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Abstract

In this paper, we consider local detection of a target in hyperspectral imaging and we assume that the

spectral signature of interest is buried in a background which follows an elliptically contoured distribution

with unknown parameters. In order to infer the background parameters, two sets of training samples are

available: one set, taken from pixels close to the pixel under test, shares the same mean and covariance

while a second set of farther pixels shares the same covariance but has a di↵erent mean. When the whole

data samples (pixel under test and training samples) follow a matrix-variate t distribution, the one-step

generalized likelihood ratio test (GLRT) is derived in closed-form. It is shown that this GLRT coincides

with that obtained under a Gaussian assumption and that it guarantees a constant false alarm rate. We

also present a two-step GLRT where the mean and covariance of the background are estimated from the

training samples only and then plugged in the GLRT based on the pixel under test only.

Keywords: Hyperspectral imaging, detection, generalized likelihood ratio test, Student distribution.

1. Introduction

Detecting the presence of a given spectral signature among the pixels of an hyperspectral image serves

many purposes, including characterization of soils and vegetation, detection of man-made materials and

vehicles, among others [1, 2]. The di�culty of this problem lies in the fact that the signature of interest (SoI)

is buried in a background with partly unknown statistics. For instance, the distribution of the background

itself is subject to debate. Even if the distribution is known, the parameters describing it (for instance

mean and covariance matrix) are not known and must be estimated from the available data. Consequently,

detection of the SoI in a pixel under test (PUT) entails using other pixels (so called training samples) to

learn the background present in the PUT. This can be done at the global level, where all pixels of the image

are used to infer the background statistics, or at a local level where only pixels in the vicinity of the PUT
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are used, on the rationale that the background there is more representative while the background in farther

pixels may di↵er from that in PUT [3, 4, 5].

Concerning the choice of the background distribution, the Gaussian assumption prevails, probably due

to the huge amount of methods that have been developed for previous applications, such as radar, and its

mathematical tractability that enables straightforward derivations and analytical performance evaluations.

Thereby, many target detection schemes can be used in this context, such as the adaptive matched filter

(AMF) [6] or Kelly’s detector [7], to name a few. They correspond to two di↵erent approaches to derive

the generalized likelihood ratio test (GLRT). Kelly’s detector is known as a one-step GLRT, as it has been

derived directly from the joint distribution of both the PUT and the training samples, whereas the AMF is its

two-step counterpart, namely derived from the PUT distribution, assuming that the background parameters

are known and then replaced by their estimates from the training samples.

However, with real hyperspectral data, Gaussian distributions rarely occur, as has been reported in the

literature [2, 5, 8, 9, 10, 11, 12, 13, 14, 15, 16], leading to more realistic models. One of the most popular

is the Elliptically Contoured (EC) t-distributed model that allows to extend the Gaussian distribution to

a broader class of probability density functions (p.d.f.). Di↵erent detectors have been derived under this

hypothesis, such as the EC-GLRT [17] or the EC-FTMF [18].

Nevertheless, in-depth analysis of real data reveals that these models are strongly related to the number of

classes constituting the background (grass, roads, buildings, ...). Indeed, a more representative model for the

background is to consider each class of the background as a given distribution with specific parameters. This

so-called finite mixture models (FMMs) [10, 12] approach is usually exploited with Gaussian distributions

[8, 10, 16, 19, 20], but some authors suggest using EC distributions to better fit the background behaviour

of each class [21, 22, 10]. Each class belonging to a di↵erent region of the map, the background behaviour

is changing with the position within the image. This nonstationarity has been noticed since a long time,

when dealing with optical or Infra-Red (IR) images [23]. More precisely, it has been observed that the

main di↵erence between the classes is mostly contained in the mean of the distribution rather than in its

covariance matrix. As a consequence, the mean of the background varies more rapidly than the covariance

matrix along most optical, IR or hyperspectral images. Thereby, many authors derived target detectors under

the assumption that only the closest pixels of the PUT are representative of the mean of the background,

whereas the covariance matrix can be estimated using a larger area of secondary pixels [24, 25]. One of the

most popular anomaly detection scheme, namely the RX detector has been initially derived under such an

hypothesis [26].

