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Abstract. Quantification, i.e., the task of training predictors of the class 2

prevalence in sets of unlabelled data items, has received increased atten- 3

tion in recent years. However, most quantification research has concen- 4

trated on developing algorithms for binary and multi-class problems in 5

which the classes are not ordered. We here study the ordinal case, i.e., 6

the case in which a total order is defined on the set of classes. We give 7

three main contributions to this field. First, we create and make available 8

two datasets for ordinal quantification (OQ) research that overcome the 9

inadequacies of the previously available ones. Second, we experimentally 10

compare, on the above datasets, the most important OQ algorithms pro- 11

posed in the literature so far. To this end, we consider algorithms that 12

have been proposed by authors from different research fields, who were 13

unaware of each other’s developments. Third, we propose three OQ algo- 14

rithms, based on the idea of preventing ordinally implausible estimates 15

through regularization. We show experimentally that these algorithms 16

outperform the existing ones. 17

Keywords: Quantification · Ordinal classification · Supervised preva- 18

lence estimation 19

1 Introduction 20

Quantification (a.k.a. learning to quantify, or supervised prevalence estimation, 21

or class prior estimation) is a supervised learning task which consists of training 22

(on a set L of labelled data items) a predictor that returns estimates p̂σ(yi) of 23

the relative frequencies (a.k.a. prevalence values, or prior probabilities) pσ(yi) 24

of the classes of interest Y = {y1, ..., yn} in a sample σ of unlabelled data 25

items (González et al., 2017). Another way of saying this is that a trained 26

quantifier (i.e., an estimator of class prevalence values) must return a predicted 27

distribution p̂ of the unlabelled data items across the classes in Y, where this 28

predicted distribution must diverge as little as possible from the true (unknown) 29

distribution p. 30

Quantification is important in many disciplines (such as e.g., market research, 31

political science, the social sciences, epidemiology) which, by their very own 32

nature, are only interested in aggregate (as opposed to individual) data. In these 33

contexts, classifying individual unlabelled instances is usually not a primary goal, 34

while estimating the prevalence p(yi) of the classes of interest Y = {y1, ..., yn} 35

in the data is. For instance, when classifying the tweets about a certain entity 36

(e.g., a political candidate) as displaying either a Positive or a Negative stance 37

towards the entity, we are usually not much interested in the class of a specific 38

tweet, and we want instead to know the fraction of these tweets that belong to 39

the class (Gao and Sebastiani, 2016). 40
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Generating a predicted distribution p̂ could in principle be achieved by the 41

“classify and count” method (CC), i.e., by training a standard classifier, classify- 42

ing all the unlabelled data items in the sample σ, counting how many data items 43

have been attributed to each class in Y, and normalising. However, it has been 44

shown that CC delivers poor prevalence estimates, and especially so when the 45

application scenario suffers from distribution shift (Moreno-Torres et al., 2012), 46

the (ubiquitous) phenomenon according to which the distribution pU (yi) of the 47

unlabelled test documents U across the classes is different from the distribution 48

pL(yi) of the labelled training documents L. As a result, a plethora of quan- 49

tification methods have been proposed in the literature (see (González et al., 50

2017)) that attempt to return accurate class prevalence estimations even in the 51

presence of distribution shift. 52

However, the vast majority of the methods proposed deal with the “categor- 53

ical” quantification task in which Y is a plain, unordered set; this essentially 54

means the standard binary (n = 2) or multiclass (n > 2) quantification tasks. 55

Very few methods, instead, deal with ordinal quantification (OQ), the (much less 56

standard) task of performing quantification on a set of n > 2 classes on which 57

a total order “≺” is defined. Ordinal quantification is important, though, be- 58

cause ordinal scales arise in many applications, especially ones involving human 59

judgments. For instance, in a customer satisfaction endeavour one may want to 60

estimate how a set of reviews of a certain product distribute across the set of 61

classes Y ={1Star, 2Stars, 3Stars, 4Stars, 5Stars}, while a social scientist might 62

want to find out how inhabitants of a certain region are distributed in terms of 63

their happiness with health services in the area (Y ={VeryUnhappy, Unhappy, 64

Happy, VeryHappy}). 65

In this paper we contribute to the field of OQ in a number of ways. 66

First, we develop and make publicly available two datasets for evaluating 67

OQ algorithms, one consisting of textual product reviews and one consisting 68

of telescope observations. Both datasets are from scenarios in which OQ arises 69

naturally, and are generated according to a strong, well-tested protocol for the 70

generation of datasets oriented to the evaluation of quantifiers. This contribution 71

fills a gap, because datasets previously used for the evaluation of OQ were not 72

adequate, for reasons that we discuss in Sec. 2. 73

Second, we perform an extensive experimental comparison (using the two 74

previously mentioned datasets) among all the OQ algorithms that (to the best 75

of our knowledge) have previously been proposed in the literature; this is im- 76

portant, since some of these algorithms (e.g., the ones of Sec. A.1 and A.2) had 77

been compared with each other on a testbed that was likely inadequate, while 78

some other algorithms (e.g., the ones of Sec. 3.2.1 to 3.2.2) had been developed 79

independently (i.e., in the unawareness) of the previous ones, and had thus never 80

been compared with them. 81
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Third, we propose new OQ algorithms, which introduce regularization into 82

existing quantification methods. We experimentally compare our proposals with 83

the existing state of the art and make the corresponding code publicly available1. 84

Experimental physics often has the objective to estimate the distribution 85

of a physical quantity that is measured only indirectly, through correlated 86

quantities. This objective corresponds to a quantification problem because i) 87

the relevant quantity needs to be predicted from the measurements; and ii) the 88

distribution of this quantity, as exhibited by a sample, is the central item of 89

interest. Moreover, this quantification problem is of an ordinal nature because 90

the relevant quantity typically obeys a total order. Early on, physicists have 91

termed this problem “unfolding” (Blobel, 1985; D’Agostini, 1995), which pre- 92

vented researchers from drawing connections between algorithms that have been 93

proposed in the quantification literature and algorithms that have been pro- 94

posed in the physics literature. In the following, we provide these connections to 95

find that regularization techniques from physics are able to improve well-known 96

quantification methods in ordinal settings. 97

Physicists are typically interested in the distribution of continuous quantities, 98

rather than ordered classes. However, a histogram approximation of a continuous 99

distribution is sufficient for many physics analyses (Blobel, 2002). Accordingly, 100

all the unfolding algorithms we consider here evolve around histograms instead 101

of continuous distributions. This conventional simplification essentially maps the 102

values of a continuous target quantity to a set of bins with a total order. Since 103

the values of this quantity are not known, but must be predicted, it is appropriate 104

to consider these bins as totally ordered classes Y in a classification task. From 105

this consideration, it happens that many unfolding algorithms in fact approach 106

the general OQ problem—quite successfully, as our experiments of Sec. 4 show. 107

108

The paper is organized as follows. In Sec. 2 we review past work on OQ. 109

In Sec. 3 we present all the OQ methods discussed in this paper, starting with 110

previously proposed ones (Sec. A) and carrying on with the novel ones we 111

propose in this work (Sec. 3.3). Sec. 4 is devoted to our experimental evaluation; 112

in particular, Sec. 4.2 presents the two datasets that we here make available and 113

that we use for the experimentation, while Sec. 4.4 presents the results of the 114

experiments. Sec. 5 concludes, discussing avenues for future research. 115

2 Related work 116

Quantification, as a task of its own, was first proposed by Forman (2005), who 117

observed that some applications of classification methods only require the estima- 118

tion of class prevalence values, and that better methods than “classify and count” 119

can be devised for this requirement. Since then, many methods for quantification 120

have been proposed; however, most of these methods tackle the categorical case, 121

in its binary and/or in its multiclass incarnations. 122

1 A public GitHub link will be provided in the camera-ready version; for now, the code
is part of our supplementary material.
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Ordinal quantification was first discussed by Esuli and Sebastiani (2010). 123

However, it was not until 2016 that the first true OQ algorithms were devel- 124

oped, the Ordinal Quantification Tree (OQT) by Da San Martino et al. (2016) 125

and the Adjusted Regress and Count (ARC) algorithm by Esuli (2016). In the 126

same years, the first data analysis competitions that involved OQ were proposed 127

(Higashinaka et al., 2017; Nakov et al., 2016; Rosenthal et al., 2017). However, 128

with the exception of OQT and ARC, the participants in these competitions 129

preferred “classify and count” with highly optimised classifiers over true OQ 130

methods; this preference persisted also in later competitions (Zeng et al., 2019, 131

2020), likely due to a general lack of awareness in the scientific community that 132

more accurate methods than “classify and count” exist. 133

Unfortunately, the data analysis competitions in which OQT and ARC were 134

evaluated (Nakov et al., 2016; Rosenthal et al., 2017) have tested each quan- 135

tification method only on a single sample of unlabeled items. This evaluation 136

protocol is not adequate for OQ because predictions in quantification correspond 137

to samples of data items, and not to individual data items, as in classification. 138

Measuring a quantifier’s performance on a single sample is therefore as unreli- 139

able as measuring a classifier’s performance on a single data item. As a result, 140

our knowledge of the relative merits of OQT and ARC lacks solidity. We address 141

this issue by introducing experimental protocols for a reliable evaluation of OQ 142

methods. Moreover, we follow these protocols to release two data sets for which 143

OQ has practical relevance. 144

Even before Forman (2005) discussed quantification as a task of its own, 145

other research fields had already addressed what we now call OQ problems. Most 146

notably, the so-called “unfolding” methods from experimental physics (Blobel, 147

1985; D’Agostini, 1995) are in fact OQ methods, a finding we detail in Sec. 3.2. 148

Their value for OQ in general has remained unexplored until today, largely due to 149

different terminologies of the fields and despite recent developments on both sides 150

(Aad et al., 2021; Nachman et al., 2020). Here, we bridge this interdisciplinary 151

gap by discussing unfolding methods within the general context of OQ. 152

3 Methods 153

We use the following notation. By x ∈ X we indicate a data item drawn from 154

a domain X and by y ∈ Y we indicate a class drawn from a set of classes Y = 155

{y1, ..., yn}, also known as a codeframe. Since we deal with ordinal quantification, 156

there exists a total order upon the classes, i.e., yi < yi+1. The symbol σ ⊆ X 157

denotes a sample, i.e., a non-empty set of unlabeled data items, while L ⊆ X ×Y 158

denotes a set of labeled data items. Here, we consider L to be set of hold-out 159

data that has not been employed during the training of the classifier. 160

By pσ(y) we indicate the true prevalence of class y in sample σ, where 161

0 ≤ pσ(y) ≤ 1 and
∑

y∈Y pσ(y) = 1. By a caret p̂Mσ (y), we indicate an estimate 162

of this prevalence, as obtained by a quantification method M that receives σ as 163

an input. 164
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3.1 Non-ordinal quantification methods 165

We start by introducing the most important multi-class quantifiers which do not 166

take ordinality into account. These quantifiers provide the foundation for the 167

ordinal extensions thereof, which we propose in Sec. 3.3. 168

3.1.1 Classify and Count (CC). In the most basic quantification method,
a hard classifier h : X → Y generates predictions for all data items x ∈ σ and
the fraction of predictions is used as a prevalence estimate

p̂CC
σ (yi) =

1

|σ|
·
∣∣{x ∈ σ : h(x) = yi}

∣∣. (1)

In the “probabilistic classify and count” (PCC) method, the hard classifier is
replaced by a soft classifier s : X → [0, 1]n. Here, we assume

∑n
i=1[s(x)]i = 1,

where [·]i is the indexing operator.

p̂PCC
σ (yi) =

1

|σ|
·
∑
x∈σ

[s(x)]i. (2)

3.1.2 Adjusted Classify and Count (ACC). Since CC and PCC are not 169

appropriate under prior probability shift, the “adjusted classify and count” (For- 170

man, 2005, ACC) and the “probabilistic adjusted classify and count” (Bella et al., 171

2010, PACC) have been proposed. They adjust p̂CC
σ and p̂PCC

σ , i.e., they correct 172

these estimates in spite of prior probability shift. 173

In the multi-class setting, we want to estimate a vector of prevalences p ∈ Rn,
where pi = pσ(yi). In this case, the adjustment of ACC and PACC amounts to
solving, for p, the system of linear equations

q = Mp, (3)

where q ∈ Rn is a vector of un-adjusted prevalence estimates from CC or PCC,
i.e., qACC

i = p̂CC
σ (yi) or qPACC

i = p̂PCC
σ (yi). Moreover, M ∈ Rn×n is a matrix

that relates the ground truth labels to the predictions of the employed classifier.
In the case of ACC, M is the misclassification matrix of h, as estimated from L

For PACC, M is the “soft” misclassification matrix of s. Namely,

MACC
ij =

|{(x, y) ∈ L : h(x) = yi, y = yj}|
|{(x, y) ∈ L : y = yj}|

(4)

MPACC
ij =

∑
(x,y)∈L:y=yj

[s(x)]i

|{(x, y) ∈ L : y = yj}|
(5)

ACC and PACC solve Eq. 3 with the Moore-Penrose pseudo-inverse M†, i.e.

p̂ = M†q, (6)

where p̂i = p̂σ(yi) is the estimate of ACC when Eq. 1 and Eq. 4 are employed 174



6

or the estimate of PACC when Eq. 2 and Eq. 5 are employed. 175

Unlike the true inverse M−1, the pseudo-inverse always exists. If the true 176

inverse exists, the two matrices are identical; if it does not exist, the solution 177

from Eq. 6 amounts to a minimum-norm least-square estimate of p (Mueller and 178

Siltanen, 2012, Theorem 4.1). 179

3.1.3 EM-based Quantification (SLD). The method by Saerens, Latinne
and Decaestecker (2002) follows an expectation maximization approach, which
leverages Bayes’ theorem in the E-step and updates the prevalence estimates in
the M-step. Both of these steps can be combined in a single update rule

p̂(k)σ (yi) =
1

|σ|
∑
x∈σ

p̂(k−1)
σ (yi)

p̂
(0)
σ (yi)

· [s(x)]i∑n
j=1

p̂
(k−1)
σ (yj)

p̂
(0)
σ (yj)

· [s(x)]j
, (7)

where p
(0)
σ (y) is initialized with the class prevalence values of the training set. 180

Ideally , the soft classifier s : X → [0, 1]n approximates posterior probabilities, 181

i.e., [s(x)]i ≈ Pr(yi | x). SLD continues to apply the update rule from Eq. 7 until 182

the estimates converge. 183

3.2 Existing OQ methods from the physics literature 184

Similar to the adjustment of ACC, experimental physicists have proposed ad- 185

justments that solve the system of linear equations from Eq. 3 for p. However, 186

these “unfolding” quantifiers differ from ACC in two regards. 187

First, the hard classifier h from Eq. 1 and Eq. 4 is often (although not always)
replaced by a partition c : X → {1, . . . , d} of the feature space, so that

qi =
1

|σ|
· |{x ∈ σ : c(x) = i}| ,

Mij =
|{(x, y) ∈ L : c(x) = i, y = yj}|

|{(x, y) ∈ L : y = yj}|
.

