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