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ABSTRACT
Exploiting quantum properties to improve performance of different 
tasks in Natural Language Processing (NLP) and other domains 
has increasingly becoming a successful trend to deal complex lan-
guage phenomena or to fill task or domain-specific gaps with an 
approach that needs less data and minor computational resources. 
The field that has, to date, yielded more quantum-based attention 
is the retrieval and classification of textual data. This work aims to 
replicate the excellent results of hybrid quantum approaches for 
syntactic tasks on semantic classification tasks. In detail, a quan-
tum machine learning algorithm, namely, the Variational Quantum 
Classifier (VQC), is used to perform sentiment analysis classifica-
tion tasks. This algorithm can deduce the relationships between 
input features and their corresponding class affiliations us ing a 
parametrized quantum circuit and an encoding layer that translates 
classical data into quantum states. The approach has been tested 
on a well-known benchmark annotated dataset used for the Italian 
language, and the results have been compared to existing baselines, 
pointing out state-of-the-art scores.
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1 INTRODUCTION
NLP has experienced exponential growth in recent years, primarily 
driven by the emergence of Neural and Large Language Models 
(NLMs/LLMs). The introduction of Transformer-based models, no-
tably exemplified b y p ioneering models s uch a s B ERT [ 15], has 
steered into a new era in NLP methodologies. These advancements 
have consistently elevated the attainable performance across many 
tasks, spanning various domains and languages [20–22], ranging 
from classical applications such as information extraction or text
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classification[18, 38], to highly specialized verticalized approaches
[23, 27, 32, 34, 37, 47, 48]. The increasing demand for resources
needed to tow and fine-tune these new models has led to the re-
lease of more and more resources and datasets optimized for diverse
applications [6, 42].

However, all these factors have led to a complexity of models,
increasingly greedy for data and computational power for training
and fine-tuning [7, 16].

For these reasons, quantum machine learning (QML)[5] and its
derivative sub-field Natural Language Processing (QNLP) [13] have
been considered as a viable alternative, using properties derived
from quantum theory.

Various approaches have been proposed, from those that are only
valid theoretically, to others tested on classical hardware to those
launched on the current available noisy quantum hardware (NISQ).
Although the latter offer the most promising performance, due to
the current immaturity of the NISQ machines, they are limited to
easy tasks and small scale datasets.

Therefore, in the current scenario, the most exploitable avenue
is hybrid classical-quantum approaches. Firstly proposed in [28],
this approach is based on a quantum self-attention neural network
(QSANN) and it introduces the possibility of non-linearity, achiev-
ing best performances over other QNLP models[31]. In [29], the
approach has been extended, addressing the low non-linearity issue
for QNLP models using the classical-quantum transfer learning par-
adigm [33]. This mechanism, combined with pre-trained quantum
encodings, has demonstrated its effectiveness in classification tasks
[9, 17], open up for the possibility of being implemented on real
quantum hardware.

Figure 1: A schematic of the computational pipeline. The
corpus SentiPolc is processed via a pre-trained Electra model,
which is used to extract vector embeddings that are then
processed by a variational quantum circuits. This is trained
for performing a binary classification.

25

This work is licensed under a Creative Commons Attribution International 4.0 License.

https://doi.org/10.1145/3660318.3660325

https://orcid.org/
https://orcid.org/
https://orcid.org/
https://doi.org/10.1145/3660318.3660325
https://doi.org/10.1145/3660318.3660325
https://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3660318.3660325&domain=pdf&date_stamp=2024-09-03


Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Buonaiuto G., et al.

Starting from these premises, this work aims to use a hybrid
pipeline based on the Electra model and Variational Quantum Clas-
sifier (VQC) [11] to perform a semantic-based classification task.
The task chosen is Sentiment Analysis, which has a long and prolific
history in the NLP field. The choice of this specific task is due to
multiple factors. First, it has been a task used in recent years in the
Quantum NLP field [35]; furthermore, the pipeline proposed here
has already proven effective in a classification task that involved
mainly syntactic aspects [9], so it can be attractive to investigate
the performance about tasks based on different levels of linguistic
knowledge[10].