The fact that the variation rate of the mean is the predominant nonstationarity e↵ect leads to consider

two di↵erent windows for the training samples to compute separately the mean and the covariance matrix

[12, 27]. This situation is illustrated in Figure 1 where y is the PUT, with mean µ and covariance ⌃. A

first set of pixels X shares the same statistical properties while a second set of pixels Z has a mismatched
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mean, yet the same covariance, unlike in the usual framework where X only is considered but with a broader

size. It has to be noticed that separating mean estimation from covariance estimation is somehow a sort of

intuitive processing, where the data are first converted to zero-mean data (demeaning step), using only the

more representative training samples, and then a zero-mean detection scheme is computed. The demeaning

step just consists of a standard 2-D high-pass filtering where a local blurring of the image is removed

[24, 25, 26]. After this demeaning step, the data are more likely to be Gaussian distributed because the

main non-stationary parameter has been removed, so that conventional zero-mean detectors can be used.

Unfortunately, this widespread and intuitive way to proceed exhibits di↵erences with the correct GLRT

formulation, as will be shown in this paper.

PUT y : (µ,⌃)

Guard pixels

Training X : (µ,⌃)

Training Z : (µz ,⌃)

Figure 1: Pixel under test and training samples.

More precisely, in this paper we will derive both the one-step and two-step GLRT for detecting a known

signature t, when considering two sets of training samples X,Z with the same covariance matrix, where only

the closest one X shares the same mean as the PUT y. We will consider EC t distributed background, the

Gaussian p.d.f. being a special case. We will show that this GLRT formulation exhibits two main di↵erences

compared to the intuitive detectors consisting in demeaning and applying the standard zero-mean GLRT.

These two di↵erences concern the way the covariance matrix is computed and a di↵erent scaling factor in

the GLR. The GLRT for the conventional case where µ = µz will be obtained as a special case and also

exhibits a di↵erence in a scaling factor with the standard zero-mean detector. Moreover, we will show that

the one-step GLRT coincides with its Gaussian counterpart, contrary to the two-step approach. Finally, we

also show that these two GLRT possess the constant false alarm rate (CFAR) property.
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The remaining of this paper is organized as follows. We first introduce the problem at hand in section 2.

Then, we derive the one-step GLRT under t distributed background in Section 3 , we show that it coincides

with its Gaussian counterpart and that it has the CFAR property. Moreover the standard case where all the

training samples share the same mean is given as a special case. Similarly, the two-step GLRT is derived

in section 4. These detectors are then compared to the GLRT assuming the same mean for all the training

samples, using a real data benchmarking, in Section 5. Finally concluding remarks end this paper in Section

6.

2. Local target detection with two sets of t-distributed background samples with di↵erent

means

As said in the introduction, we consider the problem of deciding whether a pixel under test y contains

some spectral signature t when training samples X 2 Rp⇥nx and Z 2 Rp⇥nz are available to infer the

background parameters. However, we assume that the training samples Z, which are farther from the PUT

than X, do not share the same mean, as illustrated in Figure 1. Additionally, we assume that the data

follow an elliptically contoured (EC) distribution, more precisely we assume a matrix-variate t-distribution

(which we will sometimes referred to also as Student distribution) for the whole data matrix
h
y X Z

i
.

The problem thus amounts to decide between H0 and H1 where the two hypotheses are given by

H0 :
h
y X Z

i
d
= Tp,n+1 (⌫,M0,⌃, In+1)

H1 :
h
y X Z

i
d
= Tp,n+1 (⌫,M1,⌃, In+1) (1)

with

M0 =
h
µ µ1T

nx
µz1

T
nz

i

M1 =
h
↵t+ µ µ1T

nx
µz1

T
nz

i
(2)

where n = nx+nz and 1q is the q⇥1 vector whose elements are all equal to 1. Below we derive the one-step

and two-step generalized likelihood ratio test (GLRT) for this problem.