(8)

and M ∈ Rd×n. Note that by choosing c = h, we obtain exactly Eq. 1 and 188

Eq. 4. Another proven choice for c is to partition the feature space by the means 189

of a decision tree; in this case, d > n and c(x) represents the index of a leaf 190

node (Börner et al., 2017). 191

The second difference between ACC and physics-spawned quantifiers is the 192

aspect of regularization. In being designed for OQ tasks, quantifiers from physics 193

regularize their estimates in order to promote solutions that are the most plau- 194

sible solutions in OQ. Specifically, these methods employ the assumption that 195

neighbouring classes are similar in terms of their prevalences. Depending on the 196

algorithm, this assumption is leveraged in different ways. 197
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3.2.1 Regularized Unfolding (RUN). The early RUN method by Blobel 198

(1985, 2002) is used by physicists for decades, until now (Aartsen et al., 2017; 199

Nöthe et al., 2018). It estimates the vector p of class prevalences by minimizing 200

a loss function L : Rn → R over the estimate p̂. This loss function consists 201

of two terms, i.e., a negative log-likelihood term to model the error of p̂ and a 202

regularization term to model the plausibility of p̂. 203

The likelihood term in L builds on a Poisson assumption about the distribu- 204

tion of the data. Namely, this term models the counts q̄i = |σ| · qi, which are 205

observed in the sample σ, as being Poisson-distributed with the rates λi = M⊤
i p̄. 206

Here, Mi is the i-th column vector of M and p̄i = |σ| · p̂i are the class counts 207

that would be observed under a prevalence estimate p̂. 208

The second term of L is a Tikhonov regularization term 1
2 (Cp )

2. This term
introduces an inductive bias towards solutions which are plausible with respect
to ordinality. The Tikhonov matrix C is chosen such that differences between
neighbouring prevalence estimates are penalized, i.e., such that

1

2
(Cp )

2
=

1

2

n−1∑
i=2

(−pi−1 + 2pi − pi+1)
2 (9)

Combining the likelihood term and the regularization term, the loss function of
RUN is given by

L(p̂; M,q, τ,C) =

d∑
i=1

(
M⊤

i p̄− q̄i · ln(M⊤
i p̄)

)
+

τ

2
(Cp̂ )

2 (10)

and an estimate p̂ is chosen by minimizing L numerically over p̂. Here, τ ≥ 0 is 209

a hyperparameter which controls the impact of the regularization. 210

3.2.2 Iterative Bayesian Unfolding (IBU). The IBU method, proposed
by D’Agostini (1995, 2010) and still popular today (Aad et al., 2021; Nachman
et al., 2020), revolves around an expectation maximisation approach with Bayes’
theorem. It therefore shares a common foundation with the SLD method. The
E-step and the M-step of IBU can be written as a single, combined update rule

p̂(k)σ (yi) =

d∑
j=1

Mij · p̂(k−1)
σ (yi)∑n

l=1 Mlj · p̂(k−1)
σ (yl)

qi. (11)

One difference between IBU and SLD is that q and M are defined via counts 211

of hard assignments to partitions c(x), see Eq. 8, while SLD is defined over 212

individual soft predictions s(x), see Eq. 7. 213

Another difference between IBU and SLD is regularization. In order to pro- 214

mote solutions which are plausible in ordinal quantification, IBU smooths each 215

intermediate estimate p̂
(k)
σ (y) by fitting a low-order polynomial to p̂

(k)
σ (y). A lin- 216

ear interpolation between p̂
(k)
σ (y) and this polynomial is then used as the prior 217

of the next iteration, to reduce the differences between neighbouring prevalence 218

estimates. The interpolation factor is a hyperparameter of IBU through which 219

the degree of regularization is controlled. 220
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3.2.3 Other methods from the physics literature. RUN and IBU are 221

two examples for a collection of algorithms that goes under the name of “un- 222

folding”. We focus on these two methods due to their long-standing popularity 223

within physics research. In fact, they are among the first methods that have 224

been proposed in this field and they are still widely adopted today, in astro- 225

particle physics (Aartsen et al., 2017; Nöthe et al., 2018), high-energy physics 226

(Aad et al., 2021), and more recently in quantum computing (Nachman et al., 227

2020). Moreover, RUN and IBU already cover the most important aspects of 228

unfolding methods with respect to ordinal quantification. 229

Several other unfolding methods share similarities with RUN. For instance, 230

the method by Hoecker and Kartvelishvili (1996) employs the same regulariza- 231

tion as RUN, but assumes different Poisson rates, which are simplifications of the 232

rates that RUN uses. In preliminary experiments, here omitted for the sake of 233

conciseness, we have found this simplification to typically deliver less accurate 234

results than RUN. Two other methods, by Schmelling (1994) and by Schmitt 235

(2012), employ the same simplification as Hoecker and Kartvelishvili (1996), but 236

regularize differently. To this end, Schmelling (1994) regularizes with respect to 237

the deviation from a prior, instead of regularizing with respect to ordinal plau- 238

sibility; therefore, we do not perceive this method to be a true OQ method. 239

Schmitt (2012) adds a second term to the RUN regularization, which enforces 240

prevalence estimates that sum up to one. We use a RUN implementation which 241

already resolves this issue through a positivity constraint and normalization. 242

Another line of work evolves around the algorithm by Ruhe et al. (2013) 243

and its extensions (Bunse et al., 2018). We perceive this algorithm to lie out of 244

the scope of OQ because it does not address the order of classes, like the other 245

methods from the physics literature do. Moreover, the algorithm was shown 246

to exhibit a performance that is comparable to RUN and IBU, but not better 247

(Bunse et al., 2018). 248

3.3 New ordinal variants of ACC, PACC, and SLD 249

RUN, IBU, and other OQ methods from the physics literature address ordi- 250

nality through regularization. Each of their regularization techniques prevents 251

implausible estimates of class prevalence values, i.e., each technique prevents es- 252

timates in which the prevalences of neighbouring classes deviate too much from 253

each other. The strength of the regularization is controlled via hyperparameters, 254

which can be tuned to the type of problem at hand. Well-known categorical 255

methods from the quantification literature, such as ACC, PACC, and SLD, do 256

not employ any regularization of this kind. Therefore, they are not ideal choices 257

for OQ tasks. 258

In the following, we develop algorithms which extend ACC, PACC, and SLD 259

with the regularizers from RUN and IBU. Through this extension, we obtain 260

o-ACC, o-PACC, and o-SLD, the OQ counterparts of these well-known categori- 261

cal quantification algorithms. Since we only employ the regularizers, but not any 262

other aspect of RUN and IBU, we preserve the general characteristics of ACC, 263

PACC, and SLD. In particular, our methods continue to work with classifier 264
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predictions, i.e., we do not employ the categorical feature representation from 265

Eq. 8, which RUN and IBU employ. We also do not use the Poisson assumption 266

of RUN. Therefore, our extensions are “minimal” in the sense that they directly 267

address ordinality, without introducing any undesired side effects. 268

3.3.1 o-ACC and o-PACC. Our ordinal extensions to ACC and PACC build
on the finding by Mueller and Siltanen (2012, Theorem 4.1), which states that
the solution from Eq. 6 corresponds to a minimum-norm least-squares solution.
Namely, among all least-squares solutions p̂LSq = argminp∥q−Mp∥22, which
by themselves do not need to be unique, Eq. 6 is the unique solution that also
minimizes the quadratic norm ∥p∥22. Therefore, Eq. 6 is conceptually similar,
although not necessarily equal, to a regularized estimate

p̂′ = argmin
p

∥q−Mp∥22 +
τ

2
∥p∥22 (12)

which employs the quadratic norm for regularization. In particular, both Eq. 6 269

and Eq. 12 simultaneously minimize a least-squares objective and the norm of 270

their solution candidates. Note that the regularization function herein is, unlike 271

the regularization from RUN, unrelated to the ordinal nature of the classes. 272

To obtain the true OQ methods o-ACC and o-PACC, we replace the minimum-
norm regularization in Eq. 12 with the regularization term of RUN, see Eq. 9.
Through this replacement, we minimize the same objective function as ACC and
PACC, i.e., a least-squares objective, but regularize towards solutions that we
deem more plausible for OQ. The prevalence estimate is

p̂o = argmin
p

∥q−Mp∥22 +
τ

2
(Cp )

2
, (13)

the minimizer of which is found through numerical optimization, e.g. through the 273

BFGS optimization technique (Nocedal and Wright, 2006). The o-ACC variant 274

emerges from plugging in Eq. 1 and Eq. 4 for q and M, while the o-PACC variant 275

emerges from plugging in Eq. 2 and Eq. 5. 276

3.3.2 o-SLD. Our ordinal variant o-SLD leverages the ordinal regularization 277

of IBU in SLD. Namely, our method does not use the latest estimate directly 278

as the prior of the next iteration, but a smoothed version of this estimate. To 279

this end, we fit a low-order polynomial to each intermediate estimate p̂
(k)
σ (yi) 280

and use a linear interpolation between this polynomial and p̂
(k)
σ (yi) as the prior 281

of the next iteration. Like in IBU, we consider the interpolation factor as a 282

hyperparameter through which the strength of this regularization is controlled. 283

4 Experiments 284

The goal of our experiments is to uncover the relative merits of OQ methods that 285

come from different fields. We pursue this goal through a thorough comparison 286

of these methods, on representative OQ data sets. 287
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4.1 Evaluation measures 288

The main evaluation measure we use in this paper is the Normalized Match
Distance (NMD), defined by Sakai (2018) as

NMD(p, p̂) =
1

n− 1
MD(p, p̂) (14)

where 1
n−1 is just a normalisation factor that allows NMD to range between 0

(best) and 1 (worst). Here, MD is the Match Distance by Werman et al. (1985),
which is defined as

MD(p, p̂) =

n−1∑
i=1

d(yi, yi+1) · |P̂ (yi)− P (yi)| (15)

where d(yi, yi+1) is the “distance” between consecutive classes yi and yi+1, i.e., 289

the cost we incur in assigning to yi a probability mass that we should in- 290

stead assign to yi+1, or vice versa; here, we assume d(yi, yi+1) = 1. Moreover, 291

P (yi) =
∑i

j=1 p(yj) is the cumulative distribution of p. 292

MD is a special case of the Earth Mover’s Distance (EMD) by Rubner et al. 293

(1998), which is a widely acknowledged measure for OQ evaluation (Bunse et al., 294

2018; Da San Martino et al., 2016; Esuli and Sebastiani, 2010; Nakov et al., 2016; 295

Rosenthal et al., 2017). Since MD and EMD coincide in all of these works, we 296

could as well speak of evaluating OQ methods in terms of EMD, normalized by 297

the constant factor 1
n−1 from Eq. 14. 298

Another proposal for measuring the quality of OQ estimates is the Root 299

Normalised Order-aware Divergence (RNOD) by Sakai (2018). We include an 300

evaluation in terms of RNOD in the supplementary material, finding that RNOD 301

and NMD consistently lead to the same conclusions. 302

To obtain an overall score for a quantifier on a data set, we apply this quan- 303

tifier to each sample σ. The resulting prevalence estimates are then compared 304

to the ground-truth prevalences, which yields one NMD (or RNOD) value for 305

each sample. The final score of the quantifier is the average of these values, i.e., 306

the average NMD (or RNOD) across all samples of the data set. We test for 307

statistically significant differences between quantification methods in terms of a 308

paired Wilcoxon signed-rank test. Loosely speaking, this test tells us whether 309

one method consistently wins over the other. 310

4.2 Datasets and preprocessing 311

We conduct our experiments on two large datasets that we have generated for 312

the purpose of this work, and that we make available to the scientific commu- 313

nity2. The first dataset, named Amazon-OQ-BK, consists of product reviews 314

labelled according to customer’s judgments of quality, i.e., 1Star to 5Stars. The 315

2 A public link will be provided in the camera-ready version; for now, our supplemen-
tary material includes scripts to extract the data from public sources.
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APP

20 000 labelled
training items

all remaining
data items

1
2

1000 samples, each
with 1000 items

{pσ}

APP
validation

1
2

5000 samples, each
with 1000 items

{p′
σ}

APP
testing

APP-OQ
validation

20%

APP-OQ
testing20%

Fig. 1: Sampling of training data, validation data, and testing data through the
artificial prevalence protocol (APP). For each sample, a random prevalence vec-
tor pσ or p′

σ is drawn uniformly from the unit simplex and data items are drawn
according to this vector. For the Amazon data, a data item corresponds to a sin-
gle product review. For the telescope data, a data item corresponds to a single
telescope recording.

second dataset, Fact-OQ, consists of telescope observations labelled by one of 316

12 totally ordered classes. Hence, these data sets originate in practically relevant 317

and diverse applications of OQ. From each of these data sets, we subsample a 318

training set, multiple validation samples, and multiple test samples according to 319

two protocols that are well suited for OQ in particular. 320

4.2.1 The data sampling protocol. We start by dividing a set of labelled 321

data items into a training set L, a pool of validation items, and a pool of test 322

items, see Fig. 1 . All of these sets are disjoint from each other and each of them 323

is obtained through stratified sampling. From each of the pools, we separately 324

extract samples for quantification. 325

The extraction of samples follows the Artificial Prevalence Protocol (APP), 326

which is by now a standard protocol in quantifier evaluation. This protocol 327

generates each sample in two steps. First, APP generates a random vector pσ of 328

class prevalence values. This random vector is drawn uniformly at random, from 329

the set of all legitimate prevalence vectors. Namely, we follow Esuli et al. (2022) 330

in using the Kraemer algorithm (Smith and Tromble, 2004), which ensures that 331

all prevalences in the unit (n − 1) simplex are picked with equal probability. 332

The second step of APP is to draw from the pool of data, be it our validation 333

pool or our test pool, a subset of a fixed size which realizes the pre-determined 334

class prevalence values of the current sample. The result is a set of samples, 335

each consisting of a set of items with ground-truth prevalence values that are 336

uniformly distributed. We obtain one set of samples from the validation pool 337

and another set of samples from the test pool. 338

In our experiments, we set size of each sample to 1000, i.e., each sample 339

consists of 1000 data items which realize a random class prevalence vector. The 340
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validation set consists of 1000 such samples, the test set of 5000 samples. We set 341

the size of the training set to 20 000. 342

All items in the pool are replaced after the generation of each sample, so 343

that no sample contains duplicate items but samples from the same pool are 344

not necessarily disjoint. Note, however, that our initial split into a training set, 345

a validation pool and a test pool ensures that each validation sample is disjoint 346

from each test sample and that the training set is disjoint from all other samples. 347