The paper is organized as follows: in section 2, the research
works available in the literature related to what is presented are
described, while in section 3 the dataset and applied methodologies
are presented, then in section 4, the results obtained are exposed,
and relevant aspects are discussed, and finally, overall conclusions
are drawn in section 5.

2 RELATEDWORK
Although in recent years, quantum-based approaches have invested
in all NLP tasks, and many solutions have been proposed, in this
section, we focus only on the hybrid approaches closest to the one
presented here and on the task. For a more in-depth review of work
that has addressed other tasks, see [19].

2.1 Quantum Transfer Learning
Numerous examples have received increasing interest in recent
years concerning the adaptation of classical machine learning algo-
rithms through the use of properties and techniques borrowed from
quantum mechanics. In tasks like sentiment analysis or document
classification, great research instruments could be Quantum Sup-
port Vector Machines (QSVMs), which utilize quantum algorithms
to improve traditional Support Vector Machines (SVMs), or the
quantum-inspired algorithms for text classification, as Quantum-
Inspired Genetic Algorithm (QGA) and Quantum-Inspired Particle
Swarm Optimization (QPSO) which borrow principles from quan-
tum mechanics to enhance optimization techniques like feature se-
lection and parameter optimization for text classification. To repre-
sent and analyze textual data to capture more nuanced and context-
dependent information, have been recently (?) developed Quantum
Embeddings. Although still in its early stages, quantum machine
learning algorithms, such as QuantumNeural Networks (QNNs) and
Quantum Boltzmann Machines (QBMs), utilize quantum systems’
computational capabilities to efficiently handle complex computa-
tions for text classification tasks. One notable approach is Quan-
tum Support Vector Machines (QSVMs), which aim to enhance
the performance of traditional Support Vector Machines (SVMs)
by utilizing quantum algorithms. QSVMs have shown promising
results in various text classification tasks, including sentiment anal-
ysis, topic classification, and document classification. Another area
of research is quantum-inspired algorithms for text classification.
Quantum-inspired algorithms, such as Quantum-Inspired Genetic
Algorithm (QGA) and Quantum-Inspired Particle Swarm Optimiza-
tion (QPSO), draw inspiration from quantum mechanics and apply
quantum-like principles to improve traditional optimization tech-
niques. These algorithms have been explored in the context of

feature selection and parameter optimization for text classification,
demonstrating their potential to enhance classification accuracy
and efficiency. Moreover, quantum embeddings have gained atten-
tion as a means to represent and analyze textual data. Quantum
embeddings leverage the concepts of quantum superposition and
entanglement to capture semantic relationships between words or
documents. These embeddings aim to capture more nuanced and
context-dependent information compared to traditional word em-
beddings. By utilizing quantum representations, classification mod-
els can benefit from enhanced semantic understanding, improving
performance in various NLP tasks. Furthermore, quantum machine
learning algorithms, such as Quantum Neural Networks (QNNs)
and Quantum Boltzmann Machines (QBMs), have been explored
in text classification. These quantum-inspired models leverage the
unique computational capabilities of quantum systems to perform
complex computations efficiently. Although still in its early stages,
quantum machine learning holds the potential to address the com-
putational challenges associated with large-scale language data and
to provide more powerful models for classification tasks.

2.2 Quantum-based Sentiment Analysis
Sentiment analysis is a task in NLP used to determine the leading
emotional tone behind a text (positive, negative, neutral). During
the last decade, it has experienced enormous popularity for allow-
ing us to determine the polarity orientation of a wide span of textual
data, ranging from user-generated-content social media posts to on-
line reviews. The task can be considered a sub-task of Information
Retrieval, in particular, derived from text classification-based tasks
[39]. While information retrieval focuses on extracting relevant
information from a large corpus of data, sentiment analysis aims
to filter and rank information extracted during retrieval. In [40],
sentiment analysis techniques have been used to support document
filtering and classification within information retrieval systems.
In contrast, [49] have exploited sentiment information contained
in documents to enhance relevance ranking algorithms. Moreover,
analyzing user feedback has been applied in different domains, rang-
ing from organizations [24] to user personalization [14]. [30] has
proposed a sentiment-based approach to improve the performance
of information retrieval systems. Sentiment information extracted
by documents (i.e., user intent and emotion) can help the system to
perform a more accurate retrieval and recommendation of relevant
information. In summary, integrating sentiment analysis into infor-
mation retrieval systems has transformed them from mere content
retrievers to intelligent platforms that understand and respond to
user emotions and preferences. This fusion improves the quality
and relevance of retrieved content and enhances the overall user
experience in navigating the digital landscape.