3. One-step GLRT

The generalized likelihood ratio based on (y,X,Z) is given by

GLR =
max

↵,µ,µz,⌃
p1(y,X,Z|↵,µ,µz,⌃)

max
µ,µz,⌃

p0(y,X,Z|µ,µz,⌃)
(3)

where pi(.) stands for the probability density function of the whole observed data under Hi, i = 0, 1.

The one-step GLRT thus consists in comparing GLR to a threshold. The next proposition gives the final

expression of this GLR, once all maximization problems have been solved.
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Proposition 1. The GLR for the problem (1) is given by

GLR2/(n+1) =
1 + nx

nx+1 (y � x̄)TS�1
xz (y � x̄)

1 + nx
nx+1 (y � x̄)TS�1

xz (y � x̄)� nx
nx+1

[(y�x̄)TS�1
xz t]2

tTS�1
xz t

=
1 + nx

nx+1 (y � x̄)TS�1
xz (y � x̄)

1 + nx
nx+1 (y � x̄)TS�T/2

xz P?
S�1/2

xz t
S�1/2
xz (y � x̄)

(4)

where x̄ = n
�1
x X1nx and Sxz = XP?

nx
XT +ZP?

nz
ZT with P?

q = Iq�q
�11q1T

q the projector onto the subspace

orthogonal to 1q.

Proof. See Appendix A.

Rewriting this last expression as

GLR2/(n+1) =
1

1�
nx

nx+1 [(y�x̄)TS�1
xz t]2

[1+ nx
nx+1 (y�x̄)TS�1

xz (y�x̄)](tTS�1
xz t)

where the second term of the denominator is shown to be the product of two positive terms less or equal

than 1:
nx

nx+1 (y � x̄)TS�1
xz (y � x̄)

[1 + nx
nx+1 (y � x̄)TS�1

xz (y � x̄)]

[(y � x̄)TS�1
xz t]

2

((y � x̄)TS�1
xz (y � x̄))(tTS�1

xz t)

Therefore, as f(x) = 1
1�x is an increasing function for 0  x  1, the GLRT amounts to comparing the

following test statistic

t(y,X,Z) =
nx

nx+1 [(y � x̄)TS�1
xz t]

2

[1 + nx
nx+1 (y � x̄)TS�1

xz (y � x̄)][tTS�1
xz t]

(5)

to a threshold. This bears a strong resemblance with Kelly’s detector except that here the primary data has

been replaced by
q

nx
nx+1 (y � x̄) and that the sample covariance matrix of the training samples (X,Z) has

been computed after removal of their respective means. Thereby, as stated in the introduction, the GLRT

is not exactly the intuitive detector consisting in a demeaning step followed by a zero-mean GLRT.

We now state some important properties of this GLR.

Proposition 2. If
h
y X Z

i
follows a Gaussian distribution, the GLR is still given by (5).

Proof. See Appendix B for the technical proof. An intuitive way to figure out this equivalence is to realize

that the expression of the GLR in (5) does not depend on ⌫ and that, letting ⌫ grow to infinity, one should

recover the GLR for Gaussian distributed data.

Proposition 3. Under H0 the distribution of t(y,X,Z) does not depend on µ, µz or ⌃, and thus the GLR

has a constant false alarm rate (CFAR) with respect to these parameters.

Proof. See Appendix C where we provide a stochastic representation of GLR for both Student and Gaussian

distributions. Note however that the distribution of the GLR under H0 depends on ⌫.
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The previous property is important as the threshold of the detector can be set irrespective of µ, µz or

⌃ with a guarantee to have the same probability of false alarm whatever the values of these parameters.