4.2.2 Partitioning of samples in terms of their plausibility. The APP 348

samples all prevalence vectors with the same probability, disregarding of whether 349

these vectors are plausible in the sense of being likely to appear in the practice 350

of OQ. We counteract this shortcoming with APP-OQ, a second protocol which 351

is very similar to APP but limited to those samples that that we deem to be 352

the most plausible in the context of OQ. Namely, we select the seemingly most 353

plausible 20% of the previously generated APP samples. We always report the 354

results of APP and APP-OQ side by side, to draw conclusions about the OQ- 355

related merits of the different quantification methods. 356

We use “smoothness” as a proxy for plausibility. We measure smoothness 357

by invoking Eq. 9 on the true prevalence vector of each sample. In APP-OQ, 358

the hyperparameter optimization is performed on the selected 20% validation 359

samples and the evaluation is performed on the selected 20% test samples. 360

4.2.3 The Amazon-OQ-BK dataset. The first dataset we extract, called 361

Amazon-OQ-BK, is a subset of an existing dataset3 of 233.1M English-language 362

Amazon product reviews, spanning the period from May 1996 to October 2018, 363

made available by McAuley et al. (2015) . As the labels of the reviews, we use 364

their “stars” scores, and our codeframe is thus Y ={1Star, 2Stars, 3Stars, 4Stars, 365

5Stars}, which represents a sentiment quantification task. 366

We restrict our attention to reviews from the Books domain. We then remove 367

(a) all reviews shorter than 200 characters (since recognising sentiment from 368

shorter reviews may be nearly impossible in some cases), and (b) all reviews 369

that have not been recognized as “useful” by any users (since many reviews 370

never recognised as “useful” may contain comments, say, on Amazon’s speed of 371

delivery, and not on the product itself). 372

We convert the textual representation of the documents into a vector form by 373

using the RoBERTa transformer (Liu et al., 2019) from the Hugging Face hub.4 374

To this aim, we fine-tune RoBERTa via prompt learning for a maximum of 5 375

epochs on our training data, thus taking the model parameters from the epoch 376

which yields the smallest validation loss as monitored on 1000 held-out docu- 377

ments randomly sampled from the training set in a stratified way. For training, 378

we set the learning rate to 2e−5, the weight decay to 0.01, and the batch size to 379

16, leaving the other hyperparameters at their default values. For each document, 380

3 http://jmcauley.ucsd.edu/data/amazon/links.html
4 https://huggingface.co/docs/transformers/model_doc/roberta
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we generate features by first applying a forward pass over the fine-tuned network 381

and then averaging the embeddings produced for the special token [CLS] across 382

all the 12 layers of RoBERTa. In our initial experiments, this approach yielded 383

slightly better results than using the [CLS] embedding of the last layer alone. 384

The embedding size of RoBERTa, and hence the number of dimensions of our 385

vectors, amounts to 768. 386

We make the Amazon-OQ-BK dataset publicly available,2 both in its raw 387

textual form and in its processed vector form. 388

4.2.4 The telescope dataset. We further evaluate all methods on the open 389

dataset5 of the FACT telescope (Anderhub et al., 2013). For data of this kind, 390

the physics-spawned OQ methods RUN and IBU are conventional choices among 391

astro-particle physicists (Aartsen et al., 2017; Nöthe et al., 2018). We represent 392

this data in terms of the 20 dense features that are extracted by the standard 393

processing pipeline6 of the telescope. Each of the 1,851,297 recordings is labelled 394

with the energy of the corresponding particle and our goal is to estimate the 395

distribution of these energy labels through quantification. 396

While the energy labels are originally continuous, astro-particle physicists 397

have established a common practice of dividing the range of energy values into 398

ordinal classes, as argued in Sec. 3.2. Based on discussions with astro-particle 399

physicists, we divide the range of continuous energy values into 12 ordinal classes. 400

In order to fit and evaluate quantification methods, we employ simulated 401

telescope data in our experiments. Using simulated data for this purpose is com- 402

mon practice among astro-particle physicists (Aartsen et al., 2017; Nöthe et al., 403

2018). Indeed, the simulation comprises all aspects of the telescope, from particle 404

interactions inside the atmosphere, over light propagation, up to electrical arte- 405

facts inside the telescope camera, so that the simulated data is representative of 406

the real telescope. 407

4.3 Results with ordinal classifiers 408

In our first experiment, we investigate whether ordinal quantification is solved by 409

non-ordinal quantifiers that embed ordinal classifiers. To this end, we compare a 410

standard multi-class logistic regression (LR) to several ordinal variants of LR. In 411

general, we have found that LR models, trained on the deep RoBERTa embed- 412

ding of the Amazon-OQ-BK data set, are extremely powerful models in terms 413

of quantification performance. Therefore, approaching OQ with ordinal LR vari- 414

ants, which are embedded in non-ordinal quantifiers, could be a straightforward 415

solution that is worth the investigation. 416

The ordinal LR variants we try are the “All Threshold” variant (OLR-AT) 417

and the “Immediate-Threshold variant” (OLR-IT) by Rennie and Srebro (2005). 418

In addition, we try two classifiers which are based on discretising the outputs that 419

are generated by regression models. These methods include an ordinal classifier 420

5 https://factdata.app.tu-dortmund.de/
6 https://github.com/fact-project/open_crab_sample_analysis/
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that is based on Ridge Regression (ORidge) and one that is based on linear 421

support vector machines, named Least Absolute Deviation (LAD). 422

Table 1: Performance of classifiers in terms of the average NMD (lower is better)
in the Amazon-OQ-BK dataset. Boldface indicates the best classifier variant
for each quantification method, or a variant that is not significantly different
from the best one in terms of a paired Wilcoxon signed-rank test at a confidence
level of p = 0.01. For LR we present standard deviations, while for all other
classifiers we show the average deterioration in NMD with respect to LR. PCC,
PACC, and SLD require a soft classifier, so that ORidge and LAD cannot be
embedded in these methods.

CC PCC ACC PACC SLD

LR .0526 ±.0190 .0629 ±.0215 .0247 ±.0096 .0206 ±.0080 .0174 ±.0068
OLR-AT .0527 (+0.2%) .0657 (+4.4%) .0237 (−4.4%) .0219 (+6.5%) .0210 (+20.5%)
OLR-IT .0526 (+0.0%) .0695 (+10.4%) .0256 (+3.6%) .0215 (+4.5%) .0648 (+271.8%)
ORidge .0550 (+4.5%) — .0244 (−1.6%) — —
LAD .0527 (+0.3%) — .0240 (−3.1%) — —

Tab. 1 reports the results we obtain from this experiment, using several 423

well-known non-ordinal quantifiers. These results reveal that, in order to deliver 424

accurate estimates of class prevalence values in the ordinal case, it is not sufficient 425

to equip a multi-class quantifier with an ordinal classifier of this kind. Moreover, 426

the results of SLD, PCC, and PACC suggests that the quality of the posterior 427

probabilities suffers from the adoption of ordinal classifiers. We thus conclude 428

that ordinality in quantification has to involve the quantification level. 429

4.4 Results of the quantifier comparison 430

In our main experiment, we compare our proposaled methods o-ACC, o-PACC, 431

and o-SLD with several baselines. First, we consider the existing OQ methods 432

OQT (Da San Martino et al., 2016) and ARC (Esuli, 2016), which we further 433

detail in the supplementary material. Second, we consider the “unfolding” OQ 434

methods IBU and RUN from Sec. 3.2. Third, we consider the well-known non- 435

ordinal methods CC, PCC, ACC, PACC, and SLD. We compare these methods 436

on both data sets and with both protocols, as introduced in Sec. 4.2. 437

Each of the methods is allowed to tune the hyperparameters of its embedded 438

classifier using the samples of the validation set. To this end, the Amazon-OQ- 439

BK data is always predicted with logistic regression models and the Fact-OQ 440

data is always predicted with probability-calibrated decision trees. This choice 441

of classifiers is motivated by common practice in the fields where these data 442

sets come from and from our own experience that these classifiers work well on 443

the data. After the hyperparameters of the classifier are chosen, we apply each 444

method to the samples of the test set. 445
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Table 2: Average performance in terms of NMD (lower is better). For each data
set (Amazon-OQ-BK and FACT-OQ), we present the results of the two pro-
tocols APP and APP-OQ. The best performance in each column is highlighted
in boldface. According to a Wilcoxon signed rank test with p = 0.01, all other
methods are significantly different from the best method.

method Amazon-OQ-BK Fact-OQ
APP APP-OQ APP APP-OQ

CC .0526 ± .019 .0344 ± .013 .0534 ± .012 .0494 ± .011
PCC .0629 ± .022 .0440 ± .017 .0651 ± .017 .0621 ± .017
ACC .0229 ± .009 .0193 ± .007 .0582 ± .028 .0575 ± .028
PACC .0209 ± .008 .0176 ± .007 .0791 ± .048 .0816 ± .049
SLD .0172 ± .007 .0154 ± .006 .0373 ± .010 .0355 ± .009

OQT .0775 ± .026 .0587 ± .027 .0746 ± .019 .0731 ± .020
ARC .0641 ± .023 .0477 ± .015 .0566 ± .014 .0568 ± .016
IBU .0253 ± .010 .0197 ± .007 .0213 ± .005 .0187 ± .004
RUN .0252 ± .010 .0198 ± .007 .0222 ± .006 .0194 ± .005

o-ACC .0229 ± .009 .0188 ± .007 .0274 ± .007 .0230 ± .006
o-PACC .0209 ± .008 .0174 ± .007 .0230 ± .006 .0178 ± .004
o-SLD .0173 ± .007 .0152 ± .006 .0327 ± .008 .0289 ± .007

The results of this experiment, in terms of NMD, are summarized in Tab. 2. 446

We see that our proposals win on both data sets, if the ordinal APP-OQ proto- 447

col is employed. More specifically, o-SLD is the best method on the Amazon- 448

OQ-BK data set and o-PACC is the best method on the Fact-OQ data set. 449

Moreover, o-SLD is consistently better or equal to SLD, o-ACC is consistently 450

better or equal to ACC, and o-PACC is consistently better or equal to PACC, 451

also in the standard APP protocol in which smoothness is not imposed. 452

Additional experiments we have carried out, including further datasets, RNOD 453

as an alternative evaluation measure, and TFIDF as an alternative vectorial rep- 454

resentation for text, confirm the conclusions we draw from Tab. 2. We provide 455

these results in the supplementary material. 456

5 Conclusion 457

We have proposed two evaluation protocols for ordinal quantification, which we 458

have taken out on two OQ data sets that we have released. We have demon- 459

strated that so-called “unfolding” methods from experimental physics are in fact 460

OQ methods and, as such, are also applicable in other OQ applications. We 461

took inspiration from these methods when we devised o-ACC, o-PACC, and 462

o-SLD, our OQ variants of some well-known non-ordinal quantification meth- 463

ods. Namely, our OQ variants successfully employ the regularization techniques 464

from “unfolding” methods to prevent solutions that are less plausible in OQ. 465

We have provided empirical evidence that OQ has to be tackled at the quan- 466

tification level, and is not solved by equipping a non-ordinal quantifier with 467

an ordinal classifier. Evaluating our proposed quantifiers against existing OQ 468

methods from different fields and against non-ordinal baselines, we observe that, 469

despite some non-ordinal quantifiers work reasonably well in OQ scenarios, there 470
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is a clear tendency that dedicated OQ methods outperform the non-ordinal quan- 471

tifiers in OQ tasks. 472

For future work, we conceive the idea of regularization to be fruitful also for 473

other quantification tasks, e.g. multi-label quantification or quantification with 474

priors. Moreover, we recognize a need for more public OQ data sets. 475
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A Existing OQ methods from quantification literature 572

For completeness, we introduce the OQ methods by Da San Martino et al. (2016) 573

and by Esuli (2016), which appear in our main experiment from Sec. 4.4. Both of 574

these methods do not address ordinality through regularization, like we suggest, 575

but through binary decompositions of the codeframe. 576

A.1 Ordinal Quantification Tree (OQT) 577

The algorithm by Da San Martino et al. (2016) trains a quantifier by arranging 578

probabilistic binary classifiers (one for each possible bipartition of the ordered 579

set of classes) into an ordinal quantification tree (OQT), which is conceptually 580

similar to a hierarchical classifier. Two characteristic aspects of training an OQT 581

are that (a) the loss function used for splitting a node is a quantification loss 582

(and not a classification loss), e.g., the Kullback-Leibler Divergence, and (b) the 583

splitting criterion is informed by the class order. Given a test document, one 584

generates a posterior probability for each of the classes by having the document 585

descend all branches of the trained tree; after this is done for all documents 586

in the test sample, the probabilistic classify-and-count (PCC – (Bella et al., 587

2010)) multiclass (i.e., non-ordinal) quantification method is invoked in order to 588

compute the final prevalence estimates. 589

The OQT method was only tested in the SemEval 2016 “Sentiment analysis 590

in Twitter” shared task (Nakov et al., 2016). While OQT was the best performer 591

in that subtask, its true value still has to be assessed, since the above-mentioned 592

subtask evaluated participating algorithms on one test sample only. In Sec. 4 we 593

have tested OQT in a much more robust way. 594

A.2 Adjusted Regress and Count (ARC) 595

The algorithm by Esuli (2016) is similar to OQT in that it trains a hierarchical 596

classifier where the leaves of the tree are the classes, these leaves are ordered left- 597

to-right, and each internal node partitions an ordered sequence of classes in two 598

such subsequences. One difference between the two algorithms is the criterion 599

used in order to decide where to split a given sequence of classes, which for OQT 600

is based on a quantification loss (KLD), and for ARC is based on the principle of 601

minimizing the imbalance (in terms of the number of training examples) of the 602

two subsequences. A second difference is that, once the tree is trained and used 603

to classify the test documents, OQT uses what is basically a PCC algorithm, 604

while ARC uses the adjusted classify-and-count (ACC) multiclass quantification 605

method (Forman, 2008). 606

Concerning the quality of ARC, the same considerations made for OQT ap- 607

ply, since ARC, like OQT, has only been tested in the Ordinal Quantification 608

subtask of the SemEval 2016 “Sentiment analysis in Twitter” shared task; de- 609

spite the fact that it worked well in that context, the experiments that we are 610

presenting in Sec. 4 are more conclusive. 611
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B Extended results 612

The following results complete the experiments we have shown in the main paper. 613

B.1 Performance in terms of RNOD 614

We have repeated all of our experiments in terms of the Root Normalised Order-
aware Divergence (RNOD) evaluation measure, instead of NMD, as proposed
in (Sakai, 2018) and as defined as

