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A model checker is described which supports proving logical properties of concurrent
systems. The logical properties can be described in different action based logics (variants of
Hennessy-Milner Logic). The tool is based on the EMC model checker for the logic CTL. It
employs therefore a set of translation functions from the considered logics to CTL, as well
as a model translation function from Labelled Transition Systems (models of the action-
based logics) to Kripke Structures (models for CTL). The obtained tool performs model
checking in linear time complexity, and its correctness is guaranteed by the proof that the
set of translation functions, coupled with the model translation function, preserve
satisfiability of logical formulae.

1 Introduction

Logic is a good candidate to provide abstract specifications of concurrent systems; different
types of temporal and modal logics have been proposed as suitable for specifying system properties
[EH86, HM85, MP89] due to their ability to deal with the notions of necessity, possibility,
eventuality, etc.. Logics have been equipped with model checkers to prove satisfiability of formulae
and thus system properties: a system, usually a finite state system, is considered as a potential model
for the formula expressing the desired property.

Actually, very interesting temporal logics like CTL and CTL*, interpreted on Kripke
Structures, which require formulating properties of systems in terms of their states, have been put
forward [BCG88, EH86, ES89]; for CTL a sophisticated and linear time model checker has also been
developed [CES86].

Due to the success of process algebras, other logics have been proposed, which are
interpreted over Labelled Transition Systems [HM8S, BGS88, Sti90, DV90b, DV90a, Lar90].
Kripke Structures and Labelled Transition Systems differ mainly because in the former states are
labelled to describe how they are modified by the transitions, while in the latter transitions are
labelled to describe the actions which cause state changes.

The definition of logics in the setting of Labelled Transition Systems has paid attention to the
key concepts of process algebras, namely combinators for transition systems and behavioural
equivalences. These "action” based logics differ in expressive power, that is in the classes of
properties definable by them, and also in their adequacy [HM85] with respect to behavioural
equivalences.

In order to verify properties of concurrent systems defined by means of process algebras, one
or the other of these logics can be used accordingly to the problem to be solved and to the experience




of the verifier. The verification phase would take advantage in using automatic tools, therefore
efficient model checker for them would be necessary.

Different ways could have been followed to develop model checkers for these logics:

1) define for each logic a proper model checker;
2) reuse existing model-checkers and in particular:

2.1) using a p-calculus model-checker [CPS90, CS91], of which these logics are subsets;

2.2) using the EMC model checker for the logic CTL [CES86]; in fact the action-based logics,
without fixed point operator, are subsets of CTL, modulo a translation between the
underlying models.

Basing on the experience drawn from the construction of the verification environment
presented in [DFGR92], we have chosen the last alternative to realize a model checker which allows
to reason on several variants of HML, ranging from the original definition to ACTL (HML [HMS85],
HML' [Sti90], HMLy; [DV90b] and ACTL [DV90a]).

The model checker we propose is hence based on the EMC model checker, and it employs
two modules performing the translations between the variants of HML and CTL and a translation
between Labelled Transition Systems and Kripke Structures.

The choice of EMC has been due both to the fact that it is an already tested and widely used
tool and to the fact that it permits a linear time model checking; since the model translation functions
have linear complexity, we achieve linear model checking also for the variants of HML and linear
complexity is the best result that can be expected.

2 Logics for Labelled Transition Systems

In this Section we present the logics HML, HML', HMLy and ACTL, whose interpretation
domains are Labelled Transition Systems.

A Labelled Transition System (or LTS) is a 4-tuple A = (Q, Au{t}, —, 0q) where:
» QQ is a set of states;
» A is a finite, non-empty set of visible actions; the silent action T is not in A;
o — < Q x(Au{t}) x Q is the transition relation; an element (r,0,,qQ)€ —> is called a transition,

and is written as r—0—q;
* Ogq is the initial state.

We let Ap = Au{t}; Ag = Au{e}, e € Aq. Moreover, we letr, q, s ... range over states; a, b, ...

over A; o, B, ... over Agand k, ... over Ag.