A last comment concerns the usual case where all training samples share the same average value. The

one-step GLRT in this case is obtained by replacing X by
h
X Z

i
and by considering that Z does no longer

exist. Doing so, one obtains the following test statistic, whether for Gaussian or Student distributions:

t
0(y,X,Z) =

n
n+1 [(y � x+ z)TS�1

x+zt]
2

[1 + n
n+1 (y � x+ z)TS�1

x+z(y � x+ z)][tTS�1
x+zt]

(6)

where x+ z = n
�1

h
X Z

i
1n is simply the mean of the training samples and Sx+z =

h
X Z

i
P?

n

h
X Z

iT

its standard sample covariance matrix.

This last expression corresponds to Kelly’s detector in case of non-zero mean data. Again, we see that the

popular Kelly’s detector has to be slightly corrected by a di↵erent factor, namely n
n+1 in place of 1, when

considering non-zero mean data. Moreover, as already noticed in [28], this expression is the same for both

Gaussian and Student distributed background, giving it an optimality for a broader class of distributions

than initially expected.

4. Two-step GLRT

We investigate here a two-step procedure, similarly to the AMF detector. First, let us assume that µ and

⌃ are known and let us consider the GLR for the problem

H0 : y
d
= Tp (⌫,µ, (⌫ � 2)⌃)

H1 : y
d
= Tp (⌫,↵t+ µ, (⌫ � 2)⌃) (7)

This problem has been solved in [17] where it is shown that

GLR(y|µ,⌃) ⌘ [(y � µ)T⌃�1t]2

[(⌫ � 2) + (y � µ)T⌃�1(y � µ)][tT⌃�1t]
(8)

The second step consists in estimating µ, µz and ⌃ from (X,Z). These estimates, say µ̂ and ⌃̂, are

then plugged in (8) in place of µ and ⌃ to yield the two-step GLR. Again, we choose to estimate the

unknown parameters using a maximum likelihood approach. Mimicking the derivations of Appendix A, it

is straightforward to show that µML = x̄ and ⌃ML = (⌫+p�1)
(⌫�2)n Sxz. Using these values in (8), one obtains the

two-step GLR as

GLR2s(y,X,Z) ⌘ [(y � x̄)TS�1
xz t]

2

[1 + nx+nz
⌫+p�1 (y � x̄)TS�1

xz (y � x̄)][tTS�1
xz t]

(9)

Note that the previous test statistic bears strong resemblance with its one-step counterpart in (5), they only

di↵er by a scaling factor in one of the terms. This resemblance allows one to show, with the same derivations

as in Appendix C, that the two-step GLRT is also CFAR with respect to µ, µz and ⌃.

6

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



Before closing this section, we note that the two-step GLR obtained by assuming that
h
y X Z

i
is

Gaussian distributed is given by

GLRG
2s(y,X,Z) ⌘ [(y � x̄)TS�1

xz t]
2

tTS�1
xz t

(10)

which can be derived either from the Gaussian matched filter or by letting ⌫ grow to infinity in (9). Hence,

in contrast to one-step GLRTs where the Student and Gaussian distributions lead to the same test statistics,

the two-step GLRTs are di↵erent.

Table 1 summarizes the detectors available in the literature and those derived in the present paper, as a

function of the scenario concerning the training samples and the data distribution. The color and line-type

given between brackets refer to the plots of next section.

Gaussian Student

2-step GLRT (⇧) 1-step GLRT (...) 1-step GLRT (...) 2-step GLRT (+)

µ = µz (red) AMF [6] Eqn. (6) EC-GLRT [17]

µ 6= µz (blue) Eqn. (10) Eqn. (5) Eqn. (9)

Table 1: Summary of detectors as a function of scenario (one set of training samples or two sets of training samples with

di↵erent means) and distribution (Gaussian or Student).