RNOD(p, p̂) =

(∑
yi∈Y∗

∑
yj∈Y d(yj , yi)(p(yj)− p̂(yj))

2

|Y∗|(n− 1)

) 1
2

(16)

where Y∗ = {yi ∈ Y|p(yi) > 0}. 615

From examining the RNOD results from Tab. 3, we may note that, while 616

some methods change positions in the ranking, as compared to their ranks in 617

terms of NMD, general conclusions from the NMD evaluation also hold in terms 618

of RNOD. 619

Table 3: Average performance in terms of RNOD (lower is better), in analogy to
the NMD results from Tab. 2. For each data set (Amazon-OQ-BK and FACT-
OQ), we present the results of the two protocols APP and APP-OQ. The best
performance in each column is highlighted in boldface. We further highlight all
methods which are not significantly different from the best method, as according
to a Wilcoxon signed rank test with p = 0.01.

method Amazon-OQ-BK Fact-OQ
APP APP-OQ APP APP-OQ

CC .1151 ± .048 .0606 ± .020 .1319 ± .036 .1071 ± .027
PCC .1360 ± .054 .0758 ± .025 .1372 ± .034 .1096 ± .026
ACC .0487 ± .024 .0374 ± .016 .1563 ± .040 .1375 ± .030
PACC .0419 ± .019 .0327 ± .014 .1750 ± .056 .1719 ± .047
SLD .0363 ± .017 .0302 ± .014 .0890 ± .029 .0767 ± .021

OQT .1542 ± .064 .0960 ± .032 .1456 ± .035 .1225 ± .032
ARC .1303 ± .056 .0770 ± .027 .1242 ± .032 .0973 ± .022
IBU .0534 ± .025 .0357 ± .014 .0822 ± .028 .0649 ± .018
RUN .0531 ± .025 .0361 ± .014 .0869 ± .029 .0685 ± .019

o-ACC .0487 ± .024 .0353 ± .014 .1032 ± .033 .0754 ± .016
o-PACC .0419 ± .019 .0316 ± .012 .0914 ± .029 .0625 ± .016
o-SLD .0365 ± .017 .0296 ± .013 .0857 ± .027 .0658 ± .015

We do not choose RNOD as the main evaluation function (and prefer NMD 620

for the main paper instead) because we do not think RNOD is a satisfactory 621

measure for OQ. The reason why we do not consider RNOD a satisfactory 622

OQ measure is that, without (we think) reason, it penalises more heavily mis- 623

takes (i.e., “transfers” of probability mass from a class to another) closer to 624
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the extremes of the codeframe. For instance, given Y = {y1, y3, y3, y4, y5}, as- 625

sume p = (0.2, 0.2, 0.2, 0.2, 0.2), and assume two predicted distributions p̂′ = 626

(0.2, 0.2, 0.3, 0.1, 0.2) and p̂′′ = (0.2, 0.2, 0.2, 0.3, 0.1). The two predicted distri- 627

butions make essentially the same mistake, i.e., erroneously “transfer” a proba- 628

bility mass of 0.1 from a class yi to a class y(i−1), the difference being that in 629

p̂′ it is the case that i = 4 and in p̂′′ it is the case that i = 5. According to our 630

intuitions, p̂′ and p̂′′ should be equally penalised. While NMD indeed penalises 631

them equally (since NMD(p, p̂′) = NMD(p, p̂′′) = 0.1), RNOD does not (since 632

RNOD(p, p̂′) ≈ 0.077 while RNOD(p, p̂′′) ≈ 0.092). Sakai (2021) has proposed 633

other OQ evaluation measures, such as Root Symmetric Normalised Order-aware 634

Divergence (RSNOD) and Root Normalised Average Distance-Weighted sum of 635

squares (RNADW), but we do not consider them here since they are variants of 636

RNOD that suffer anyway from the problem mentioned above. 637

B.2 Results on other data sets 638

We have repeated our experiment from Tab. 2 also several other data sets. 639

First, we employ a different representation of the Amazon-OQ-BK data, 640

namely a TFIDF representation instead of the RoBERTa embeddings we employ 641

in the main paper. The results with this representation, both in terms of NMD 642

and RNOD, are presented in Tab. 4. 643

Second, we evaluate on a collection of 4 public data sets from the UCI repos- 644

itory and OpenML. To this end, we have first selected regression data sets with 645

at least 30 000 items. From there on, we have tried to find an equidistant binning 646

which produces at least 10 bins (= ordered classes), each of which have at least 647

1000 items. We only maintain data sets for which such a binning was possible and 648

we remove all items that lie outside the 10 equidistant bins. In order to maintain 649

as many samples as possible, we maximize the distance between the left-most and 650

right-most bin boundaries. If less then 30 000 items remain, we omit the data 651

set. From this protocol, we obtain the 4 data sets Uci-blog-feedback-OQ, 652

Uci-online-news-popularity-OQ, OpenMl-Yolanda-OQ, and OpenMl- 653

fried-OQ. We present the results obtained with these data sets in terms of 654

NMD, see Tab. 5, and in terms of RNOD, see Tab. 6. 655

B.3 Hyperparameter grids 656

In our experiments, each method has the opportunity to optimize its hyperpa- 657

rameters on the APP (or APP-OQ) validation samples. These hyper-parame- 658

ters consist of parameters of the quantifier and of parameters of the classifier, 659

with which the quantifier is equipped. After taking out preliminary experiments, 660

which we omit here for conciseness, we have chosen different hyperparameter 661

grids for the different data sets. 662

To this end, Tab. 7 and Tab. 8 present the parameters for the Amazon-OQ- 663

BK data set. For instance, CC and PCC can choose between 10 hyperparameter 664

configurations of the classifier (2 class weights × 5 regularization parameters), 665

but they do not have additional parameters on the quantification level. We note 666
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Table 4: NMD (left) and RNOD (right) on a TFIDF representation, instead of
RoBERTa embeddings, of the Amazon-OQ-BK data set.

method Amazon-OQ-BK (TFIDF)
APP APP-OQ

CC .0867 ± .034 .0683 ± .031
PCC .1082 ± .044 .0950 ± .048
ACC .0353 ± .015 .0333 ± .014
PACC .0301 ± .015 .0310 ± .015
SLD .0477 ± .018 .0381 ± .012

OQT .1583 ± .065 .1539 ± .072
ARC .0989 ± .037 .0855 ± .038
IBU .0596 ± .023 .0454 ± .020
RUN .0594 ± .023 .0452 ± .020

o-ACC .0347 ± .017 .0227 ± .009
o-PACC .0276 ± .014 .0194 ± .007
o-SLD .0477 ± .018 .0363 ± .011

method Amazon-OQ-BK (TFIDF)
APP APP-OQ

CC .1555 ± .062 .0953 ± .033
PCC .1807 ± .063 .1244 ± .045
ACC .0786 ± .039 .0735 ± .035
PACC .0681 ± .037 .0708 ± .037
SLD .1073 ± .051 .0814 ± .027

OQT .2168 ± .071 .1659 ± .058
ARC .1698 ± .065 .1123 ± .035
IBU .1186 ± .052 .0678 ± .022
RUN .1185 ± .053 .0675 ± .022

o-ACC .0777 ± .038 .0465 ± .020
o-PACC .0624 ± .034 .0399 ± .017
o-SLD .0973 ± .036 .0688 ± .017

Table 5: NMD in additional datasets
method Uci-blog-feedback-OQ Uci-online-news-popularity-OQ OpenMl-Yolanda-OQ OpenMl-fried-OQ

APP APP-OQ APP APP-OQ APP APP-OQ APP APP-OQ

CC .0958± .034 .0884± .031 .1664± .047 .1549± .045 .0767± .023 .0779± .025 .0330± .008 .0243± .006
PCC .0967± .042 .0960± .045 .0996± .044 .0985± .047 .0926± .030 .0921± .032 .0410± .010 .0330± .008
ACC .1147± .042 .1144± .045 .1365± .055 .1357± .060 .0807± .024 .0824± .026 .0454± .021 .0482± .023
PACC .1323± .049 .1437± .050 .1515± .063 .1246± .055 .1068± .047 .1102± .050 .0614± .026 .0659± .026
SLD .1001± .044 .1224± .038 .1576± .063 .1687± .069 .0753± .025 .0784± .028 .0369± .009 .0373± .008

OQT .2222± .058 .2050± .057 .3220± .087 .3177± .092 .2246± .056 .2223± .058 .0566± .014 .0472± .012
ARC .2420± .062 .2474± .063 .3801± .085 .3793± .089 .2513± .058 .2500± .060 .0589± .017 .0598± .018
IBU .0997± .046 .0980± .049 .0886± .039 .0858± .043 .0558± .017 .0553± .018 .0168± .005 .0146± .004
RUN .1348± .052 .1339± .054 .1115± .048 .1181± .053 .0577± .017 .0604± .018 .0206± .006 .0161± .005

o-ACC .0772± .031 .0728± .027 .0833± .030 .0718± .027 .0568± .016 .0549± .017 .0264± .008 .0189± .004
o-PACC .0747± .028 .0664± .025 .0954± .039 .0804± .031 .0580± .014 .0537± .014 .0350± .018 .0146± .004
o-SLD .1195± .041 .1190± .040 .0993± .044 .0992± .046 .0701± .019 .0648± .019 .0322± .007 .0282± .005

Table 6: RNOD in additional datasets
method Uci-blog-feedback-OQ Uci-online-news-popularity-OQ OpenMl-Yolanda-OQ OpenMl-fried-OQ

APP APP-OQ APP APP-OQ APP APP-OQ APP APP-OQ

CC .2007± .049 .1715± .037 .2981± .060 .2687± .051 .1605± .043 .1362± .038 .1125± .034 .0727± .015
PCC .1643± .042 .1371± .038 .1661± .043 .1372± .038 .1642± .041 .1368± .036 .1290± .037 .0896± .021
ACC .2748± .062 .2559± .057 .2639± .056 .2534± .047 .1656± .045 .1444± .043 .1336± .048 .1352± .044
PACC .2507± .069 .2512± .064 .3056± .075 .2938± .078 .2228± .056 .2108± .040 .1820± .055 .1558± .038
SLD .2299± .050 .2247± .039 .2704± .081 .2531± .040 .2064± .059 .1824± .042 .1009± .031 .0921± .023

OQT .3354± .046 .3122± .043 .3331± .060 .3056± .064 .2612± .049 .2418± .050 .1621± .048 .1238± .035
ARC .2552± .031 .2468± .022 .3976± .053 .3734± .054 .2342± .041 .2079± .037 .1532± .055 .1346± .060
IBU .1598± .046 .1294± .040 .1573± .044 .1232± .034 .1438± .043 .1172± .039 .0623± .023 .0531± .017
RUN .1802± .047 .1482± .041 .1698± .043 .1425± .040 .1487± .048 .1223± .038 .0750± .026 .0565± .018

o-ACC .1567± .045 .1363± .030 .1669± .045 .1335± .040 .1374± .038 .1081± .027 .1085± .036 .0755± .022
o-PACC .1526± .042 .1229± .037 .1555± .041 .1356± .036 .1439± .037 .1074± .023 .1146± .050 .0510± .014
o-SLD .1720± .045 .1502± .040 .1706± .045 .1394± .039 .1542± .041 .1193± .029 .1019± .035 .0730± .016
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that an inspection of the validation results revealed that the fraction of hold- 667

out data does not considerably affect the results of ACC, PACC, OQT, and 668

ARC. Therefore, we save computational resources by omitting some values of 669

this parameter in the final hyperparameter grid. 670

Tab. 9 and Tab. 10 present the parameters for the Fact-OQ data. For con- 671

ciseness, they also contain the parameters for the UCI and OpenML data sets. 672

The remaining parameters for the UCI and OpenML data sets are presented in 673

Tab. 11 674

Table 7: Hyperparameter grid of classifiers when analyzing the Amazon-OQ-
BK data in the experiment from Tab. 2.

classifier parameter values

logistic regression class weight {balanced, unbalanced }
regularization parameter C {0.001, 0.01, 0.1, 1.0, 10.0}

Table 8: Hyperparameter grid of quantification methods when analyzing the
Amazon-OQ-BK data in the experiment from Tab. 2.
method parameter values

CC no parameters
PCC no parameters
ACC fraction of hold-out data { 1

4
, 1
3
, 1
2
}

PACC fraction of hold-out data { 1
4
, 1
3
, 1
2
}

SLD no parameters

OQT fraction of hold-out data { 1
3
}

ARC fraction of hold-out data { 1
3
}

RUN τ {3e-2, 1e-2, 3e-3, 1e-3, 3e-4, 1e-4, 3e-5, 1e-6}
IBU order of polynomial {0, 1, 2}

interpolation factor {3e-1, 1e-1, 3e-2, 1e-2, 3e-3, 1e-3}

o-ACC fraction of hold-out data { 1
4
, 1
3
}

τ {1e-2, 3e-3, 1e-3, 3e-4, 1e-4, 1e-5, 1e-6, 1e-9}
o-PACC fraction of hold-out data { 1

4
, 1
3
}

τ {1e-2, 3e-3, 1e-3, 3e-4, 1e-4, 1e-5, 1e-6, 1e-9}
o-SLD order of polynomial {0, 1, 2}

interpolation factor {1e-1, 3e-2, 1e-2, 3e-3, 1e-3}
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Table 9: Hyperparameter grid of classifiers when analyzing the Fact-OQ data
in the experiment from Tab. 2.

classifier parameter values

probability-calibrated decision tree class weight {balanced, unbalanced}
split criterion {Gini index, Entropy}
maximum depth {4, 6, 8, 10, 12}

Table 10: Hyperparameter grid of quantification methods when analyz-
ing the Fact-OQ data in the experiment from Tab. 2 or any of
the data sets Uci-blog-feedback-OQ, Uci-online-news-popularity-OQ,
OpenMl-Yolanda-OQ, and OpenMl-fried-OQ.

method parameter values

CC no parameters
PCC no parameters
ACC fraction of hold-out data { 1

4
, 1
3
, 1
2
}

PACC fraction of hold-out data { 1
4
, 1
3
, 1
2
}

SLD no parameters

OQT fraction of hold-out data { 1
3
}

ARC fraction of hold-out data { 1
3
}

RUN τ {1e-1, 1e-3, 1e-5}
number of leaf nodes {60, 120, 180}

IBU order of polynomial {0, 1, 2}
interpolation factor {0.1, 0.01, 0.0}
number of leaf nodes {60, 120, 180}

o-ACC fraction of hold-out data { 1
3
}

τ {1e-1, 1e-3, 1e-5}
o-PACC fraction of hold-out data { 1

3
}

τ {1e-1, 1e-3, 1e-5}
o-SLD order of polynomial {0, 1, 2}

interpolation factor {1e-1, 3e-2, 1e-2}

Table 11: Hyperparameter grid of classifiers when analyzing any of
the data sets Uci-blog-feedback-OQ, Uci-online-news-popularity-OQ,
OpenMl-Yolanda-OQ, and OpenMl-fried-OQ.
classifier parameter values

probability-calibrated decision tree class weight {balanced, unbalanced}
split criterion {Gini index, Entropy}
maximum depth {4, 6, 8, 10, 12}

logistic regression class weight {balanced, unbalanced}
regularization parameter C {0.001, 0.01, 0.1, 1.0, 10.0}
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B.4 Performance in other APP plausibility levels 675

Our APP-OQ protocol selects the 20% of validation and test samples which we 676

deem most plausible. For completeness, we include here the results for other 677

plausibility levels, which are the second-most, the third-most, the fourth-most, 678

and the least plausible 20%. In other words: we have divided all APP samples in 679

terms of their conceived plausibility into five levels, the first of which makes our 680

APP-OQ, and we have evaluated all methods in all of these plausibility levels. 681

As another matter of making our results transparent, we present these tables 682

in a different way, which also includes the hyperparameters that each method 683

has chosen on the validation samples. Since we also include the regular APP in 684

this mode of presentation, we have 6 tables per data set, i.e., regular APP and 685

five plausibility levels. These tables only consider NMD, but the LaTeX sources 686

of the RNOD tables are part of our supplementary material. 687

Table 12: NMD on Amazon-OQ-BK, regular APP
quantification method avg. NMD ± stddev.