Paths over a LTS, A = (Q, Ag, -, 0g), are now introduced; we let T, p, G, T range over paths.

* A finite or infinite sequence (qg,00,q1) (41,041,92)-.. is called a path from qg; a path that cannot
be extended, i.e. is infinite or ends in a state without outgoing transitions, is called a fullpath; the
empty path consists of a single state q € Q and it is denoted by q;

« if T = (g0,20.91) (41,%1,92)... we denote the starting state, qq, of the sequence by first(7) and
the last state in the sequence (if the sequence is finite) by las#(x); if 7 is an empty path (i.e. T = q),
then first(n) = lasi(n) = q

» concatenation of paths is denoted by juxtaposition: ® = p0; it is only defined if p is finite and
last(p)=first(0).

When 7t = p0 we say that 8 is a suffix of 7 and that it is a proper suffix if p #q,q € Q.




We write path(q) for the set of fullpaths from q.

On LTSs several equivalences can be defined; among them strong and weak bisimulation
[Par81, Mil80, Mil83] and branching bisimulation [vGW89]; see Appendix A for a complete
definition of these equivalence relations.

Given a logic ], defined on LTSs, with a satisfaction relation F 5, written qF 2 ¢ and read "q, state of
A, satisfies the property ¢ expressed in ] ", the definition of this relation induces an equivalence =
between states of -4 which enjoy the same properties. Formally, we define:
a5 q iff F@=F@)
where: Fl@={v:ye] A gFav}

Now, if = is an equivalence relation between LTSs, it is possible to relate = and =4 by means of the
notion of adequacy: a logic § is adequate [HM85] with respect to =, if for every pair of states q and

q":
9= q iff q=q.

Each language of logic formulae that we present in this Section differs for its adequacy with
respect to a certain equivalence and for its expressive power in terms of the definable properties.

2.1 HML

HML (Hennessy Milner Logic) is a logic whose formulae are interpreted on LTSs [HMS85].
HML formulae have the following syntax:

Ou=truel -0l OADl<a> 0 whereae A

Given a LTS A = (Q, Au{t}, -, OQ), the meaning of HML formulae is given defining a
satisfaction relation k4 between the set Q of states and the set of HML formulae; q k4 ¢ means that
the state q satisfies the formula ¢.

qFa true

qkFa —0 iff not gk ¢

qFEa 01A0y  iff qFa 01 and qFa ¢p

qFaq <a> ¢ iff  there exists pe path(q) such that p=(q, a, q)p' and q'Fq ¢

We can define on the basis of the primitive operator <a> ¢ the derived modality [a] ¢ as
—<a>— ¢. Informally [a] ¢ is satisfied by q if, whenever g—a—q/, then q' satisfies .

In [HMS85] it is shown that HML is adequate with respect to strong bisimulation equivalence.

2.2 HML'




In order to take into account a notion of observability on LTSs, a variant of HML can be
given; we will call this new logic HML', whose abstract syntax is the following:

ou=truel =01 OAQl<<a>>dl<<e>> o
The satisfaction relation for the new modalities is the following:

gFa<<a>> ¢ iff there exist pe path(q) and a decomposition 0 of p such that 6 = (t, a, t)0' and
t'F 4 0, and all suffixes of 1 of the form M' = (s, @, s')n" are such that =T.

gFa <<e>> ¢ iff there exist pe path(q) and a decomposition N8 of p such that first(8)E 4 ¢, and
all suffixes of 1 of the form 1’ = (s, o, s")1" are such that ot = 7.

We can define, as in the HML case, the derived modalities [[0]] ¢ = —<<0o>> —d. -

Alternatively we could have defined the above modalities by using the double arrow relations
defined by: p=e=>q if p—1t*—q and p=a=>q if p=e=>p'—a—>q'=€=>q. In fact, informally, <<a>> ¢
means that there exists a state q which satisfies ¢, such that p=a=>q, and <<€>> ¢ means that there
exists a state q which satisfies ¢, such that p=¢g=>q.

HML' can be easily proved to be adequate with respect to observational equivalence [Sti90].