5. Performance evaluation

In order to assess the benefits of considering two di↵erent training windows, we now conduct a Monte-

Carlo simulation based on a real experiment, namely the airborne Viareggio 2013 trial [29]. This benchmark-

ing hyperspectral detection campaign took place in Viareggio (Italy) in May 2013 with an aircraft flying at

1200 meters. The open data consist in a [450⇥375] pixels map composed of 511 samples in the Visible Near

InfraRed (VINR) band (400� 1000nm). The spatial resolution of the image is about 0.6 meters.

Di↵erent kinds of vehicles as well as coloured panels served as known targets. For each of these targets, a

spectral signature obtained from ground spectroradiometer measurements is available. Moreover, a black

and a white cover, serving as calibration targets, were also deployed. As can be seen on Fig. 2, the scene is

composed of parking lots, roads, buildings, sport fields and pine woods.

As for the majority of hyperspectral detection schemes, the first step of the processing aims at converting

the raw measurements into a reflectance map, namely removing all atmospheric e↵ects and non-uniform sun

illumination. To this end, we use the Empirical Line Method (ELM) [30] [31], considering the black and

white calibration panels. Then a spectral binning [32] is performed to reduce the vector size dimension to

N = 32.
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Figure 2: Complete RGB view of the Viareggio test scene

In order to obtain statistical results to compare the di↵erent detectors, we conduct a Monte-Carlo

experiment where we randomly insert a target that does not initially exist in the map. For each target,

we can then estimate a probability of detection Pd. The total image without target serves as reference to

compute the probability of false alarm Pfa. Changing the threshold position, we can plot the so-called

receiver operation characteristics (ROC) as represented on Figs. (3), (4), (5), (6) respectively for the so-

called V5, V6 V3 and P2. In each case the target amplitude used in the simulation, ↵ is indicated in the title

of the plot.

For these four plots, we compare the three GLRT derived in this paper, for two sets of training samples,

namely the one-step GLRT (eq. (5)) and the 2 versions of the two-step GLRT derived under Student and

Gaussian distributions (eq. (9) and (10) resp.). In the case of the Student distribution, we have chosen

⌫ = 3 in order to have a large di↵erence from the Gaussian distribution. In order to avoid problems related

to ill-conditionning of the sample covariance matrix, we consider a large outer window of size 25⇥ 25 (green

part in fig. (1)). By contrast, as the mean is supposed to move rapidly, we consider the smallest possible

inner window (yellow part in fig. (1)), namely a 3 ⇥ 3 pixels window. This configuration corresponds to

nx = 8, nz = 616 and n = 624. It can be noticed that no guard window is necessary in this experiment,

as the target is only inserted in a single pixel. These 3 detectors assuming µ 6= µz are also compared with

those based on µ = µz hypothesis. The µ = µz cases are represented in red in the following curves, whereas

the µ 6= µz cases correspond to the blue plots. The line-styles are also indicated in table (1) for a better

8

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



readability.

We can first observe that, for all the di↵erent targets, there is a noticeable improvement in considering

two windows, namely assuming that the mean is more representative in the vicinity of the PUT. The gain

can reach a Pfa reduction by 5 for a given Pd. Secondly, we can see that in both cases of single or two

windows, the one-step and two-step GLRT exhibit approximately the same performance. A slightly better

behavior for the two-step GLRT under Student hypothesis can be noticed for very low Pfa, suggesting that

the background has a heavy tailed distribution on these real data.

10-4 10-3 10-2 10-1 100

Pfa

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Pd

V5, additive model with = 0.15

  = z : One-Step GLRT (eq. 6)

  = z : Two-Step GLRT Student, =3 (EC-GLRT)

  = z : Two-Step GLRT Gaussian (AMF)

   z : One-step GLRT (eq. 5)

  z : Two-step GLRT student, =3 (eq. 9)

  z : Two-step GLRT Gaussian (eq. 10)