Concerning recent approaches, sentiment analysis has been ad-
dressed using several machines and deep learning methods, ranging
from LSTM [? ] to different neural language models [1]. The situa-
tion is much more complex when trying to approach low-resource
languages such as Italian, for which few works achieve the same
performance as English, and most approaches are pretty dated due
to the lack of available resources[44]. Typically, the task has been
addressed, focusing on employing popular textual feature represen-
tation methods to construct vector representations of documents.
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Although these approaches can model linguistic information, they
can fail to capture the sentiment information [25], and many issues
still need to be solved.

Moving to quantum-inspired approaches, sentiment Analysis is
one of the tasks that has benefited the most from such advance-
ments. In [52], a method based on features from quantum proba-
bility theory has been proposed. This unsupervised approach is
based on a density matrix using two custom sentiment dictionaries.
The sentiment is obtained using quantum relative entropy, calcu-
lated due to the similarity between dictionaries and documents.
To obtain a better representation of relations between words com-
posing sentences, [51] has developed a novel approach exploiting
quantum-inspired interactive networks, which merge quantum
theory and the long short-term memory (LSTM) neural network.
Word relations are identified using the density matrix and then
used as input for LSTM. This approach has been compared to dif-
ferent baselines ranging from CNN [26] to attention-based LSTM
and Contextual/Hierarchical biLSTM [43]. Experiments have been
conducted on two annotated datasets. An extension of this work
has been proposed in [50]. This work is structured on an archi-
tecture based on a tensor network that is able to improve the per-
formance and interpretability of the results. This model encodes
high-dimensional word vectors in a probabilistic space using a gen-
erative tensor network to classify texts. This approach has been
evaluated against most used sentiment analysis benchmark models
showing comparable performances.

3 MATERIALS AND METHODS
3.1 Dataset
The resource chosen for this work is the most famous Italian dataset
in the literature for the sentiment analysis task, SENTIPOLC 2016 1.
It is a collection of Italian tweets annotated with sentiment polarity
and other related information. It has been originally developed for
the sentiment analysis task at EVALITA 2016, the fourth evaluation
campaign for natural language processing and speech tools for
Italian [2].

The dataset has been developed for four different subtasks: sub-
jectivity classification, polarity classification, topic-based polarity
classification, and irony detection. In detail it contains:

• 9,000 tweets total (7,000 for training and 2,000 for testing)
• The tweets have been randomly sampled from a larger cor-
pus of 100,000 tweets collected between January and April
2016 using the Twitter Streaming API and a set of keywords
related to politics, economics, and social issues.

• annotation has been performed by three experts. The inter-
annotator agreement has been measured using Krippen-
dorff’s alpha and ranged from 0.64 to 0.82 depending on
the subtask.

Although the dataset has intrinsic and extrinsic limitations, pri-
marily concerning its data source (Twitter), it proves to be the most
suitable for the purpose of this study. This choice is mainly mo-
tivated by the opportunities it offers for comparison with other
models, hence the release of baselines[36, 41].

1https://github.com/evalita2016

3.2 Model
The model chosen for this work is ELECTRA [12]. This model has
gained much success in recent years due to its ability to better
capture contextual word representations compared to the widely-
used BERT, given the same model size, data, and compute [45].

Electra is a transformer model composed of a generator and a
discriminator. The generator is trained as a masked language model
and attempts to replace tokens in a given sequence. Instead, the
discriminator attempts to identify which token has been modified.
Specifically, for a sentence, the tokens are replaced randomly by
a mask, and the generator is trained to predict the original tokens
from the masked ones. Then, the generator outputs a fake sentence
for the discriminator. The discriminator then is trained to decide
if the tokens provided are fake or real. With this approach, the
number of examples required for training is reduced significantly
compared to other models like Bert.