SLD on LR (w = n,C = 0.01) 0.0172 ± 0.0067
o-SLD (o = 0, i = 0.001) on LR (w = n,C = 0.01) 0.0173 ± 0.0067
PACC (v = 1

4 ) on LR (w = u,C = 0.1) 0.0209 ± 0.0083
o-PACC (r = I, τ = 1.0e − 9, v = 1

4 ) on LR (w = u,C = 0.1) 0.0209 ± 0.0083
ACC (v = 1

3 ) on LR (w = u,C = 10.0) 0.0229 ± 0.0093
o-ACC (r = I, τ = 1.0e − 9, v = 1

3 ) on LR (w = u,C = 10.0) 0.0229 ± 0.0093
RUN (τ = 1.0e − 6) on LR (w = u,C = 0.01) 0.0252 ± 0.0099
IBU (o = 2, i = 0.001) on LR (w = u,C = 0.01) 0.0253 ± 0.0099
CC on LR (w = u,C = 10.0) 0.0526 ± 0.0190
PCC on LR (w = u,C = 10.0) 0.0629 ± 0.0215
ARC (v = 1

3 ) on LR (w = u,C = 1.0) 0.0641 ± 0.0226
OQT (v = 1

3 ) on LR (w = n,C = 1.0) 0.0775 ± 0.0262

Table 13: NMD on Amazon-OQ-BK, APP-OQ = level 1 out of 5 (the
smoothest)

quantification method avg. NMD ± stddev.

o-SLD (o = 2, i = 0.01) on LR (w = n,C = 0.01) 0.0152 ± 0.0057
SLD on LR (w = n,C = 0.01) 0.0154 ± 0.0058
o-PACC (r = C2, τ = 0.001, v = 1

4 ) on LR (w = u,C = 0.1) 0.0174 ± 0.0068
PACC (v = 1

4 ) on LR (w = u,C = 0.1) 0.0176 ± 0.0070
o-ACC (r = C2, τ = 0.003, v = 1

4 ) on LR (w = u,C = 0.1) 0.0188 ± 0.0072
ACC (v = 1

4 ) on LR (w = u,C = 0.1) 0.0193 ± 0.0075
IBU (o = 2, i = 0.001) on LR (w = u,C = 1.0) 0.0197 ± 0.0074
RUN (τ = 1.0e − 6) on LR (w = u,C = 1.0) 0.0198 ± 0.0074
CC on LR (w = u,C = 10.0) 0.0344 ± 0.0127
PCC on LR (w = u,C = 10.0) 0.0440 ± 0.0165
ARC (v = 1

3 ) on LR (w = u,C = 1.0) 0.0477 ± 0.0155
OQT (v = 1

3 ) on LR (w = u,C = 10.0) 0.0587 ± 0.0268



Ordinal Quantification through Regularization 27

Table 14: NMD on Amazon-OQ-BK, level 2 out of 5
quantification method avg. NMD ± stddev.

SLD on LR (w = n,C = 0.01) 0.0164 ± 0.0061
o-SLD (o = 2, i = 0.001) on LR (w = n,C = 0.01) 0.0164 ± 0.0061
PACC (v = 1

4 ) on LR (w = u,C = 0.1) 0.0190 ± 0.0070
o-PACC (r = I, τ = 1.0e − 9, v = 1

4 ) on LR (w = u,C = 0.1) 0.0190 ± 0.0070
ACC (v = 1

4 ) on LR (w = u,C = 0.1) 0.0210 ± 0.0077
o-ACC (r = I, τ = 1.0e − 9, v = 1

4 ) on LR (w = u,C = 0.1) 0.0210 ± 0.0077
RUN (τ = 1.0e − 6) on LR (w = u,C = 1.0) 0.0221 ± 0.0079
IBU (o = 2, i = 0.001) on LR (w = u,C = 1.0) 0.0222 ± 0.0079
CC on LR (w = u,C = 10.0) 0.0423 ± 0.0122
PCC on LR (w = u,C = 10.0) 0.0524 ± 0.0156
ARC (v = 1

3 ) on LR (w = u,C = 1.0) 0.0527 ± 0.0168
OQT (v = 1

3 ) on LR (w = n,C = 10.0) 0.0654 ± 0.0225

Table 15: NMD on Amazon-OQ-BK, level 3 out of 5
quantification method avg. NMD ± stddev.

SLD on LR (w = n,C = 0.01) 0.0172 ± 0.0066
o-SLD (o = 0, i = 0.01) on LR (w = n,C = 0.001) 0.0174 ± 0.0076
PACC (v = 1

4 ) on LR (w = u,C = 0.1) 0.0199 ± 0.0077
o-PACC (r = I, τ = 1.0e − 9, v = 1

4 ) on LR (w = u,C = 0.1) 0.0199 ± 0.0077
ACC (v = 1

3 ) on LR (w = u,C = 10.0) 0.0218 ± 0.0085
o-ACC (r = I, τ = 1.0e − 9, v = 1

3 ) on LR (w = u,C = 10.0) 0.0218 ± 0.0085
RUN (τ = 1.0e − 6) on LR (w = u,C = 0.001) 0.0244 ± 0.0089
IBU (o = 2, i = 0.001) on LR (w = u,C = 0.001) 0.0246 ± 0.0089
CC on LR (w = u,C = 10.0) 0.0503 ± 0.0116
PCC on LR (w = u,C = 10.0) 0.0603 ± 0.0146
ARC (v = 1

3 ) on LR (w = u,C = 1.0) 0.0604 ± 0.0179
OQT (v = 1

3 ) on LR (w = n,C = 1.0) 0.0738 ± 0.0231

Table 16: NMD on Amazon-OQ-BK, level 4 out of 5
quantification method avg. NMD ± stddev.

o-SLD (o = 0, i = 0.01) on LR (w = n,C = 0.001) 0.0177 ± 0.0072
SLD on LR (w = n,C = 0.01) 0.0178 ± 0.0068
PACC (v = 1

3 ) on LR (w = u,C = 0.01) 0.0215 ± 0.0081
o-PACC (r = I, τ = 1.0e − 9, v = 1

3 ) on LR (w = u,C = 0.01) 0.0215 ± 0.0081
ACC (v = 1

3 ) on LR (w = u,C = 10.0) 0.0238 ± 0.0093
o-ACC (r = I, τ = 1.0e − 9, v = 1

3 ) on LR (w = u,C = 10.0) 0.0238 ± 0.0093
RUN (τ = 1.0e − 6) on LR (w = u,C = 0.01) 0.0267 ± 0.0091
IBU (o = 2, i = 0.001) on LR (w = u,C = 0.01) 0.0269 ± 0.0091
CC on LR (w = u,C = 1.0) 0.0595 ± 0.0116
ARC (v = 1

3 ) on LR (w = u,C = 1.0) 0.0695 ± 0.0172
PCC on LR (w = u,C = 10.0) 0.0700 ± 0.0139
OQT (v = 1

3 ) on LR (w = n,C = 1.0) 0.0823 ± 0.0219
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Table 17: NMD on Amazon-OQ-BK, level 5 out of 5 (the least smooth)
quantification method avg. NMD ± stddev.

o-SLD (o = 0, i = 0.01) on LR (w = n,C = 0.001) 0.0177 ± 0.0071
SLD on LR (w = n,C = 0.01) 0.0193 ± 0.0073
PACC (v = 1

4 ) on LR (w = n,C = 0.1) 0.0234 ± 0.0081
o-PACC (r = I, τ = 1.0e − 9, v = 1

4 ) on LR (w = n,C = 0.1) 0.0234 ± 0.0081
ACC (v = 1

3 ) on LR (w = u,C = 10.0) 0.0286 ± 0.0106
o-ACC (r = I, τ = 1.0e − 9, v = 1

3 ) on LR (w = u,C = 10.0) 0.0286 ± 0.0106
RUN (τ = 1.0e − 6) on LR (w = u,C = 0.001) 0.0328 ± 0.0105
IBU (o = 0, i = 0.001) on LR (w = u,C = 0.001) 0.0329 ± 0.0105
CC on LR (w = u,C = 1.0) 0.0761 ± 0.0135
PCC on LR (w = u,C = 10.0) 0.0878 ± 0.0158
ARC (v = 1

3 ) on LR (w = u,C = 0.1) 0.0895 ± 0.0166
OQT (v = 1

3 ) on LR (w = n,C = 0.01) 0.1023 ± 0.0193

Table 18: NMD on Fact-OQ, regular APP
quantification method avg. NMD ± stddev.

IBU (o = 0, i = 0.01, J = 60) 0.0213 ± 0.0054
RUN (τ = 1.0e − 5, J = 60) 0.0222 ± 0.0056
o-PACC (r = I, τ = 0.001, v = 1

3 ) on DT (w = n, c = E, d = 8) 0.0230 ± 0.0057
o-ACC (r = C2, τ = 0.001, v = 1

3 ) on DT (w = u, c = G, d = 8) 0.0274 ± 0.0073
o-SLD (o = 0, i = 0.03) on DT (w = n, c = E, d = 4) 0.0327 ± 0.0077
SLD on DT (w = n, c = G, d = 6) 0.0373 ± 0.0098
CC on DT (w = u, c = G, d = 8) 0.0534 ± 0.0120
ARC (v = 1

3 ) on DT (w = u, c = G, d = 8) 0.0566 ± 0.0142
ACC (v = 1

4 ) on DT (w = n, c = G, d = 10) 0.0582 ± 0.0281
PCC on DT (w = u, c = E, d = 6) 0.0651 ± 0.0174
OQT (v = 1

3 ) on DT (w = u, c = G, d = 6) 0.0746 ± 0.0194
PACC (v = 1

3 ) on DT (w = n, c = G, d = 10) 0.0791 ± 0.0475

Table 19: NMD on Fact-OQ, APP-OQ = level 1 out of 5 (the smoothest)
quantification method avg. NMD ± stddev.

o-PACC (r = I, τ = 0.001, v = 1
3 ) on DT (w = n, c = E, d = 8) 0.0178 ± 0.0041

IBU (o = 2, i = 0.01, J = 60) 0.0187 ± 0.0044
RUN (τ = 1.0e − 5, J = 60) 0.0194 ± 0.0046
o-ACC (r = C2, τ = 0.001, v = 1

3 ) on DT (w = u, c = G, d = 8) 0.0230 ± 0.0062
o-SLD (o = 0, i = 0.03) on DT (w = n, c = E, d = 4) 0.0289 ± 0.0071
SLD on DT (w = n, c = G, d = 6) 0.0355 ± 0.0091
CC on DT (w = u, c = G, d = 8) 0.0494 ± 0.0112
ARC (v = 1

3 ) on DT (w = n, c = E, d = 6) 0.0568 ± 0.0161
ACC (v = 1

4 ) on DT (w = n, c = G, d = 10) 0.0575 ± 0.0281
PCC on DT (w = u, c = E, d = 6) 0.0621 ± 0.0171
OQT (v = 1

3 ) on DT (w = u, c = G, d = 6) 0.0731 ± 0.0200
PACC (v = 1

3 ) on DT (w = n, c = G, d = 10) 0.0816 ± 0.0485
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Table 20: NMD on Fact-OQ, level 2 out of 5
quantification method avg. NMD ± stddev.

IBU (o = 0, i = 0.01, J = 60) 0.0199 ± 0.0047
o-PACC (r = I, τ = 0.001, v = 1

3 ) on DT (w = n, c = E, d = 8) 0.0203 ± 0.0039
RUN (τ = 1.0e − 5, J = 60) 0.0205 ± 0.0049
o-ACC (r = C2, τ = 0.001, v = 1

3 ) on DT (w = u, c = G, d = 8) 0.0248 ± 0.0060
o-SLD (o = 0, i = 0.03) on DT (w = n, c = E, d = 4) 0.0307 ± 0.0068
SLD on DT (w = n, c = G, d = 6) 0.0359 ± 0.0091
CC on DT (w = u, c = G, d = 8) 0.0506 ± 0.0112
ARC (v = 1

3 ) on DT (w = u, c = G, d = 8) 0.0556 ± 0.0147
ACC (v = 1

4 ) on DT (w = n, c = G, d = 10) 0.0585 ± 0.0285
PCC on DT (w = u, c = E, d = 6) 0.0623 ± 0.0170
OQT (v = 1

3 ) on DT (w = u, c = G, d = 6) 0.0728 ± 0.0197
PACC (v = 1

4 ) on DT (w = n, c = G, d = 4) 0.0802 ± 0.0298

Table 21: NMD on Fact-OQ, level 3 out of 5
quantification method avg. NMD ± stddev.

IBU (o = 2, i = 0.01, J = 60) 0.0210 ± 0.0049
RUN (τ = 1.0e − 5, J = 60) 0.0217 ± 0.0050
o-PACC (r = I, τ = 0.001, v = 1

3 ) on DT (w = n, c = E, d = 8) 0.0225 ± 0.0039
o-ACC (r = C2, τ = 0.001, v = 1

3 ) on DT (w = u, c = G, d = 8) 0.0267 ± 0.0060
o-SLD (o = 0, i = 0.03) on DT (w = n, c = E, d = 4) 0.0326 ± 0.0068
SLD on DT (w = n, c = G, d = 6) 0.0374 ± 0.0095
CC on DT (w = u, c = G, d = 8) 0.0523 ± 0.0105
ARC (v = 1

3 ) on DT (w = u, c = G, d = 8) 0.0562 ± 0.0141
ACC (v = 1

4 ) on DT (w = n, c = G, d = 10) 0.0579 ± 0.0285
PCC on DT (w = u, c = E, d = 6) 0.0644 ± 0.0160
OQT (v = 1

3 ) on DT (w = u, c = G, d = 6) 0.0744 ± 0.0193
PACC (v = 1

3 ) on DT (w = n, c = G, d = 10) 0.0785 ± 0.0481

Table 22: NMD on Fact-OQ, level 4 out of 5
quantification method avg. NMD ± stddev.