2.3 HMLy

A variant of HML', named HMLuU, has been defined in [DV90b], which has indexed until
operators instead of the indexed diamond modalities:

O:=truel =01 OA DI d<e> ¢ | d<a> ¢

with the following satisfaction relation for the until operators:

qFa ¢ <a> ¢' iff there exist pe path(q) and a decomposition 10 of p such that:
0= (t, a, t')e' andtt:A (1) and t't:’l ¢';
all suffixes of 1 of the form 1’ = (s, o, s")M" are such that s F; ¢ and o = 7.

qFa 0 <e> ¢ iff qF4 ¢' orthere exist pe path(q) and a decomposition 18 of p such that:
O=(t, 7, t)0 andtFy dand t' F ¢
all suffixes of n of the form ' = (s, &, s’M" are such that s F, ¢ and & = 7.
In [DV90b] it is shown that HMLuy is adequate with respect to branching bisimulation equivalence.

2.4 ACTL

ACTL is an action based version of the CTL logic. In order to define the logic ACTL
[DV90a], an auxiliary logic of actions is introduced.




The collection Afor of action formulae over A is defined by the following grammar where 7,
%', range over action formulae, and a€ A:
xo=al =x | xAY

The satisfaction of an action formula ) by an action a, notation a F 7, is defined inductively by:

aFb ff a=b;
akF =y iff aBy;
akFyay iff aFyandaFy.

The syntax of the logic ACTL, a subset of ACTL* [DV90a], is defined by the state formulae
generated by the following grammar, where 0, ¢', ... range over state-formulae, Y over path
formulae and ¢ and i’ are action formulae:

Gu=true | =0 | O0AQ' | Iy | Vy
Yiu=Xy0 1 X0 1 04Uy @' 1 04U ¢

We give below the satisfaction relation for ACTL formulae.

Satisfaction of an ACTL-formula ¢ (Y) by a state q (path p), notation qF3 ¢ (p 4 7), is given
inductively by:

*qF 4 true always;

*qF 0 iff  qbFa

*qFa Ond’ iff qFa¢andqk4 9"

cqF Iy iff  there exists a path 0 € path(q) such that 8 4 v;
*qF VY iff  for all paths © € path(qQ) 0 F3 v;

*PFL O, Uy o iff  there exists a suffix 8 of p, 8 =(q,a,q")0', s.t. qF20', Bk, qF41 ¢
and for all n = (r,B,r'’)M’', suffixes of p, that have 0 as proper suffix,
wehave r =3 ¢ and ( BF y or B =1);

‘PR O, U iff  there exists a suffix 6 of p s. t. first(8) 4 ¢' and for all n = (r,B,r')1’
of which 0 is a proper suffix we haver =4 ¢ and (BFE y or B =1);

*PFaXy0 iff p=(qaq)0andq F,y pandaky;

*pFa X0 iff  p=(q,7%,q)0 and q k4 0.

The indexed next modalities X, ¢, X say that in the next state of the path, reached respectively with

an action in  or with a 1, the formula ¢ holds; the meaning of the indexed until modalities introduced
above is better clarified in Fig. 1:
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where bl=Y, ..., b, l=x andal= )
Fig. 1 The meaning of the indexed until modalities.

ACTL is adequate with respect to strong bisimulation and ACTL-{X} is adequate w.r.t. branching
bisimulation [DV90a].

3 CTL: a Logic for Kripke Structures

CTL [CES86] is a language of state formulae interpreted over Kripke Structures, and it is just
a subset of CTL* [EH86]; CTL* combines linear and branching time operators; its syntax is given in
terms of path formulae that are interpreted over computation paths and state formulae that are true or
false of a state. CTL is the branching time subset of CTL* in which every linear time operator is
immediately preceded by a path quantifier.

A Kripke Structure (or KS) is a 5-tuple K = (S, AP, L, —, Og) where:
* S is aset of states;
* AP is a finite, non-empty set of atomic proposition names ranged over by p, p1, -..;
+ L: S—24P is a function that labels each state with a set of atomic propositions true in that state;
* — < SxS is the transition relation; an element (r, s)e — is called a transition and it is written as
—8;
* (g is the initial state.