In detail, for a given input sequence, in which some tokens are
randomly replaced with a [MASK] token, the generator𝐺 is trained
to predict the original tokens for all masked ones. On the other
hand,𝐺 is given input sequences built by replacing [MASK] tokens
with fake ones produced by 𝐺 , and it is trained to predict whether
they are original or fake.

More formally, given an input sentence 𝑠 of raw text 𝜒 , composed
by a sequence of tokens 𝑠 = 𝑤1,𝑤2, . . . ,𝑤𝑛 where 𝑤𝑡 (1 ≤ 𝑡 ≤
𝑛) represents the generic token, both 𝐺 and 𝐷 firstly encode 𝑠
into a sequence of contextualized vector representations ℎ(𝑠) =

ℎ1, ℎ2, . . . , ℎ𝑛 .
Then, for a given position 𝑡 so that the corresponding 𝑤𝑡 =

[𝑀𝐴𝑆𝐾], the generator outputs the probability to have a token𝑤𝑡 ,
with a softmax layer:

𝑝𝐺 (𝑤𝑡 |𝑠) =
𝑒 (𝑤𝑡 )𝑇ℎ𝐺 (𝑠)𝑡∑

𝑤′ 𝑒𝑥𝑝 (𝑒 (𝑤 ′)𝑇ℎ𝐺 (𝑠)𝑡 )
(1)

where 𝑒 (·) represents the embedding function.
The discriminator predicts whether𝑤𝑡 is the original or "fake",

using a sigmoid layer:

𝐷 (𝑠, 𝑡) = 𝑠𝑖𝑔𝑚𝑜𝑖𝑑 (𝑒 (𝑤𝑡 )𝑇ℎ𝐷 (𝑠)𝑡 ) (2)
During the pre-training, 𝐺 employs the following loss function:

L𝐺𝑒𝑛 = L𝑀𝐿𝑀 = E(
∑︁
𝑖∈𝑚

− log𝑝𝐺 (𝑤𝑖 |𝑠𝑚𝑎𝑠𝑘𝑒𝑑 )) (3)

where 𝑚 = 𝑚1,𝑚2, . . . ,𝑚𝑘 are 𝑘 random selected words and
𝑠𝑚𝑎𝑠𝑘𝑒𝑑 is the sentence with the masked words.

On the other hand, 𝐷 uses the following loss function:

L𝐷𝑖𝑠 = E(
𝑛∑︁
𝑡=1

−I(𝑤𝑐𝑜𝑟𝑟𝑢𝑝𝑡
𝑡 = 𝑥𝑡 ) log𝐷 (𝑠𝑐𝑜𝑟𝑟𝑢𝑝𝑡 , 𝑡)+

−I(𝑤𝑐𝑜𝑟𝑟𝑢𝑝𝑡
𝑡 ≠ 𝑥𝑡 ) log𝐷 (𝑠𝑐𝑜𝑟𝑟𝑢𝑝𝑡 , 𝑡))

(4)

where𝑤𝑐𝑜𝑟𝑟𝑢𝑝𝑡
𝑡 is the corrupted word within the corrupted sen-

tence 𝑠𝑐𝑜𝑟𝑟𝑢𝑝𝑡 .
Finally, the following combined loss is minimized:

min
𝜃𝐺 ,𝜃𝐷

∑︁
𝑠∈𝜒

L𝐺𝑒𝑛 (𝑠, 𝜃𝐺 ) + 𝜆L𝐷𝑖𝑠 (𝑠, 𝜃𝐷 ) (5)
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At the end of the pre-training,𝐺 is discarded, and only 𝐷 is used.
The main reason behind ELECTRA’s improved results is that

predictions are calculated not only over masked tokens but also for
each token, and the discriminator loss can be calculated over all
input tokens. Several studies in the literature have already pointed
out that a massive amount of computational resources are needed to
train ELECTRA. For such reasons, a pre-trained version of themodel
is used. In particular, the cased and XXL version of the dbmdz Italian
ELECTRA model2 has been selected for the embedding extraction,
i.e., the model is taken without the final neural network used for
classification.