IBU (o = 0, i = 0.01, J = 60) 0.0224 ± 0.0052
RUN (τ = 1.0e − 5, J = 60) 0.0234 ± 0.0052
o-PACC (r = I, τ = 0.001, v = 1

3 ) on DT (w = n, c = E, d = 8) 0.0251 ± 0.0040
o-ACC (r = C2, τ = 0.001, v = 1

3 ) on DT (w = u, c = G, d = 8) 0.0292 ± 0.0064
o-SLD (o = 0, i = 0.03) on DT (w = n, c = E, d = 4) 0.0342 ± 0.0069
SLD on DT (w = n, c = G, d = 6) 0.0380 ± 0.0094
CC on DT (w = u, c = G, d = 8) 0.0543 ± 0.0110
ARC (v = 1

3 ) on DT (w = u, c = G, d = 8) 0.0561 ± 0.0138
ACC (v = 1

4 ) on DT (w = n, c = G, d = 10) 0.0582 ± 0.0277
PCC on DT (w = u, c = E, d = 6) 0.0653 ± 0.0162
OQT (v = 1

3 ) on DT (w = u, c = G, d = 6) 0.0745 ± 0.0184
PACC (v = 1

4 ) on DT (w = u, c = E, d = 12) 0.0788 ± 0.0320



30

Table 23: NMD on Fact-OQ, level 5 out of 5 (the least smooth)
quantification method avg. NMD ± stddev.

IBU (o = 1, i = 0.0, J = 60) 0.0245 ± 0.0067
RUN (τ = 1.0e − 5, J = 60) 0.0262 ± 0.0058
o-PACC (r = I, τ = 0.001, v = 1

3 ) on DT (w = u, c = G, d = 10) 0.0298 ± 0.0049
o-ACC (r = C2, τ = 0.001, v = 1

3 ) on DT (w = u, c = G, d = 10) 0.0330 ± 0.0062
o-SLD (o = 0, i = 0.01) on DT (w = n, c = E, d = 4) 0.0368 ± 0.0096
SLD on DT (w = n, c = E, d = 6) 0.0393 ± 0.0112
ARC (v = 1

3 ) on DT (w = u, c = G, d = 8) 0.0583 ± 0.0131
CC on DT (w = u, c = G, d = 8) 0.0604 ± 0.0129
ACC (v = 1

3 ) on DT (w = n, c = E, d = 8) 0.0646 ± 0.0274
PCC on DT (w = u, c = E, d = 6) 0.0715 ± 0.0188
PACC (v = 1

3 ) on DT (w = n, c = G, d = 10) 0.0776 ± 0.0455
OQT (v = 1

3 ) on DT (w = u, c = G, d = 6) 0.0783 ± 0.0193

Table 24: NMD on Amazon-OQ-BK, in an alternative TFIDF representation,
regular APP

quantification method avg. NMD ± stddev.

SLD on LR (w = n,C = 0.01) 0.0172 ± 0.0067
o-SLD (o = 0, i = 0.001) on LR (w = n,C = 0.01) 0.0173 ± 0.0067
PACC (v = 1

4 ) on LR (w = u,C = 0.1) 0.0209 ± 0.0083
o-PACC (r = I, τ = 1.0e − 9, v = 1

4 ) on LR (w = u,C = 0.1) 0.0209 ± 0.0083
ACC (v = 1

3 ) on LR (w = u,C = 10.0) 0.0229 ± 0.0093
o-ACC (r = I, τ = 1.0e − 9, v = 1

3 ) on LR (w = u,C = 10.0) 0.0229 ± 0.0093
RUN (τ = 1.0e − 6) on LR (w = u,C = 0.01) 0.0252 ± 0.0099
IBU (o = 2, i = 0.001) on LR (w = u,C = 0.01) 0.0253 ± 0.0099
CC on LR (w = u,C = 10.0) 0.0526 ± 0.0190
PCC on LR (w = u,C = 10.0) 0.0629 ± 0.0215
ARC (v = 1

3 ) on LR (w = u,C = 1.0) 0.0641 ± 0.0226
OQT (v = 1

3 ) on LR (w = n,C = 1.0) 0.0775 ± 0.0262

Table 25: NMD on Amazon-OQ-BK, in an alternative TFIDF representation,
APP-OQ = level 1 out of 5 (the smoothest)

quantification method avg. NMD ± stddev.

o-SLD (o = 2, i = 0.01) on LR (w = n,C = 0.01) 0.0152 ± 0.0057
SLD on LR (w = n,C = 0.01) 0.0154 ± 0.0058
o-PACC (r = C2, τ = 0.001, v = 1

4 ) on LR (w = u,C = 0.1) 0.0174 ± 0.0068
PACC (v = 1

4 ) on LR (w = u,C = 0.1) 0.0176 ± 0.0070
o-ACC (r = C2, τ = 0.003, v = 1

4 ) on LR (w = u,C = 0.1) 0.0188 ± 0.0072
ACC (v = 1

4 ) on LR (w = u,C = 0.1) 0.0193 ± 0.0075
IBU (o = 2, i = 0.001) on LR (w = u,C = 1.0) 0.0197 ± 0.0074
RUN (τ = 1.0e − 6) on LR (w = u,C = 1.0) 0.0198 ± 0.0074
CC on LR (w = u,C = 10.0) 0.0344 ± 0.0127
PCC on LR (w = u,C = 10.0) 0.0440 ± 0.0165
ARC (v = 1

3 ) on LR (w = u,C = 1.0) 0.0477 ± 0.0155
OQT (v = 1

3 ) on LR (w = u,C = 10.0) 0.0587 ± 0.0268
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Table 26: NMD on Amazon-OQ-BK, in an alternative TFIDF representation,
level 2 out of 5

quantification method avg. NMD ± stddev.

SLD on LR (w = n,C = 0.01) 0.0164 ± 0.0061
o-SLD (o = 2, i = 0.001) on LR (w = n,C = 0.01) 0.0164 ± 0.0061
PACC (v = 1

4 ) on LR (w = u,C = 0.1) 0.0190 ± 0.0070
o-PACC (r = I, τ = 1.0e − 9, v = 1

4 ) on LR (w = u,C = 0.1) 0.0190 ± 0.0070
ACC (v = 1

4 ) on LR (w = u,C = 0.1) 0.0210 ± 0.0077
o-ACC (r = I, τ = 1.0e − 9, v = 1

4 ) on LR (w = u,C = 0.1) 0.0210 ± 0.0077
RUN (τ = 1.0e − 6) on LR (w = u,C = 1.0) 0.0221 ± 0.0079
IBU (o = 2, i = 0.001) on LR (w = u,C = 1.0) 0.0222 ± 0.0079
CC on LR (w = u,C = 10.0) 0.0423 ± 0.0122
PCC on LR (w = u,C = 10.0) 0.0524 ± 0.0156
ARC (v = 1

3 ) on LR (w = u,C = 1.0) 0.0527 ± 0.0168
OQT (v = 1

3 ) on LR (w = n,C = 10.0) 0.0654 ± 0.0225

Table 27: NMD on Amazon-OQ-BK, in an alternative TFIDF representation,
level 3 out of 5

quantification method avg. NMD ± stddev.

SLD on LR (w = n,C = 0.01) 0.0172 ± 0.0066
o-SLD (o = 0, i = 0.01) on LR (w = n,C = 0.001) 0.0174 ± 0.0076
PACC (v = 1

4 ) on LR (w = u,C = 0.1) 0.0199 ± 0.0077
o-PACC (r = I, τ = 1.0e − 9, v = 1

4 ) on LR (w = u,C = 0.1) 0.0199 ± 0.0077
ACC (v = 1

3 ) on LR (w = u,C = 10.0) 0.0218 ± 0.0085
o-ACC (r = I, τ = 1.0e − 9, v = 1

3 ) on LR (w = u,C = 10.0) 0.0218 ± 0.0085
RUN (τ = 1.0e − 6) on LR (w = u,C = 0.001) 0.0244 ± 0.0089
IBU (o = 2, i = 0.001) on LR (w = u,C = 0.001) 0.0246 ± 0.0089
CC on LR (w = u,C = 10.0) 0.0503 ± 0.0116
PCC on LR (w = u,C = 10.0) 0.0603 ± 0.0146
ARC (v = 1

3 ) on LR (w = u,C = 1.0) 0.0604 ± 0.0179
OQT (v = 1

3 ) on LR (w = n,C = 1.0) 0.0738 ± 0.0231

Table 28: NMD on Amazon-OQ-BK, in an alternative TFIDF representation,
level 4 out of 5

quantification method avg. NMD ± stddev.

o-SLD (o = 0, i = 0.01) on LR (w = n,C = 0.001) 0.0177 ± 0.0072
SLD on LR (w = n,C = 0.01) 0.0178 ± 0.0068
PACC (v = 1

3 ) on LR (w = u,C = 0.01) 0.0215 ± 0.0081
o-PACC (r = I, τ = 1.0e − 9, v = 1

3 ) on LR (w = u,C = 0.01) 0.0215 ± 0.0081
ACC (v = 1

3 ) on LR (w = u,C = 10.0) 0.0238 ± 0.0093
o-ACC (r = I, τ = 1.0e − 9, v = 1

3 ) on LR (w = u,C = 10.0) 0.0238 ± 0.0093
RUN (τ = 1.0e − 6) on LR (w = u,C = 0.01) 0.0267 ± 0.0091
IBU (o = 2, i = 0.001) on LR (w = u,C = 0.01) 0.0269 ± 0.0091
CC on LR (w = u,C = 1.0) 0.0595 ± 0.0116
ARC (v = 1

3 ) on LR (w = u,C = 1.0) 0.0695 ± 0.0172
PCC on LR (w = u,C = 10.0) 0.0700 ± 0.0139
OQT (v = 1

3 ) on LR (w = n,C = 1.0) 0.0823 ± 0.0219
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Table 29: NMD on Amazon-OQ-BK, in an alternative TFIDF representation,
level 5 out of 5 (the least smooth)

quantification method avg. NMD ± stddev.

o-SLD (o = 0, i = 0.01) on LR (w = n,C = 0.001) 0.0177 ± 0.0071
SLD on LR (w = n,C = 0.01) 0.0193 ± 0.0073
PACC (v = 1

4 ) on LR (w = n,C = 0.1) 0.0234 ± 0.0081
o-PACC (r = I, τ = 1.0e − 9, v = 1

4 ) on LR (w = n,C = 0.1) 0.0234 ± 0.0081
ACC (v = 1

3 ) on LR (w = u,C = 10.0) 0.0286 ± 0.0106
o-ACC (r = I, τ = 1.0e − 9, v = 1

3 ) on LR (w = u,C = 10.0) 0.0286 ± 0.0106
RUN (τ = 1.0e − 6) on LR (w = u,C = 0.001) 0.0328 ± 0.0105
IBU (o = 0, i = 0.001) on LR (w = u,C = 0.001) 0.0329 ± 0.0105
CC on LR (w = u,C = 1.0) 0.0761 ± 0.0135
PCC on LR (w = u,C = 10.0) 0.0878 ± 0.0158
ARC (v = 1

3 ) on LR (w = u,C = 0.1) 0.0895 ± 0.0166
OQT (v = 1

3 ) on LR (w = n,C = 0.01) 0.1023 ± 0.0193

Table 30: NMD on Uci-blog-feedback-OQ, regular APP
quantification method avg. NMD ± stddev.

o-PACC (r = I, τ = 0.001, v = 1
3 ) on LR (w = u,C = 0.1) 0.0747 ± 0.0278

o-ACC (r = I, τ = 0.1, v = 1
3 ) on LR (w = u,C = 0.01) 0.0772 ± 0.0310

CC on LR (w = u,C = 1.0) 0.0958 ± 0.0337
PCC on LR (w = u,C = 10.0) 0.0967 ± 0.0420
IBU (o = 0, i = 0.1, J = 60) 0.0997 ± 0.0458
SLD on DT (w = u, c = G, d = 12) 0.1001 ± 0.0442
ACC (v = 1

2 ) on LR (w = u,C = 0.001) 0.1147 ± 0.0419
o-SLD (o = 1, i = 0.1) on DT (w = n, c = G, d = 10) 0.1195 ± 0.0413
PACC (v = 1

2 ) on DT (w = u, c = E, d = 8) 0.1323 ± 0.0487
RUN (τ = 1.0e − 5, J = 60) 0.1348 ± 0.0518
OQT (v = 1

3 ) on LR (w = u,C = 10.0) 0.2222 ± 0.0578
ARC (v = 1

3 ) on LR (w = u,C = 0.01) 0.2420 ± 0.0618

Table 31: NMD on Uci-blog-feedback-OQ, APP-OQ = level 1 out of 5 (the
smoothest)

quantification method avg. NMD ± stddev.

o-PACC (r = I, τ = 0.001, v = 1
3 ) on LR (w = u,C = 0.1) 0.0664 ± 0.0249

o-ACC (r = I, τ = 0.1, v = 1
3 ) on LR (w = u,C = 0.001) 0.0728 ± 0.0268

CC on LR (w = u,C = 1.0) 0.0884 ± 0.0310
PCC on LR (w = u,C = 10.0) 0.0960 ± 0.0454
IBU (o = 0, i = 0.1, J = 60) 0.0980 ± 0.0495
ACC (v = 1

2 ) on LR (w = u,C = 0.001) 0.1144 ± 0.0451
o-SLD (o = 1, i = 0.1) on DT (w = n, c = G, d = 10) 0.1190 ± 0.0402
SLD on DT (w = n, c = G, d = 8) 0.1224 ± 0.0376
RUN (τ = 1.0e − 5, J = 60) 0.1339 ± 0.0539
PACC (v = 1

2 ) on DT (w = u, c = E, d = 8) 0.1437 ± 0.0497
OQT (v = 1

3 ) on LR (w = u,C = 10.0) 0.2050 ± 0.0566
ARC (v = 1

3 ) on LR (w = u,C = 0.01) 0.2474 ± 0.0630
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Table 32: NMD on Uci-blog-feedback-OQ, level 2 out of 5
quantification method avg. NMD ± stddev.