Figure 3: Receivers operation characteristics for V5

6. Conclusions

In this paper, we considered target detection taking into account that mean is the main nonstationary

parameter in hyperspectral imaging,. Rather than considering two di↵erent window sizes for mean and

covariance estimation as is usually done, we addressed the problem under the more theoretical framework

of generalized likelihood ratio test. We derived the one-step and two-step GLRT for the problem at hand,

under EC t-distributed background, and showed some di↵erences compared to usual, more intuitive tech-

niques. Moreover, we showed that these GLRT posses the desirable CFAR property. Real data experiments

illustrated the gain associated with the use of two training sample sets.
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V6, additive model with = 0.3

  = z : One-Step GLRT (eq. 6)

  = z : Two-Step GLRT Student, =3 (EC-GLRT)

  = z : Two-Step GLRT Gaussian (AMF)

   z : One-step GLRT (eq. 5)

   z : Two-step GLRT student, =3 (eq. 9)

   z : Two-step GLRT Gaussian (eq. 10)

Figure 4: Receivers operation characteristics for V6

Appendix A. Proof of Proposition 1

In this appendix, we derive the generalized likelihood ratio for the composite hypotheses testing problem

in (1). For the sake of notational convenience, let us note T =
h
y X Z

i
the whole data matrix. The

probability density function (p.d.f.) of T under each hypothesis is thus given by

p0(T) / |⌃|�
n+1
2

����Ip +
⌃�1

⌫ � 2
(T�M0)(T�M0)

T

����
� ⌫+n+p

2

p1(T) / |⌃|�
n+1
2

����Ip +
⌃�1

⌫ � 2
(T�M1)(T�M1)

T

����
� ⌫+n+p

2

(A.1)

where /means proportional to. It can be readily verified that |⌃|�
n+1
2
��Ip + (⌫ � 2)�1⌃�1S

���
⌫+n+p

2 achieves

its maximum at

⌃⇤ =
(⌫ + p� 1)S

(⌫ � 2)(n+ 1)
(A.2)

and is given by

max
⌃

|⌃|�
n+1
2
��Ip +⌃�1S

���
⌫+n+p

2 / |S|�
n+1
2 (A.3)

It follows that

max
⌃

p0(T) /
��(T�M0)(T�M0)

T
���

n+1
2

max
⌃

p1(T) /
��(T�M1)(T�M1)

T
���

n+1
2 (A.4)
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V3, additive model with = 0.1

  = z : One-Step GLRT (eq. 6)

  = z : Two-Step GLRT Student, =3 (EC-GLRT)

  = z : Two-Step GLRT Gaussian (AMF)

   z : One-step GLRT (eq. 5)

   z : Two-step GLRT student, =3 (eq. 9)

   z : Two-step GLRT Gaussian (eq. 10)

Figure 5: Receivers operation characteristics for V3

Let yi = y � i↵t for i = 0, 1 and note that

(T�Mi)(T�Mi)
T = (yi � µ)(yi � µ)T + (X� µ1T

nx
)(X� µ1T

nx
)T

+ (Z� µz1
T
nz
)(Z� µz1

T
nz
)T (A.5)

It is straightforward to check that

(Z� µz1
T
nz
)(Z� µz1

T
nz
)T = nz(µz � z̄)(µz � z̄)T + ZP?

nz
ZT (A.6)

where z̄ = n
�1
z Z1nz and P?

q = Iq � q
�11q1T

q the orthogonal projector on the null space of 1q. Similarly

(yi � µ)(yi � µ)T + (X� µ1T
nx
)(X� µ1T

nx
)T

= (nx + 1)


µ� yi +X1nx

nx + 1

� 
µ� yi +X1nx

nx + 1

�T

+
h
yi X

i
P?

nx+1

h
yi X

iT
(A.7)

Consequently, if we define Ti =
h
yi X Z

i
, then after maximization with respect to ⌃, µ and µz, we

have

max
µ,µz,⌃

pi(T) /

������
Ti

0

@P?
nx+1 0

0 P?
nz

1

ATT
i

������

�n+1
2

(A.8)
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P2, additive model with = 0.05