3.3 Quantum Pipeline
The numerical representation of sentences, obtained from the pre-
trained Electra, must be encoded in a quantum state for a proper
manipulation in a quantum computing algorithm. In this work the
quantum amplitude encoding has been used: here the classical real
vectors of data are encoded in the amplitudes of a quantum super-
position. In particular, classical data are assigned to the complex
amplitudes of specific computational basis states. In a formal way,
given the classical feature vector v = (𝑣1, 𝑣2, . . . , 𝑣𝑁 ), where 𝑁 rep-
resents the dimension of the feature space, and a set of 𝑛 = ⌈log2 𝑁 ⌉
qubits, the encoded quantum state |v⟩ is given by:

|v⟩ =
𝑁−1∑︁
𝑖=0

𝛽𝑖 |𝑖⟩, (6)

where |𝑖⟩ is the computational basis state for the 𝑛 qubits, and 𝛽𝑖
are complex amplitudes related to the encoded data 𝑣𝑖 via:

𝛽𝑖 =
𝑣𝑖√︃∑𝑁−1

𝑗=0 |𝑣 𝑗 |2
, (7)

where the normalization ensures that the quantum state |v⟩ is nor-
malized. The constructed quantum states are then used as initial
state of a quantum circuits with parametrized gates [3]. The param-
eters are updated via a classical optimizer, with the goal of finding
the optimal configuration that gives, after the measurement, a min-
imum of the objective function evaluated on the target labels. The
performances of such parametrized circuits are highly dependent
on the ansatz in use and on the characteristic of the quantum com-
puter itself [8]. Although there is no universal rule prescribed for
the selection of the best ansatz for a specific task, it is crucial to
put the qubit involved in a quantum superposition, i.e. an entan-
gled state, to best exploit the learning capabilities of a variational
quantum learning algorithm: here a Basic Entangling Layer pro-
vided by Pennylane [4] is used. This ansatz is made of a sigle qubit
rotational gates with one trainable parameter and a closed ring of
CNOTs, which are two qubit gate that build up entanglement and
classical correlation between each qubit in the computation. The
last step of the quantum pipeline is the measurements of the final
quantum state: measurements are taken in multiple shots, over a
single quantum operator, in order to collect a meaningful statistics
of the outcome. More formally, given the parametrized quantum
circuit𝑈𝜃 , with parameters 𝜃 and a measurement operator𝑀 , the

2https://huggingface.co/dbmdz/electra-base-italian-xxl-cased-discriminator

outcome, 𝑝 , is given by:

𝑝 = |⟨v|𝑈 †
𝜃
𝑀𝑈𝜃 |v⟩|2 (8)

where 𝑈𝜃 |v⟩ is the state obtained from the application of the quan-
tum circuit on the initial state. In particular 𝑝 is a real number, or a
real vector-depending on the composition of the measurements and
on the target variable, which is thus used to evaluate the objective
function together with the training labels. It is hence crucial to
select the proper measurement operators too: in the experiment
here described, given the selected ansatz, the measurement𝑀 , used
for extracting information out of the parametrized quantum circuit,
is the projection of each qubit onto the 𝑧 axis of rotation for each
qubit, i.e. the expectation value of the Pauli-Z operator.

3.4 Experimental Assessment
For the specific problem here assessed, the Sentiment Analysis on
Italian dataset SentiPolc, the modules specifications and the steps
of the experimental phase are the followings:

• Pre-trained Electra used forword embeddingwithmax length
per sentence of 152. The length of each embedding is of 768

• The embeddings are encoded in a quantum state via ampli-
tude encoding with 10 qubit, as ⌈𝑙𝑜𝑔2 (768)⌉ = 10, where the
rest of the 1024 amplitudes are padded with a value of 0.001.
After the encoding phase, the state obtained is used as an
input for a 8 layers of parametrized.

• After the encoding, the state is used as an input of a parametrized
quantum circuit. The ansatz in use, i.e. the structure and the
nature of the quantum gates composing the parametrized
cirucit, is the BasicEntangledLayer, which is made of single
parameter rotations on each qubit, and a chain of CNOT gate
with cyclic boundary condition. In particular 6 layers of this
ansatz have been used in the experiment.

• As the desired output is binary, themeasurements are applied
on two qubits out of ten. Specifically, the PauliZ operator
have been measured on the final state emerging from the
quantum circuit.