o-PACC (r = I, τ = 0.001, v = 1
3 ) on LR (w = u,C = 0.1) 0.0699 ± 0.0242

o-ACC (r = I, τ = 0.1, v = 1
3 ) on LR (w = u,C = 0.001) 0.0752 ± 0.0274

CC on LR (w = u,C = 1.0) 0.0902 ± 0.0312
o-SLD (o = 0, i = 0.1) on DT (w = n, c = G, d = 8) 0.0926 ± 0.0374
PCC on LR (w = u,C = 10.0) 0.0933 ± 0.0410
IBU (o = 0, i = 0.1, J = 60) 0.0981 ± 0.0470
RUN (τ = 0.1, J = 60) 0.1091 ± 0.0476
ACC (v = 1

2 ) on LR (w = u,C = 0.001) 0.1114 ± 0.0409
SLD on DT (w = n, c = G, d = 8) 0.1231 ± 0.0372
PACC (v = 1

2 ) on DT (w = u, c = E, d = 8) 0.1360 ± 0.0478
OQT (v = 1

3 ) on LR (w = u,C = 10.0) 0.2126 ± 0.0559
ARC (v = 1

3 ) on LR (w = u,C = 0.01) 0.2450 ± 0.0606

Table 33: NMD on Uci-blog-feedback-OQ, level 3 out of 5
quantification method avg. NMD ± stddev.

o-ACC (r = I, τ = 0.1, v = 1
3 ) on LR (w = u,C = 0.01) 0.0735 ± 0.0293

o-PACC (r = I, τ = 0.001, v = 1
3 ) on LR (w = u,C = 0.01) 0.0809 ± 0.0328

CC on LR (w = u,C = 1.0) 0.0921 ± 0.0317
PCC on LR (w = u,C = 10.0) 0.0933 ± 0.0420
IBU (o = 0, i = 0.1, J = 60) 0.0980 ± 0.0445
SLD on DT (w = u, c = G, d = 12) 0.0999 ± 0.0480
ACC (v = 1

2 ) on LR (w = u,C = 0.001) 0.1121 ± 0.0423
o-SLD (o = 1, i = 0.1) on DT (w = n, c = G, d = 10) 0.1200 ± 0.0396
PACC (v = 1

2 ) on DT (w = u, c = E, d = 8) 0.1301 ± 0.0453
RUN (τ = 1.0e − 5, J = 60) 0.1331 ± 0.0503
OQT (v = 1

3 ) on LR (w = u,C = 10.0) 0.2194 ± 0.0556
ARC (v = 1

3 ) on LR (w = u,C = 0.01) 0.2422 ± 0.0593

Table 34: NMD on Uci-blog-feedback-OQ, level 4 out of 5
quantification method avg. NMD ± stddev.

o-ACC (r = I, τ = 0.1, v = 1
3 ) on LR (w = u,C = 0.01) 0.0778 ± 0.0303

o-PACC (r = I, τ = 0.001, v = 1
3 ) on LR (w = u,C = 0.01) 0.0875 ± 0.0401

PCC on LR (w = u,C = 10.0) 0.0952 ± 0.0416
SLD on DT (w = u, c = G, d = 12) 0.0970 ± 0.0402
CC on LR (w = u,C = 1.0) 0.0976 ± 0.0342
IBU (o = 0, i = 0.1, J = 60) 0.0989 ± 0.0431
RUN (τ = 0.1, J = 60) 0.1047 ± 0.0425
ACC (v = 1

3 ) on LR (w = u,C = 10.0) 0.1110 ± 0.0342
o-SLD (o = 1, i = 0.1) on DT (w = n, c = G, d = 10) 0.1166 ± 0.0417
PACC (v = 1

2 ) on DT (w = u, c = E, d = 8) 0.1246 ± 0.0481
OQT (v = 1

3 ) on LR (w = u,C = 10.0) 0.2271 ± 0.0550
ARC (v = 1

3 ) on LR (w = u,C = 0.01) 0.2407 ± 0.0611
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Table 35: NMD on Uci-blog-feedback-OQ, level 5 out of 5 (the least smooth)
quantification method avg. NMD ± stddev.

o-ACC (r = I, τ = 0.1, v = 1
3 ) on LR (w = u,C = 0.01) 0.0913 ± 0.0309

o-PACC (r = C2, τ = 0.1, v = 1
3 ) on LR (w = u,C = 1.0) 0.0962 ± 0.0525

SLD on DT (w = u, c = G, d = 12) 0.0977 ± 0.0329
RUN (τ = 0.1, J = 60) 0.1052 ± 0.0410
PCC on LR (w = u,C = 0.1) 0.1053 ± 0.0385
IBU (o = 0, i = 0.1, J = 60) 0.1055 ± 0.0444
ACC (v = 1

3 ) on LR (w = u,C = 10.0) 0.1090 ± 0.0352
CC on LR (w = u,C = 0.1) 0.1133 ± 0.0360
o-SLD (o = 1, i = 0.1) on DT (w = n, c = G, d = 10) 0.1232 ± 0.0444
PACC (v = 1

2 ) on DT (w = u, c = E, d = 8) 0.1272 ± 0.0499
ARC (v = 1

3 ) on LR (w = u,C = 0.01) 0.2347 ± 0.0644
OQT (v = 1

3 ) on LR (w = u,C = 10.0) 0.2471 ± 0.0571

Table 36: NMD on Uci-online-news-popularity-OQ, regular APP
quantification method avg. NMD ± stddev.

o-ACC (r = I, τ = 0.1, v = 1
3 ) on LR (w = u,C = 0.001) 0.0833 ± 0.0298

IBU (o = 0, i = 0.1, J = 60) 0.0886 ± 0.0394
o-PACC (r = C2, τ = 0.1, v = 1

3 ) on DT (w = u, c = E, d = 8) 0.0954 ± 0.0389
o-SLD (o = 1, i = 0.1) on DT (w = n, c = G, d = 8) 0.0993 ± 0.0436
PCC on LR (w = u,C = 0.01) 0.0996 ± 0.0436
RUN (τ = 0.1, J = 60) 0.1115 ± 0.0481
ACC (v = 1

3 ) on LR (w = u,C = 0.1) 0.1365 ± 0.0554
PACC (v = 1

3 ) on DT (w = n, c = E, d = 4) 0.1515 ± 0.0632
SLD on DT (w = n, c = E, d = 10) 0.1576 ± 0.0630
CC on LR (w = u,C = 0.001) 0.1664 ± 0.0473
OQT (v = 1

3 ) on LR (w = u,C = 10.0) 0.3220 ± 0.0872
ARC (v = 1

3 ) on LR (w = u,C = 1.0) 0.3801 ± 0.0846

Table 37: NMD on Uci-online-news-popularity-OQ, APP-OQ = level 1 out
of 5 (the smoothest)

quantification method avg. NMD ± stddev.

o-ACC (r = I, τ = 0.1, v = 1
3 ) on LR (w = u,C = 0.01) 0.0718 ± 0.0268

o-PACC (r = C2, τ = 0.1, v = 1
3 ) on DT (w = u, c = E, d = 8) 0.0804 ± 0.0309

IBU (o = 0, i = 0.1, J = 60) 0.0858 ± 0.0428
PCC on LR (w = u,C = 0.01) 0.0985 ± 0.0474
o-SLD (o = 1, i = 0.1) on DT (w = n, c = G, d = 8) 0.0992 ± 0.0459
RUN (τ = 0.1, J = 60) 0.1181 ± 0.0526
PACC (v = 1

3 ) on DT (w = u, c = E, d = 10) 0.1246 ± 0.0546
ACC (v = 1

3 ) on LR (w = u,C = 0.1) 0.1357 ± 0.0599
CC on LR (w = u,C = 0.001) 0.1549 ± 0.0448
SLD on DT (w = n, c = E, d = 10) 0.1687 ± 0.0691
OQT (v = 1

3 ) on LR (w = u,C = 10.0) 0.3177 ± 0.0925
ARC (v = 1

3 ) on LR (w = u,C = 1.0) 0.3793 ± 0.0893
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Table 38: NMD on Uci-online-news-popularity-OQ, level 2 out of 5
quantification method avg. NMD ± stddev.

o-ACC (r = I, τ = 0.1, v = 1
3 ) on LR (w = u,C = 0.001) 0.0792 ± 0.0281

IBU (o = 0, i = 0.1, J = 60) 0.0849 ± 0.0407
o-PACC (r = C2, τ = 0.1, v = 1

3 ) on DT (w = u, c = E, d = 8) 0.0878 ± 0.0342
PCC on LR (w = u,C = 0.01) 0.0952 ± 0.0436
o-SLD (o = 1, i = 0.1) on DT (w = n, c = G, d = 8) 0.0956 ± 0.0426
RUN (τ = 0.1, J = 60) 0.1137 ± 0.0506
ACC (v = 1

3 ) on LR (w = u,C = 0.1) 0.1350 ± 0.0532
PACC (v = 1

3 ) on DT (w = n, c = E, d = 4) 0.1528 ± 0.0632
CC on LR (w = u,C = 0.001) 0.1583 ± 0.0445
SLD on DT (w = n, c = E, d = 10) 0.1648 ± 0.0662
OQT (v = 1

3 ) on LR (w = u,C = 10.0) 0.3201 ± 0.0862
ARC (v = 1

3 ) on LR (w = u,C = 1.0) 0.3799 ± 0.0838

Table 39: NMD on Uci-online-news-popularity-OQ, level 3 out of 5
quantification method avg. NMD ± stddev.

o-ACC (r = I, τ = 0.1, v = 1
3 ) on LR (w = u,C = 0.001) 0.0807 ± 0.0291

IBU (o = 0, i = 0.1, J = 60) 0.0865 ± 0.0403
o-PACC (r = C2, τ = 0.1, v = 1

3 ) on DT (w = u, c = E, d = 8) 0.0952 ± 0.0377
PCC on LR (w = u,C = 0.01) 0.0966 ± 0.0439
o-SLD (o = 1, i = 0.1) on DT (w = n, c = G, d = 8) 0.0977 ± 0.0428
RUN (τ = 0.1, J = 60) 0.1116 ± 0.0506
ACC (v = 1

3 ) on LR (w = u,C = 0.1) 0.1352 ± 0.0566
PACC (v = 1

3 ) on DT (w = n, c = E, d = 4) 0.1509 ± 0.0630
SLD on DT (w = n, c = E, d = 10) 0.1578 ± 0.0643
CC on LR (w = u,C = 0.001) 0.1630 ± 0.0444
OQT (v = 1

3 ) on LR (w = u,C = 10.0) 0.3217 ± 0.0863
ARC (v = 1

3 ) on LR (w = u,C = 1.0) 0.3803 ± 0.0843

Table 40: NMD on Uci-online-news-popularity-OQ, level 4 out of 5
quantification method avg. NMD ± stddev.

o-ACC (r = I, τ = 0.1, v = 1
3 ) on LR (w = u,C = 0.001) 0.0832 ± 0.0291

IBU (o = 0, i = 0.1, J = 60) 0.0874 ± 0.0360
PCC on LR (w = u,C = 0.01) 0.0978 ± 0.0423
o-SLD (o = 1, i = 0.1) on DT (w = n, c = G, d = 8) 0.0989 ± 0.0426
o-PACC (r = C2, τ = 0.001, v = 1

3 ) on DT (w = u, c = E, d = 8) 0.1004 ± 0.0415
RUN (τ = 0.1, J = 60) 0.1048 ± 0.0434
ACC (v = 1

3 ) on LR (w = u,C = 0.1) 0.1361 ± 0.0548
PACC (v = 1

3 ) on DT (w = n, c = E, d = 4) 0.1488 ± 0.0618
SLD on DT (w = n, c = E, d = 10) 0.1528 ± 0.0562
CC on LR (w = u,C = 0.001) 0.1677 ± 0.0467
OQT (v = 1

3 ) on LR (w = u,C = 10.0) 0.3220 ± 0.0849
ARC (v = 1

3 ) on LR (w = u,C = 1.0) 0.3790 ± 0.0827
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Table 41: NMD on Uci-online-news-popularity-OQ, level 5 out of 5 (the
least smooth)

quantification method avg. NMD ± stddev.

o-ACC (r = I, τ = 0.1, v = 1
3 ) on LR (w = u,C = 0.01) 0.0923 ± 0.0267

IBU (o = 1, i = 0.1, J = 60) 0.0967 ± 0.0342
RUN (τ = 0.1, J = 60) 0.1095 ± 0.0414
PCC on LR (w = u,C = 0.01) 0.1099 ± 0.0390
o-PACC (r = C2, τ = 0.001, v = 1

3 ) on DT (w = u, c = E, d = 8) 0.1105 ± 0.0392
PACC (v = 1

2 ) on LR (w = u,C = 0.001) 0.1149 ± 0.0404
o-SLD (o = 0, i = 0.01) on DT (w = n, c = E, d = 10) 0.1161 ± 0.0475
ACC (v = 1

3 ) on LR (w = u,C = 0.1) 0.1404 ± 0.0519
SLD on DT (w = n, c = E, d = 10) 0.1437 ± 0.0549
CC on LR (w = u,C = 0.001) 0.1881 ± 0.0485
OQT (v = 1

3 ) on LR (w = u,C = 10.0) 0.3285 ± 0.0859
ARC (v = 1

3 ) on LR (w = u,C = 1.0) 0.3822 ± 0.0826

Table 42: NMD on OpenMl-Yolanda-OQ, regular APP
quantification method avg. NMD ± stddev.