The notation for paths of Labelled Transition Systems carries over to Kripke Structures in the

obvious way. The only difference is that transitions are no longer triples but pairs, so a path of a
Kripke Structure is a sequence of pairs (sg, s1) (81, $2)... .

CTL is defined as the set of state formulae ¢ given by the following grammar, where 7y ranges
on path formulae and P ranges on the atomic predicates in AP:

0 :=Pl=dloAolEylAy




Yy =XoloUod

Let K = (S, AP, L, —, Og) be a Kripke Structure. Satisfaction of a state-formula ¢ (path-
formula ) by a state s (a maximal path ), denoted by sky ¢ and my ¥ respectively, is defined by:

State-formulae

sEg P iff Pel(s) (Pe AP)

sky — ¢ iff not (skyg 0)

sk 0A ¢ iff  (skyg ¢)and (sky ¢)

skx Evy iff  for some ® such that first(n) =s: Ty ¥
sky Ay iff  for all & such that first(m) = s: Ty ¥

Path-formulae

nEyg X o iff  Im>1 and first(nl) By ¢ _
nky 6UW ¢ iff there exists i;O such that first(n!) B ¢' and for every j20: j<i
implies first(md) Fyg ¢

On Kripke Structures several equivalences can be defined; among these, the definition of
strong bisimulation and stuttering equivalence given in [BCG88], where it has been proved that CTL
is adequate with respect to strong bisimulation and CTL-{’X} is adequate w.r.t. stuttering equivalence
on Kripke Structures.

4 From LTS to KS

In order to compare action-based logics and CTL and to translate the ones into the other, we
need to give a relation between Labelled Transition Systems and Kripke Structures. In the literature,
we find two different definitions of such a relation: the first one [JKP90], called in the following Tg,
is based on a "strong" translation of LTSs into KSs, i.e. any action in the LTS is considered as
observable; the second one [DV90a], called in the following Tyy, gives a "weak" translation from
LTSs to KSs, i.e. a different translation is given if there are transitions labelled by an unobservable
action. However, given an LTS A, all the information that we can find in Tg(-A) can be found in
Tw(-4) and viceversa. Indeed we can easily check that both Tg and Ty preserve the strong
bisimulation equivalence, i. e. strongly bisimilar LTSs are mapped into strongly bisimilar KSs and
non equivalent LTSs are mapped into non equivalent KSs. The main difference between Tg and Ty
relates to the complexity of the translation, in fact Tg requires quadratic time, while Ty requires
linear time.

In this context we adopt an extension of the translation Ty, called T'yw [DFGR92], since we
are going to reuse the EMC model checker in order to perform model checking on the action-based
logics presented above. In fact EMC accepts as input a Kripke Structure with fair paths (that is a
Kripke Structure in which all fullpaths are infinite in length), hence the original translation Ty has
been modified [DFGR92] in order to extend finite fullpaths: if there exist finite fullpaths in the
Labelled Transition System, then in the corresponding Kripke Structure a new state g is created, with

label L and successor gf, and finite fullpaths are extended relating deadlock states with gf.




4.1 The translation T'yw

In the "weak translation” [DV90a] the construction of the Kripke Structure from a Labelled
Transition System is made by splitting transitions labelled by visible actions and creating a new state
for each of them, labelled with the label of the original transition; the generated system has almost the
same structure of the original one.

Definition 1 (From LTSs to KSs) [DFGR92]

LetA = (Q, Ag, >, OQ) be a LTS, Qg the subset of states of Q that have no successors, L be a fresh
symbol not in A and gs be a fresh state not in Q. The Kripke Structure, T'w(=4), is defined as (S',
AP, L, -, OQ) where:

*S'=QuU {(r,a,s)lac A and (1, 3, s)e =} UN, where N = {q¢} if Qg #{} and N = {} otherwise;
*AP=AuU{l};

o' ={(1,s) 1 (r, T, )=} LU {(1,(r,a8) | (1, 3, s)e =} LU {((r,a,5), 5) | (1, 3, s)e >} U D, where D

={(q,qp) 1q€ Qq} v {(qp qp)} if Qq # {} and D = {} otherwise;
sForr,se Qandae A:L(r)=L(s) = {1}, L((r,a,s)) = {a};

*Ligp) = {L}.