• The loss function evaluated for each run of the computa-
tion is the binary cross entropy loss, which is standard for
binary classification. Furthermore, the optimizer used for
the update rule of the parameter is the AdamW optimizer,
with a learning rat of 10−5 and numerical stabilization term
𝜖 = 10−6

The outcome are compared with the ground truth data, as custom-
ary in supervised learning. While the accuracy of the classifier is
evaluated on the test set.

4 RESULTS
The training of the Electra-quantum hybrid model has been per-
formed for 8 epochs, a small number that serves to avoid over-fitting,
a learning rate of 10−5, on a training set made of 4476 sentences.
Conversely, the test set is composed of 500 sentences. The qual-
ity of the binary classification is assessed through the F1 score,
which provides a robust metric in this case, given the possible class
unbalance within the training set.

The model evaluation results on the test are shown in 1: the
F1 score of the Electra-quantum model is compared with other
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Model F1-Score
Electra-quantum 0.77
BERT-based system (with pre-processing) 0.75
BERT-based system (without pre-processing) 0.73
Alberto 0.72
LSTM-based 0.69

Table 1: Comparison of classification results on the test set
of SentiPolc dataset.

available classical models in the literature, evaluated on the same
dataset. The result shows a prominent improvement compared to
previously tested models: this is a rather significant result that
serves as a first hint of the possibilities offered by quantum classi-
fiers. Regarding several parameters, the quantum circuit attached
to the pre-trained Electra model has a reduced size comparable to
a simple feed-forward neural network. Nevertheless, the results
outperform mode complicated models, stating that the quantum
algorithm learning abilities can outperform their classical counter-
parts on some specific tasks. Notice that 30 experiments have been
performed with a random distribution of the initial parameters of
the quantum circuit, thus obtaining a statistically significant dis-
persion of the results. The obtained final F1-score for the ensemble
evaluation returns a value of 0.7775 ± 0.009, hence proving the
outperformance on the specific task compared to other models,
well above the standard deviation. Compared to those obtained in
[44], the results are particularly interesting (second and third row
of the table). In fact, in that work, a BERT-based architecture has
been implemented and tested using two different approaches: the
first using the raw dataset, the second performing targeted pre-
processing consisting mainly of data-cleansing as often carried out
in user-generated-content from Twitter in order to ensure a better
result[46]. Such a language-independent phase of pre-processing
has allowed to clean up the text from the Twitter jargon and meta-
textual elements such as emoji, URLs, and hashtags by shifting
the F1 value by two percentage points (from 0.73 to 0-75). The
performance of the presented quantum transfer learning approach
achieves superior results using a comparable architecture, Electra,
also based on Transformers. Indeed, a higher score (0.77) is shown
even using just the original dataset, thus without cleaning the raw
data and without pre-processing, paving the way for extensive
testing that may include additional models for comparison.

5 CONCLUSIONS
This work has presented a quantum transfer-learning approach
for semantic tasks in the Italian language, focusing on sentiment
analysis. In detail, the methodology is based on a quantum classifier,
trained using a sentence embedding strategy provided by Electra.
Concerning the dataset used to test this approach, the choice has
fallen on one previously used for the EVALITA evaluation cam-
paign.

Results have pointed out that this type of pipeline can achieve
performances that outperform other NLMs, particularly BERT-
based models, which achieve state-of-the-art performance on this
dataset. Besides the achieved scores, another strong point of the
proposed approach is the compactness of the model, based on a

relatively simple ansatz. The lack of data preprocessing in the ex-
perimental phase, compared to the most performing classical model,
points towards a promising direction of quantum advantage on this
specific task.

Since this work has been tested on a strictly semantic task, it
stands as a complement to the experiments that have already ver-
ified the model’s applicability to syntactic tasks. Future develop-
ments have two planned directions. From a technical perspective,
experimenting with different possible embeddings in order to cap-
ture more knowledge about the sentences will offer different in-
sights. From a linguistic point of view, it will be interesting to
combine the two tasks to develop a pipeline capable of approaching
both the syntactic and semantic levels and extending the analysis
by taking into account multilingual models.
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