IBU (o = 0, i = 0.01, J = 60) 0.0558 ± 0.0168
o-ACC (r = I, τ = 0.1, v = 1

3 ) on LR (w = u,C = 0.001) 0.0568 ± 0.0156
RUN (τ = 1.0e − 5, J = 60) 0.0577 ± 0.0169
o-PACC (r = C2, τ = 0.1, v = 1

3 ) on LR (w = u,C = 0.001) 0.0580 ± 0.0143
o-SLD (o = 0, i = 0.1) on DT (w = n, c = G, d = 4) 0.0701 ± 0.0187
SLD on LR (w = n,C = 10.0) 0.0753 ± 0.0254
CC on LR (w = u,C = 0.01) 0.0767 ± 0.0225
ACC (v = 1

4 ) on LR (w = u,C = 10.0) 0.0807 ± 0.0238
PCC on LR (w = u,C = 0.01) 0.0926 ± 0.0305
PACC (v = 1

2 ) on LR (w = u,C = 0.01) 0.1068 ± 0.0466
OQT (v = 1

3 ) on LR (w = u,C = 0.001) 0.2246 ± 0.0562
ARC (v = 1

3 ) on LR (w = n,C = 10.0) 0.2513 ± 0.0585

Table 43: NMD on OpenMl-Yolanda-OQ, APP-OQ = level 1 out of 5 (the
smoothest)

quantification method avg. NMD ± stddev.

o-PACC (r = C2, τ = 0.1, v = 1
3 ) on LR (w = u,C = 0.001) 0.0537 ± 0.0138

o-ACC (r = I, τ = 0.1, v = 1
3 ) on LR (w = u,C = 0.001) 0.0549 ± 0.0167

IBU (o = 0, i = 0.1, J = 60) 0.0553 ± 0.0179
RUN (τ = 0.001, J = 60) 0.0604 ± 0.0179
o-SLD (o = 0, i = 0.1) on DT (w = n, c = G, d = 4) 0.0648 ± 0.0188
CC on LR (w = u,C = 0.01) 0.0779 ± 0.0245
SLD on LR (w = n,C = 10.0) 0.0784 ± 0.0276
ACC (v = 1

4 ) on LR (w = u,C = 10.0) 0.0824 ± 0.0259
PCC on LR (w = u,C = 10.0) 0.0921 ± 0.0320
PACC (v = 1

2 ) on LR (w = u,C = 0.01) 0.1102 ± 0.0502
OQT (v = 1

3 ) on LR (w = u,C = 0.001) 0.2223 ± 0.0579
ARC (v = 1

3 ) on LR (w = n,C = 10.0) 0.2500 ± 0.0596



Ordinal Quantification through Regularization 37

Table 44: NMD on OpenMl-Yolanda-OQ, level 2 out of 5
quantification method avg. NMD ± stddev.

o-PACC (r = C2, τ = 0.1, v = 1
3 ) on LR (w = u,C = 0.001) 0.0552 ± 0.0129

o-ACC (r = I, τ = 0.1, v = 1
3 ) on LR (w = u,C = 0.001) 0.0554 ± 0.0154

IBU (o = 0, i = 0.01, J = 60) 0.0555 ± 0.0168
RUN (τ = 1.0e − 5, J = 60) 0.0574 ± 0.0172
o-SLD (o = 0, i = 0.1) on DT (w = n, c = G, d = 4) 0.0671 ± 0.0174
SLD on LR (w = n,C = 10.0) 0.0763 ± 0.0255
CC on LR (w = u,C = 0.01) 0.0769 ± 0.0220
ACC (v = 1

4 ) on LR (w = u,C = 10.0) 0.0813 ± 0.0233
PCC on LR (w = u,C = 0.01) 0.0923 ± 0.0293
PACC (v = 1

2 ) on LR (w = u,C = 0.01) 0.1083 ± 0.0454
OQT (v = 1

3 ) on LR (w = u,C = 0.001) 0.2235 ± 0.0561
ARC (v = 1

3 ) on LR (w = n,C = 10.0) 0.2508 ± 0.0574

Table 45: NMD on OpenMl-Yolanda-OQ, level 3 out of 5
quantification method avg. NMD ± stddev.

IBU (o = 0, i = 0.01, J = 60) 0.0555 ± 0.0169
o-ACC (r = I, τ = 0.1, v = 1

3 ) on LR (w = u,C = 0.001) 0.0562 ± 0.0159
o-PACC (r = C2, τ = 0.1, v = 1

3 ) on LR (w = u,C = 0.001) 0.0569 ± 0.0138
RUN (τ = 1.0e − 5, J = 60) 0.0573 ± 0.0170
o-SLD (o = 0, i = 0.1) on DT (w = n, c = G, d = 4) 0.0685 ± 0.0171
SLD on LR (w = n,C = 10.0) 0.0753 ± 0.0259
CC on LR (w = u,C = 0.01) 0.0759 ± 0.0237
ACC (v = 1

4 ) on LR (w = u,C = 10.0) 0.0798 ± 0.0254
PCC on LR (w = u,C = 0.01) 0.0911 ± 0.0317
PACC (v = 1

2 ) on LR (w = u,C = 0.01) 0.1083 ± 0.0470
OQT (v = 1

3 ) on LR (w = u,C = 0.001) 0.2239 ± 0.0554
ARC (v = 1

3 ) on LR (w = n,C = 10.0) 0.2514 ± 0.0561

Table 46: NMD on OpenMl-Yolanda-OQ, level 4 out of 5
quantification method avg. NMD ± stddev.

IBU (o = 0, i = 0.01, J = 60) 0.0564 ± 0.0162
o-ACC (r = I, τ = 0.1, v = 1

3 ) on LR (w = u,C = 0.001) 0.0569 ± 0.0143
RUN (τ = 1.0e − 5, J = 60) 0.0583 ± 0.0163
o-PACC (r = C2, τ = 0.1, v = 1

3 ) on LR (w = u,C = 0.001) 0.0590 ± 0.0132
o-SLD (o = 0, i = 0.03) on LR (w = n,C = 10.0) 0.0733 ± 0.0244
SLD on LR (w = n,C = 0.1) 0.0751 ± 0.0238
CC on LR (w = u,C = 0.01) 0.0761 ± 0.0212
ACC (v = 1

4 ) on LR (w = u,C = 10.0) 0.0800 ± 0.0227
PCC on LR (w = u,C = 0.01) 0.0917 ± 0.0304
PACC (v = 1

2 ) on LR (w = u,C = 0.01) 0.1063 ± 0.0444
OQT (v = 1

3 ) on LR (w = u,C = 0.001) 0.2257 ± 0.0550
ARC (v = 1

3 ) on LR (w = n,C = 10.0) 0.2518 ± 0.0580
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Table 47: NMD on OpenMl-Yolanda-OQ, level 5 out of 5 (the least smooth)
quantification method avg. NMD ± stddev.

IBU (o = 0, i = 0.01, J = 60) 0.0575 ± 0.0159
RUN (τ = 1.0e − 5, J = 60) 0.0596 ± 0.0153
o-ACC (r = I, τ = 0.1, v = 1

3 ) on LR (w = u,C = 0.001) 0.0606 ± 0.0149
o-PACC (r = C2, τ = 0.1, v = 1

3 ) on LR (w = u,C = 0.001) 0.0652 ± 0.0149
o-SLD (o = 0, i = 0.03) on LR (w = n,C = 0.1) 0.0702 ± 0.0218
SLD on LR (w = n,C = 0.1) 0.0711 ± 0.0219
CC on LR (w = u,C = 0.01) 0.0768 ± 0.0209
ACC (v = 1

4 ) on LR (w = u,C = 10.0) 0.0799 ± 0.0213
PCC on LR (w = u,C = 0.01) 0.0953 ± 0.0289
PACC (v = 1

2 ) on LR (w = u,C = 0.01) 0.1007 ± 0.0454
OQT (v = 1

3 ) on LR (w = u,C = 0.001) 0.2275 ± 0.0563
ARC (v = 1

3 ) on LR (w = n,C = 10.0) 0.2524 ± 0.0612

Table 48: NMD on OpenMl-fried-OQ, regular APP
quantification method avg. NMD ± stddev.

IBU (o = 0, i = 0.01, J = 180) 0.0168 ± 0.0054
RUN (τ = 1.0e − 5, J = 120) 0.0206 ± 0.0059
o-ACC (r = C2, τ = 0.001, v = 1

3 ) on LR (w = u,C = 1.0) 0.0264 ± 0.0079
o-SLD (o = 0, i = 0.03) on DT (w = n, c = G, d = 6) 0.0322 ± 0.0066
CC on LR (w = u,C = 10.0) 0.0330 ± 0.0085
o-PACC (r = C2, τ = 1.0e − 5, v = 1

3 ) on DT (w = n, c = G, d = 10) 0.0350 ± 0.0184
SLD on DT (w = n, c = G, d = 6) 0.0369 ± 0.0090
PCC on LR (w = u,C = 10.0) 0.0410 ± 0.0101
ACC (v = 1

4 ) on DT (w = u, c = E, d = 12) 0.0454 ± 0.0211
OQT (v = 1

3 ) on LR (w = u,C = 10.0) 0.0566 ± 0.0144
ARC (v = 1

3 ) on LR (w = n,C = 1.0) 0.0589 ± 0.0166
PACC (v = 1

2 ) on DT (w = u, c = E, d = 12) 0.0614 ± 0.0256

Table 49: NMD on OpenMl-fried-OQ, APP-OQ = level 1 out of 5 (the
smoothest)

quantification method avg. NMD ± stddev.

o-PACC (r = I, τ = 0.001, v = 1
3 ) on LR (w = u,C = 10.0) 0.0146 ± 0.0037

IBU (o = 1, i = 0.01, J = 120) 0.0146 ± 0.0041
RUN (τ = 1.0e − 5, J = 60) 0.0161 ± 0.0045
o-ACC (r = I, τ = 0.1, v = 1

3 ) on LR (w = u,C = 1.0) 0.0189 ± 0.0042
CC on LR (w = u,C = 10.0) 0.0243 ± 0.0056
o-SLD (o = 0, i = 0.1) on DT (w = n, c = G, d = 6) 0.0282 ± 0.0047
PCC on LR (w = u,C = 10.0) 0.0330 ± 0.0078
SLD on DT (w = n, c = G, d = 6) 0.0373 ± 0.0082
OQT (v = 1

3 ) on LR (w = u,C = 10.0) 0.0472 ± 0.0122
ACC (v = 1

4 ) on DT (w = u, c = E, d = 12) 0.0482 ± 0.0230
ARC (v = 1

3 ) on LR (w = n,C = 1.0) 0.0598 ± 0.0183
PACC (v = 1

2 ) on DT (w = u, c = E, d = 12) 0.0659 ± 0.0260
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Table 50: NMD on OpenMl-fried-OQ, level 2 out of 5
quantification method avg. NMD ± stddev.

IBU (o = 1, i = 0.01, J = 180) 0.0151 ± 0.0042
RUN (τ = 1.0e − 5, J = 120) 0.0186 ± 0.0048
o-PACC (r = I, τ = 0.001, v = 1

3 ) on DT (w = n, c = G, d = 10) 0.0222 ± 0.0063
o-ACC (r = C2, τ = 0.001, v = 1

3 ) on DT (w = u, c = G, d = 10) 0.0256 ± 0.0062
CC on LR (w = u,C = 10.0) 0.0289 ± 0.0051
o-SLD (o = 1, i = 0.03) on DT (w = n, c = G, d = 6) 0.0311 ± 0.0061
PCC on LR (w = u,C = 10.0) 0.0365 ± 0.0072
SLD on DT (w = n, c = G, d = 6) 0.0375 ± 0.0085
ACC (v = 1

4 ) on DT (w = u, c = E, d = 12) 0.0474 ± 0.0225
OQT (v = 1

3 ) on LR (w = u,C = 10.0) 0.0515 ± 0.0124
ARC (v = 1

3 ) on LR (w = n,C = 1.0) 0.0592 ± 0.0173
PACC (v = 1

2 ) on DT (w = u, c = E, d = 12) 0.0643 ± 0.0255

Table 51: NMD on OpenMl-fried-OQ, level 3 out of 5
quantification method avg. NMD ± stddev.

IBU (o = 1, i = 0.01, J = 180) 0.0164 ± 0.0044
RUN (τ = 1.0e − 5, J = 120) 0.0197 ± 0.0048
o-PACC (r = I, τ = 0.001, v = 1

3 ) on DT (w = n, c = G, d = 10) 0.0249 ± 0.0070
o-ACC (r = C2, τ = 0.001, v = 1

3 ) on LR (w = u,C = 1.0) 0.0256 ± 0.0071
o-SLD (o = 0, i = 0.03) on DT (w = n, c = G, d = 6) 0.0319 ± 0.0064
CC on LR (w = u,C = 10.0) 0.0324 ± 0.0052
SLD on DT (w = n, c = G, d = 6) 0.0370 ± 0.0091
PCC on LR (w = u,C = 10.0) 0.0399 ± 0.0076
ACC (v = 1

4 ) on DT (w = u, c = E, d = 12) 0.0448 ± 0.0207
OQT (v = 1

3 ) on LR (w = u,C = 10.0) 0.0554 ± 0.0123
ARC (v = 1

3 ) on LR (w = n,C = 1.0) 0.0590 ± 0.0181
PACC (v = 1

2 ) on DT (w = u, c = E, d = 12) 0.0608 ± 0.0256

Table 52: NMD on OpenMl-fried-OQ, level 4 out of 5
quantification method avg. NMD ± stddev.

IBU (o = 0, i = 0.0, J = 180) 0.0177 ± 0.0056
RUN (τ = 1.0e − 5, J = 120) 0.0221 ± 0.0053
o-ACC (r = I, τ = 0.001, v = 1

3 ) on DT (w = u, c = G, d = 10) 0.0330 ± 0.0100
o-SLD (o = 0, i = 0.01) on DT (w = n, c = G, d = 6) 0.0335 ± 0.0073
o-PACC (r = C2, τ = 1.0e − 5, v = 1

3 ) on DT (w = n, c = G, d = 10) 0.0338 ± 0.0162
CC on LR (w = u,C = 10.0) 0.0362 ± 0.0051
SLD on DT (w = n, c = G, d = 6) 0.0369 ± 0.0091
PCC on LR (w = u,C = 10.0) 0.0436 ± 0.0074
ACC (v = 1

4 ) on DT (w = u, c = E, d = 12) 0.0452 ± 0.0200
ARC (v = 1

3 ) on LR (w = n,C = 1.0) 0.0581 ± 0.0153
PACC (v = 1

2 ) on DT (w = u, c = E, d = 12) 0.0592 ± 0.0241
OQT (v = 1

3 ) on LR (w = u,C = 10.0) 0.0597 ± 0.0119
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Table 53: NMD on OpenMl-fried-OQ, level 5 out of 5 (the least smooth)
quantification method avg. NMD ± stddev.

IBU (o = 0, i = 0.0, J = 180) 0.0202 ± 0.0062
RUN (τ = 1.0e − 5, J = 120) 0.0258 ± 0.0057
o-SLD (o = 0, i = 0.01) on DT (w = n, c = G, d = 6) 0.0335 ± 0.0083
o-ACC (r = I, τ = 0.001, v = 1

3 ) on DT (w = u, c = G, d = 10) 0.0345 ± 0.0095
SLD on DT (w = n, c = G, d = 6) 0.0356 ± 0.0098
o-PACC (r = C2, τ = 1.0e − 5, v = 1

3 ) on DT (w = n, c = G, d = 10) 0.0366 ± 0.0157
ACC (v = 1

4 ) on DT (w = u, c = E, d = 12) 0.0415 ± 0.0187
CC on LR (w = u,C = 10.0) 0.0432 ± 0.0065
PCC on LR (w = u,C = 10.0) 0.0518 ± 0.0089
PACC (v = 1

2 ) on DT (w = u, c = E, d = 12) 0.0569 ± 0.0259
ARC (v = 1

3 ) on LR (w = n,C = 1.0) 0.0584 ± 0.0135
OQT (v = 1

3 ) on LR (w = u,C = 10.0) 0.0693 ± 0.0122