Note that the translation T'yy produces a Kripke Structure with a larger number of states; new
states are labelled with the same label of the corresponding transition while old states are labelled with
a fresh symbol, L, whose meaning is: no visible actions occurred.

Figure 2 shows how T'y performs the translation of a given state q of a LTS. Note that the
splitting of transitions is restricted to observable transitions.

A fragment Fof an LTS The T'w translation of the fragment

Figure 2

The size of the sets of states and transitions of the Kripke Structure produced by the above
algorithm is given by the following formulae, where n = 1Ql, d = IQgl, m = I-|, and u is the number

of unobservable transitions in —:




. _[n+m-u ifd=0 W [2m-u ifd=0
BT=y ptm-u+s1  ifdz0 P 1= 100 ue1+d  ifd=0

5 From Action-based Logics to CTL

The translation T'y provide a way to relate action-based logics and CTL, characterising CTL as target
logic and KSs as underlying models. According to T'yw we define a set of translations, from action-
based logics to CTL; we will denote the translation function from J to CTL with the symbol { };
(without the index ] if the domain of the function is clear from the context).

5.1 From HML to CTL

The T'y translation induces a translation of HML formulae into formulae of CTL. A function { )y:
HML— CTL is defined as follows:

+{true) = true

¢ (’ﬂb) = = (¢)

1A ) = (0 A (o)

e{<a>9) = LAEX(@AEXDLA{))
(<> 0) = LAEX(LAW)

Proposition 1 Let A = (Q, A, -, 0Oq) be an LTS and X = (S, AP, L, —', 0q) be T'w(-4). Then
for every qe Q, for every HML formula ¢, q E4 ¢ if and only if q &y )y
(For the proof see the Appendix B)

5.2 From HML' to CTL

Analogously to the previous case, we define a function )y : HML' — CTL:

e (true) = true

® ("'14)) = (¢)

® (¢1A (1)2) = (¢1) A (¢2)

o{<ce>>0) = E (LULAD

e{cca>>09) = LAEXE (LU@AEXE (LU (LA{O))

Proposition 2 Let A = (Q, A, —, OQ) bean LTS and KX = (S, AP, L, —', OQ) be the KS T'w(A).

Then for every ge Q, for every HML' formula ¢, gk 4 ¢ if and only if gy ().
(For the proof see the Appendix B)

5.3 From HMLy to CTL

The translation function { }y; : HMLU — CTL is so defined:

o (true) = true
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* (—0) = —{0)

hd (¢1 A ¢2) = ((D 1) A (¢2)

cldp<e>0) = E (LAOHU (LA{0))

s{dp<a>9) = LAONAE (LAOHU (aAEXEL AN

Proposition 3 Let A = (Q, A, —, OQ) be an LTS and K = (S, AP, L, -/, OQ) be the KS T'w(A).

Then for every qe Q, for every HMLy; formula ¢, =4 ¢ if and only if gy (0)y.
(For the proof see the Appendix B)

5.4 From ACTL to CTL

The mapping (), : ACTL — CTL is defined as follows ([DFGR92]):

* {true) = true,
® ("1(1)) = = (¢),
{0 A 0) = {0) A {0),

<G Uy 07 = E(LAG) V(LA W (=L Ax) AEXL AN,

cEAGLUO = LAG)VEL ALY V(LA U (LA,

* (3Xy0) = EX(—L Ay AEX{D)),

* (3X.0) = LAEXL AW,

(VO Uy 00 = ALAG) v (=LA U (=L AX) AAXLA D)),
SVO4U 0N = (LAY VALAG) Y (~LAg) U (LA G,

* (VX 0) = AX(=L Ay AAX ),

(VX ) = LAAXL A D).