  = z : One-Step GLRT (eq. 6)

 = z: Two-Step GLRT Student, =3 (EC-GLRT)

 = z: Two-Step GLRT Gaussian (AMF)

   z: One-step GLRT (eq. 5)

   z : Two-step GLRT student, =3 (eq. 9)

   z : Two-step GLRT Gaussian (eq. 10)

Figure 6: Receivers operation characteristics for P2

Next, note that

Q =

0

@P?
nx+1 0

0 P?
nz

1

A

=

0

BBB@

1� 1
nx+1 � 1T

nx
nx+1 0

� 1nx
nx+1 Inx � 1nx1

T
nx

nx+1 0

0 0 P?
nz

1

CCCA

=

0

BBB@

nx
nx+1 � 1T

nx
nx+1 0

� 1nx
nx+1 P?

nx
+

1nx1
T
nx

nx(nx+1) 0

0 0 P?
nz

1

CCCA
(A.9)

so that

TiQTT
i =

h
yi X Z

i

0

BBB@

nx
nx+1 � 1T

nx
nx+1 0

� 1nx
nx+1 P?

nx
+

1nx1
T
nx

nx(nx+1) 0

0 0 P?
nz

1

CCCA

2

6664

yT
i

XT

ZT

3

7775

=
nx

nx + 1
yiy

T
i � nx

nx + 1
x̄yT

i � nx

nx + 1
yix̄

T

+XP?
nx
XT +

nx

nx + 1
x̄x̄T + ZP?

nz
ZT

=
nx

nx + 1
(yi � x̄)(yi � x̄)T + Sxz (A.10)
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with x̄ = n
�1
x X1nx and Sxz = XP?

nx
XT + ZP?

nz
ZT . It then follows that

max
µ,µz,⌃

pi(T) / |Sxz|�
n+1
2


1 +

nx

nx + 1
(yi � x̄)TS�1

xz (yi � x̄)

��n+1
2

(A.11)

and therefore

GLR2/(n+1) =
1 + nx

nx+1 (y � x̄)TS�1
xz (y � x̄)

1 + nx
nx+1 min↵(y � x̄� ↵t)TS�1

xz (y � x̄� ↵t)

=
1 + nx

nx+1 (y � x̄)TS�1
xz (y � x̄)

1 + nx
nx+1 (y � x̄)TS�1

xz (y � x̄)� nx
nx+1

[(y�x̄)TS�1
xz t]2

tTS�1
xz t

(A.12)

which concludes the proof.

Appendix B. One-step GLRT for Gaussian distributed background

In this appendix, we show that the the GLRT for Gaussian distributed background is the same as for

Student distributed background. We thus consider the following detection problem

H0 : T
d
= Np,n+1 (M0,⌃⌦ In+1)

H1 : T
d
= Np,n+1 (M1,⌃⌦ In+1) (B.1)

The p.d.f. of T is in this case

p0(T) / |⌃|�
n+1
2 etr

⇢
�1

2
⌃�1(T�M0)(T�M0)

T

�

p1(T) / |⌃|�
n+1
2 etr

⇢
�1

2
⌃�1(T�M1)(T�M1)

T

�
(B.2)

It is well-known that |⌃|�
n+1
2 etr

�
� 1

2⌃
�1S

 
achieves its maximum at ⌃⇤ = (n+ 1)�1S, and hence

max
⌃

|⌃|�
n+1
2 etr

⇢
�1

2
⌃�1S

�
/ |S|�

n+1
2 (B.3)

It follows that

max
⌃

p0(T) /
��(T�M0)(T�M0)

T
���

n+1
2

max
⌃

p1(T) /
��(T�M1)(T�M1)

T
���

n+1
2 (B.4)

But this is exactly (A.4) which holds for Student distributions. From there, everything follows and the

GLRs for Student or Gaussian distributions are the same and are given by (4).
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Appendix C. CFAR property of the GLRT

In this appendix, we show that the distribution of the GLR under H0 does not depend on µ, µz or ⌃.