Proposition 4 Let A = (Q, A, —, OQ) an LTS and X = (S, AP, R, OQ) the KS T'w(-4). Then
OQhA ¢ if and only if OQ Fy ((P)A
(For the proof see [DFGR92])

This last translation says that CTL is at least as expressive as ACTL. The other logics are respectively
in the following relations: HMLyj corresponds to ACTL-{X} and it is strictly more expressive than
HML'; HML, that supports only strong equivalences, is strictly contained into ACTL and it is
uncomparable w.r.t. HMLyy and HML/, since they are able to cover weak behaviours.

6 The model checker

The model checker we have realized for the variants of HML, ranging from the original one to
ACTL, relies on EMC and permits verifying the validity of a formula in one of such logics on a

Labelled Transition System. To perform the check of a formula ¢ of a logic ] on a Labelled Transition
System M, the following steps are needed in this framework:

1) Translate M into the corresponding Kripke Structure M', using the translation T'y;
2) Translate @ into the corresponding CTL formula ¢', using the proper translation { )y;
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3) Perform the Model Checking of ¢’ on M/, using EMC.,

Each of these step corresponds therefore to a module of our model checker, called respectively
Model Translator, Logic Translator, and EMC itself. The output of the Model Translation phase is
input to EMC. Logic expressions to be verified can be given at the EMC prompt; any time a formula
is given as input, EMC calls the Logic Translator to get the corresponding CTL formula; then EMC
checks the CTL formula on the Kripke Structure, giving as result true or false.

It is not difficult to see that we can perform model checking with time complexity O((IQIH—1) X
lpl). Indeed, if we let A be a finite LTS, s be a state of A and @ be a formula of the logic J, in order
to determine whether q 4 @ it suffices to check whether q Fr._ (4, {p)y. We can compute T'w(-A) in

O(IQl+|->1)-time and the number of states and transitions of T'w(»4) will be of order IQl+—I|. The
formula {¢); can be computed in O(lpl)-time and its size will be of order Ipl. Model checking of
formula @ on »A with the algorithm for CTL of [CES86] can be therefore performed in O((IQI-H—1) x
lpl)-time.

7. Conclusions

We have presented a model checker for the verification of logical properties of systems
described by means of process algebras. Logical properties can be expressed in several variants of
Hennessy-Milner logics, and they are interpreted over Labelled Transition Systems, which are models
also for process algebras. The tool is based on the EMC model checker [CES86] and it employs a set
of translation functions, from the variants of HML to the logic CTL, and a translation from Labelled
Transition Systems to Kripke Structures.

We consider that the approach of reusing existing tools has proven effective for obtaining a
rapid prototype environment. In fact, EMC was chosen since we considered it as the only established
and widely used model checker. In general, we aimed at relying on widely used and continuously
upgraded tools, for which new research is undertaken to deal with unsolved problem, like that of state
explosion and symbolic model checking [BCDMH90].

A similar approach of reusing existing model checkers is presented in [JKP90]. There CTL is
used as a logic for Labelled Transition Systems by modifying the satisfaction relation; a relativized
satisfaction relation <a, s> E ¢ is introduced. The satisfaction relation we have given for the action
based logics are more immediate. Besides, in [JKP90] invisible actions are not considered. Also a
different translation from Labelled Transition Systems to Kripke Structures is used that is not linear
with the number of transitions of the original transition system.

Alternatively, model checking for action based-logics could be performed using a i-calculus
model checker; algorithms for performing linear model checking for fragments of the [l-calculus
corresponding to CTL have been presented [CS91] and their implementation is planned in the
Concurrency Workbench [CPS90].

Extensions of our environment are currently under study, and integration with other tools will
be considered. The first extension we will provide is the "counterexample” facility provided by EMC
for CTL formula. EMC, whenever a formula ¢ does not hold, produces a path in the model which
falsifies ¢ and generally provides useful information on how to modify the model to have the formula
satisfied. The direct correspondence between the Labelled Transition System and the generated
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Kripke Structure, should allow us to easily determine the failing path in a Labelled Transition System
by analyzing the path provided by EMC for the generated Kripke Structure.
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Appendix A

A binary relation R on an LTS A is called a (strong) bisimulation if it is symmetric and
satisfies the following:

if rRs and r—o0—r', then 3 s': s—o—s' and r'Rs'

Two states p and q of A are said (strongly) bisimulation equivalent (written p = q) if and
only if there exists a bisimulation R with pRq [Par 81, Mil 83].