Let us first recall the expression of the test statistic

t =
nx

nx+1 [(y � x̄)TS�1
xz t]

2

[1 + nx
nx+1 (y � x̄)TS�1

xz (y � x̄)][tTS�1
xz t]

and let us rewrite Sxz = (XHnx)(XHnx)
T + (ZHnz )(ZHnz )

T where Hq is a q|q � 1 matrix whose columns

form an orthonormal basis for the hyperplane orthogonal to 1q, i.e., HT
q Hq = Iq�1 and P?

q = HqHT
q . Let

ỹ =
q

nx
nx+1 (y � x̄), X̃ = XHnx and Z̃ = ZHnz so that t can be rewritten as

t =
[ỹT S̃�1t]2

[1 + ỹT S̃�1ỹ][tT S̃�1t]
(C.1)

with S̃ = X̃X̃T + Z̃Z̃T . Now, one can write that

T̃ =
h
ỹ X̃ Z̃

i
=
hq

nx
nx+1 (y � x̄) XHnx ZHnz

i

= TA
d
= Tp,n�1

�
⌫,MiA,⌃,ATA

�

(C.2)

where

A =

0

BBB@

q
nx

nx+1 0 0

�
q

nx
nx+1n

�11nx Hnx 0

0 0 Hnz

1

CCCA
(C.3)

It can be easily verified that ATA = In�1 and that

MiA =
hq

nx
nx+1 i↵t 0 0

i
(C.4)

which implies that

T̃
d
= Tp,n�1

⇣
⌫,

hq
nx

nx+1 i↵t 0 0
i
,⌃, In�1

⌘

Next, let ⌃ = GGT and let U be the unitary matrix such that UTG�1t = (tT⌃�1t)1/2e1 with e1 =
h
1 0 . . . 0

iT
. Let us make the change of variables

T̆ = UTG�1T̃

d
= Tp,n�1

⇣
⌫,

hq
nx

nx+1 i↵(t
T⌃�1t)1/2e1 0 0

i
, Ip, In�1

⌘
(C.5)

It follows that the distribution of T̆ does not depend on µ or µz, and that, under H0, it does neither depend

on ⌃ since then ↵ = 0. Moreover, since ỹ = GUy̆, X̃ = GUX̆ and Z̃ = GUZ̆, it is readily verified that t

can be written as

t =
[y̆T S̆�1e1]2

[1 + y̆T S̆�1y̆][eT1 S̃
�1e1]

(C.6)
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where S̆ = X̆X̆T + Z̆Z̆T . Therefore, the distribution of t under H0 is independent of µ, µz or ⌃, which

proves the CFAR property of the GLRT. It means that the threshold of the detector can be set irrespective

of µ, µz and ⌃.

In the Gaussian case, derivations follow along the same lines. More precisely,

T
d
= Np,n+1 (Mi,⌃⌦ In+1)

) T̃ = TA
d
= Np,n�1

⇣hq
nx

nx+1 i↵t 0 0
i
,⌃⌦ In�1

⌘

) T̆ = UTG�1T̃
d
= Np,n�1

⇣hq
nx

nx+1 i↵(t
T⌃�1t)1/2e1 0 0

i
, Ip ⌦ In�1

⌘
(C.7)

It follows that y̆ and (X̆, Z̆) are independent with

y̆
d
= Np

✓r
nx

nx + 1
i↵(tT⌃�1t)1/2e1, Ip

◆

S̆
d
= Wp (n� 2, Ip) (C.8)

Therefore Kelly’s analysis directly applies to this detector. If ⌘ denotes the threshold then the probability

of false alarm is given by Pfa = (1� ⌘)n�2�p+1. The probability of detection depends only on the signal to

noise ratio which is now defined as nx
nx+1↵

2tT⌃�1t.
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