A binary relation R on A is called a weak bisimulation if it is symmetric and satisfies the
following:

if rRs and r=0=>r, then 3 s': s=0=>s"and rRs" ‘
Two states p and q of a /A are said weakly bisimulation equivalent (written p ~ q), or
observational equivalent, if and only if there exists a weak bisimulation R with pRq [Mil80].

A binary relation R on A is called a branching bisimulation if it is symmetric and satisfies the
following:

if rRs and r—oa-—>r', then either =T and r'Rs, or 3 51, §' : s =g=>§5; —0l—> s’ and rRsi,
r'Rs'.
Two states p and q of A are said branching bisimulation equivalent (written p =, q), if and
only if there exists a branching bisimulation R with pRq [vGW 89].

Appendix B

All the proofs of Propositions 1, 2 and 3 are given by applying structural induction
on formulae and by taking into consideration the translation T'y from LTSs to KSs proposed
in Section 4.

We stress here some facts about the translation T'yw. Let A = (Q, A, —, OQ) be the
LTS to be translated and X = (S, AP, L, —', 0q) be T'w(-A). First, every state in Q has a
correspondent state in S with the same name; moreover, in X only states corresponding to
states in Q are labelled with L. New states in X are created in correspondence of every
observable transition and are labelled with the action labelling the transition. It is worth noting
that if the label (an action) of a transition satisfies a given action formula y then the
correspondent state in X satisfies the proposition .

Since the logics that we consider allow the negation of formulae, to prove: qF 4 ¢ if
and only if q k¢ (0}, we need to show that:

1) q 4 —0 if and only if gy (—0) and
2) q k4 ¢ implies gy (9).

Here only the proof of Proposition 1 is shown, in order to give a flavour of the way
we apply induction in the proofs of Propositions 1, 2 and 3. The other proofs are boring
applications of the same principle used in Proposition 1.
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Proposition 1: Let A = (Q, A, =, Og) be an LTS and X = (S, AP, L, —', Og) be

T'w(-A). Then for every qe Q, for every HML formula ¢, q k4 ¢ if and only if q =y ($)y.
Proof: The proof is based on structural induction on HML formulae.

case ¢ = true
{true) = true. We have always qF4 true and q Fy true.

case p=— 0
{(— ¢") == {0"). We have that qF4 — ¢' is true if and only if q ¥4 ¢' holds and this is
true if and only if, applying the inductive hypothesis, q ¥y {¢'), that is if and only if q
Fx — (0.

case 0 =0 A 0y
O, A0 =0 ) A (0,). If gk ¢ A 0, then qF4 ¢, and qF4 ¢,. Applying the
inductive hypothesis, this implies that q Fy {§;) and qFy, (0,), that is gy (6,) A (§,).

case ¢ = <a> ¢’
(<a> ¢) = L AEX@AEX(L A {0D). ,
If qE <a> ¢' then there exists q'e Q such that g-a—q' and q'F3 ¢'; it follows that a
new state (q, a, q') is created in X and the following relations are established:
@ (g 3 @) € =, (q 2 q), ¢) € =" Also, Le L (g), LeL(q)) and acL((q, 2,
q’).
Applying the inductive hypothesis, q'F 4 ¢' implies q' Fy (¢"). Hence, q Fy L AEX(a
AEX (L A {0)).

case ¢ = <T> ¢'
(<> 0)=L AEX(LAYD
qE2 <T> ¢’ means that there exists a state ¢' € Q such that g-1—q' and q'F4 ¢'. This
implies that in X (g, q")eé »' and Le L (q), Le L(q"). For the inductive hypothesis q'
Fy (9, hence q' Fy L AEX(L A {0'). O




